Dirk Riehle's Industry and Research Publications

A validation of QDAcity‑RE for domain modeling using qualitative data analysis [RE Journal]

Abstract: Using qualitative data analysis (QDA) to perform domain analysis and modeling has shown great promise. Yet, the evaluation of such approaches has been limited to single-case case studies. While these exploratory cases are valuable for an initial assessment, the evaluation of the efficacy of QDA to solve the suggested problems is restricted by the common single-case case study research design. Using our own method, called QDAcity-RE, as the example, we present an in-depth empirical evaluation of employing qualitative data analysis for domain modeling using a controlled experiment design. Our controlled experiment shows that the QDA-based method leads to a deeper and richer set of domain concepts discovered from the data, while also being more time efficient than the control group using a comparable non-QDA-based method with the same level of traceability.

Keywords: Domain model, domain modeling, qualitative data analysis, requirements engineering, controlled experiment

Reference:  Kaufmann, A., Krause, J., Harutyunyan, N., Barcomb, A., & Riehle, D. (2022). A Validation of QDA-based Domain Modeling Using QDAcity-RE. Requirements Engineering, vol. 27, no. 1 (March 2022), pp 31-51.

The paper is available online (local copy).

Newsletter subscription


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.


Share the joy

Share on LinkedIn

Share by email

Share on X (Twitter)

Share on WhatsApp

Featured startups

QDAcity makes collaborative qualitative data analysis fun and easy.
EDITIVE makes document collaboration more effective.

Featured projects

Making free and open data easy, safe, and reliable to use
Bringing business intelligence to engineering management
Making open source in products easy, safe, and fun to use