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Abstract
In many application domains, domain-specific languages can allow domain experts to 
contribute to collaborative projects more correctly and efficiently. To do so, they must be 
able to understand program structure from reading existing source code. With high-quality 
data becoming an increasingly important resource, the creation of data pipelines is an 
important application domain for domain-specific languages. We execute a mixed-method 
study consisting of a controlled experiment and a follow-up descriptive survey among the 
participants to understand the effects of a domain-specific language on bottom-up program 
understanding and generate hypotheses for future research. During the experiment, partici-
pants (n = 57) need the same time (Wilcoxon signed-rank test, W = 750, p = .546, RBC 
= .093) to solve program structure comprehension tasks, but submit significantly more 
correct solutions (McNemar’s test, χ2

1 = 11.17, p =< .001, OR = 4.8) when using the 
domain-specific language. In the descriptive survey, participants describe reasons related 
to the programming language itself, such as a better pipeline overview, more enforced 
code structure, and a closer alignment to the mental model of a data pipeline. In addition, 
human factors such as less required programming experience and the ability to reuse ex-
perience from other data engineering tools are discussed. Based on these results, domain-
specific languages are a promising tool for creating data pipelines that can increase correct 
understanding of program structure and lower barriers to entry for domain experts. Open 
questions exist to make more informed implementation decisions for domain-specific lan-
guages for data pipelines in the future.

Keywords  Program comprehension · Data pipelines · Data engineering · Domain-
specific languages · Mixed-methods study · Open data
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1  Introduction

Domain-specific languages (DSLs) can be a useful alternative to general-purpose program-
ming languages (GPLs) in many application domains. By focussing on one domain, they 
can have a reduced scope and re-use glossary and concepts from the application domain, 
making them easier to learn and more efficient to program for domain experts (Kosar et al. 
2018; Johanson and Hasselbring 2017). However, because DSLs are a specialized tool, they 
have to be carefully evaluated to determine whether they provide enough benefits to make 
their adoption a good choice.

When working on non-trivial software applications, developers must first understand the 
program structure from source code. Only then can they make changes to extend existing 
implementations or fix bugs. Program comprehension, in general, is estimated to be the 
dominant activity while programming, with more than 50% of time spent (Roberto Minelli 
and Lanza 2015; Xia et al. 2018). Therefore, the effects of a DSL on program structure com-
prehension are essential for the usefulness of a DSL in an application domain.

The evaluation of DSLs generally has to be domain-specific (Kosar et al. 2018). Increas-
ingly, high-quality data, and with it data engineering, is of large importance in industry 
because many innovative apps and AI applications rely on access to data. Sources for data 
sets vary from company internal data to open data, with open data mainly published by 
governments but also by some private entities.

Depending on the type of data, creating an automated data pipeline is a major part of data 
engineering. An example is regularly changing data, such as schedules released as open 
transport data, that should be ingested and improved automatically with updated releases.

In complex domains, data-engineers must collaborate with subject-matter experts to 
understand the meaning of data. A common challenge during these collaborations is that 
subject-matter experts lack programming experience, which complicates it to find a shared 
collaboration artifact with professional programmers (Heltweg and Riehle 2023).

Domain-specific languages can be a useful middle-ground, that enables subject-matter 
experts to contribute directly to the creation of data pipelines, as previously shown in other 
domains (Johanson and Hasselbring 2017; Lopes et al. 2021).

DSLs can be grounded in the formal and informal glossary of domain experts, such as 
sketches (Wile 2004). A common mental model for a data pipeline is a graph of process-
ing steps connected by pipes, known from visual programming. A DSL can provide an 
explicit syntax and semantics to express this data pipeline structure with the pipes and filters 
architecture.

In previous explorative work, we found using a domain-specific language based on this 
architecture had positive effects on speed, quality of the solution and perceived difficulty 
when solving data engineering exercises on real life open data sets (Heltweg et al. 2025).

Building on this high-level validation, we aim to understand how domain-specific lan-
guages contribute to improved performance by subject-matter experts and what language 
features are important in more detail. To do so, we conduct a series of empirical evaluations 
using quantitative and qualitative methods. Previous research shows that programming lan-
guage research lacks empirical studies, instead focusing on solution proposals (do Nasci-
mento et al. 2012). However, empirical user studies to evaluate usability are essential tools 
that can lead to insights that would not have been gained otherwise (Buse et al. 2011; Barišić 
et al. 2018).
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When contributing to a collaborative data engineering project, the first thing a subject-
matter expert will need to do is read and understand the intention behind data pipeline 
source code. To start, we therefore focus on bottom-up program comprehension, the process 
of inferring the intentions behind an implementation from reading source code (Wyrich 
et al. 2023); we do so in the domain of building data pipelines by non-professional program-
mers (subject-matter experts).

In the context of this mixed-methods study, we compare data pipelines implemented in a 
DSL using an explicit pipes and filters architecture (Jayvee) to imperative scripts in a GPL 
with libraries for data engineering (Python with Pandas). We performed an initial controlled 
experiment to gather quantitative data on task performance in terms of time and correctness. 
In a follow-up survey, we look for causal influences for the experiment outcomes..

With the results, we answer the following research questions:

Research Question 1  Do data pipelines implemented in Jayvee change bottom-up program 
structure comprehension compared to Python/Pandas for non-professional programmers...

a: regarding speed?
b: regarding correctness?
c: regarding the perceived difficulty?

Research Question 2  What reasons exist for effects on program comprehension for data 
pipelines implemented in Jayvee compared to Python/Pandas for non-professional 
programmers?

In this article, we contribute: 

1.	 A mixed-methods approach, combining a controlled experiment with a descriptive sur-
vey, to evaluate the effects of DSLs in the domain of data pipeline modelling.

2.	 Quantitative data, based on a controlled experiment, on how strongly the use of a DSL 
in the domain of data pipeline modelling can influence pipeline structure understand-
ing, contributing to the growing literature on domain-specific languages and motivating 
their use in data engineering.

3.	 Explanations for these effects from participant surveys to guide future practitioners or 
researchers that implement DSLs for data engineering.

2  Related Work

Empirical research into the effects of domain-specific languages has been performed across 
multiple domains. Kosar et al. have used controlled experiments to compare DSLs with 
GPLs and libraries. Initially, in the context of GUI programming, they compared the DSL 
XAML with C# Forms, with XAML performing better for answering questions on provided 
source code (Kosar et al. 2010).

With a similar approach, Kosar et  al. (2012) extended the insights to the domains of 
feature diagrams and graphical descriptions, again comparing a DSL with a GPL and an 
appropriate library. While the previous experiments were performed on paper, a replication 
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study in Kosar et al. (2018) allowed the use of IDEs. In all studies, participants performed 
more accurate and efficient in program comprehension tasks using a DSL than a GPL with 
libraries.

Similar to our work, Kosar et al. have evaluated the use of DSLs for different domains 
using experiments and note that because DSLs are domain-specific, they must be evaluated 
for each domain. Our goal is to extend their work with the domain of creating data pipelines 
for data engineering. In addition to a purely quantitative comparison of performance, we 
also provide qualitative insights into potential reasons for different performance.

Other DSLs with similar structure, either for data pipelines or using blocks, have been 
proposed. Cingolani et al. (2015) present an external DSL for the creation of data pipelines 
in the domain of biological data called BigDataScript. They similarly plan to support sub-
ject-matter experts, but do so by replicating script-style programming and abstracting from 
the underlying architecture. In contrast to our work, they demonstrate the independence 
towards architecture, robustness, and scalability of the language implementation technically 
but do not evaluate it empirically.

PACE is an external DSL for continuous integration pipelines with a block structure that 
compiles to JSON, presented in Fonseca et al. (2020). In a controlled experiment, partici-
pants are tasked with pipeline creation and extension while thinking aloud, comparing PACE 
with their previous system of manually creating JSON configs with the results showing an 
improvement using PACE. We use a similar mixed-methods research design, however, in a 
very different context (understanding data pipelines by non-professional developers instead 
of creation of CI pipelines in an industrial setting).

In their PhD thesis, Misale (2017) designed and developed PiCo, a DSL based on pipes 
and the data flow computational model. They demonstrate the capability of their design 
and evaluate the performance of the implementation using case studies and experiments 
with Flink and Spark. In comparison, our work provides an empirical evaluation of code 
comprehension instead.

As with our study, students are commonly used as participants in controlled experiments, 
which can provide useful data if their use as a proxy for a specific type of developer is 
appropriate (Falessi et al. 2018).

Lopes et al. compared a text-based DSL with a graphical tool in a different domain 
(entity-relationship modeling) with students (Lopes et al. 2021). Their results are aligned 
with ours, showing that a textual approach using a DSL is possible with a slight advantage in 
quality but no difference in effort. A similar controlled experiment on readability (speed and 
correctness) of type inference rules shown in a DSL or Java implementation is described in 
Klanten et al. (2024). The authors point out that research into programming language design 
lacks empirical studies, a research gap our work contributes to reducing.

Hoffmann et al. evaluated Athos, a DSL that targets subject-matter experts in the domain 
of vehicle routing and traffic simulation, compared to JSpirit (Java with libraries) (Hoff-
mann et al. 2022). As with the previous studies, the DSL improved efficiency. In addition, 
participants reported improved user satisfaction when using Athos. Even with the planned 
end users being subject-matter experts, the authors rely on students as proxies for subject-
matter experts.

Similar to these studies, our work uses students as participants because we consider them 
a good approximation for practitioners that had first programming experiences but are not 
professional developers (such as subject-matter experts that have to do data engineering).
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Empirical evaluations of DSLs with subject-matter experts are rare. An example is 
Johanson and Hasselbring (2017) in which ecologists use the Sprat Ecosystem DSL and the 
GPL C++ to solve program comprehension tasks related to ecosystem simulations. Partici-
pants are subject-matter experts from a non-technical domain (marine science) with only 
moderate previous programming experience. Time to task completion and correctness were 
measured, with the tasks being solved in less time and with higher correctness using the 
DSL. The context of our research are also subject-matter experts and not technical users. We 
extend the insights gathered in this study by investigating a different domain (the creation 
of data pipelines).

3  Methods

We used a mixed method research design (Johnson et al. 2007), combining quantitative data 
from a controlled experiment according to Ko et al. (2015) and a descriptive survey accord-
ing to Kitchenham and Pfleeger (2008) with qualitative data from free-text responses to the 
same survey. We chose thematic analysis according to Braun and Clarke (2012) to extract 
common themes from the survey responses. An overview of the complete research design 
is shown in Fig. 1.

The combination of these methods allows us to validate our hypotheses in a rigorous 
manner and uncover potential causal relationships that strengthen the insights and enable us 
to generate further hypotheses to test in future work. Additionally, the qualitative responses 

Fig. 1  Overview of the mixed method research design, split into data collection and data analysis
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also touch other topics of program comprehension in addition to program structure, allow-
ing us to describe a wider diversity of effects regarding RQ2.

3.1  Jayvee, a Domain-specific Language for Data Pipelines

Jayvee is a DSL for data engineering following the well-known pipes and filters architec-
ture described in Garlan and Shaw (1993) and Shaw and Garlan (1995). The language is 
designed to align as closely as possible with the mental model of data pipelines as directed 
acyclical graphs of processing steps, thereby making it easier for subject-matter experts to 
use than traditional GPLs.

The main elements of a Jayvee pipeline model is a top level pipeline, consisting 
of multiple blocks, each representing a processing step. The inputs and outputs of these 
blocks are connected using pipes. Blocks have an oftype relationship with block-
types, which defines the input and output types of the block as well as its properties that 
can be configured.

Jayvee is an external DSL that is not embedded in a host programming language but has 
its own syntax and semantics. The syntax is implemented using a context free grammar 
language provided by Langium1 while a TypeScript based interpreter acts as a reference 
implementation for the language semantics.

Listing 1 shows an example of a data pipeline implemented in Jayvee. The pipeline 
consists of three blocks, each performing a step in the data processing. At the top of the 
pipeline definition (line 2-4), the pipeline structure is defined by connecting the blocks using 
the pipe syntax->.

1 pipeline CarDataPipeline {
2 CarDataCSVExtractor
3 -> CarDataInterpreter
4 -> CarDataSQLiteLoader;
5

6 block CarDataCSVExtractor oftype CSVExtractor
7 url: "https:// example.org/data.csv";
8 enclosing : ’"’;
9 }
10 block CarDataInterpreter oftype TableInterpreter {
11 header: true;
12 columns: [
13 "name" oftype text ,
14 // ... further assignments
15 ];
16 }
17 block CarDataSQLiteLoader oftype SQLiteLoader {
18 table: "Cars";
19 file: "./cars.db";
20 }
21 }

Listing 1 Data pipeline extracting CSV data and writing it to a SQLite database, written in Jayvee.

Jayvee includes more advanced concepts such as user-defined value types and a standard 
library of prebuilt, domain-specific blocks. The language is open source and available on 
GitHub,2 additional documentation is hosted at https://jvalue.github.io/jayvee.

1 https://langium.org/
2 https://github.com/jvalue/jayvee
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3.2  Controlled Experiment

We follow the guidelines on reporting experiments described in Wohlin et al. (2012), origi-
nally by Jedlitschka and Pfahl (2005). We first provide informal information about research 
goals and the context of the experiment, and then report details of the experimental design. 
The experiment execution and resulting data is reported in Section 4.

We followed the Goal/Question/Metric template to define the research objective of the 
controlled experiment (Wohlin et al. 2012; Basili and Rombach 1988): 

1.	 Analyze a DSL and a GPL with a specific data engineering library
2.	 for the purpose of their effect on bottom-up program structure comprehension for data 

pipelines
3.	 with respect to speed and correctness
4.	 from the point of view of researchers
5.	 in the context of a university course with masters level students learning data science 

(as proxies for non-professional programmers).

Our goal was to understand the influence of a DSL on professionals of non-programming 
disciplines that work with data as part of their jobs. Some examples include data scien-
tists or subject-matter experts, e.g., in biology, that analyze data. Representatives from this 
population have base programming skills from working with data, but are not professional 
software engineers.

The experiment was conducted with student participants in person, over two days in 
computer labs provided by the university. During the experiment, participants solved two 
program structure understanding tasks by reading source code of a pipeline and recreating 
the data pipeline structure afterward.

We use a concrete example task as an overview before describing the experiment design 
in detail in the following sections. Figure 2 is a screenshot of a task view in the web-based 
experiment tool the participants used. On the left-hand side, under Pipeline Code the source 
code of a data pipeline is shown. This data pipeline was implemented either in Jayvee or 
Python/Pandas, depending on the treatment group. On the right-hand side, under Pipeline 
Steps, participants had to recreate the data pipeline structure by dragging steps from the list 
of Unused Steps into the Steps in Data Pipeline and bringing them into the correct order. 
Once they were satisfied with their solution, they could submit it using the Submit Solution 
button and attempt the next task.

3.2.1  Goals, Hypotheses, and Variables

We defined one independent variable, the programming language PL used to implement a 
data pipeline, either Jayvee (JV) or Python/Pandas (PY).

From the research objectives, we chose time to task completion and correctness as 
dependent variables. The combination of time and correctness is the most common for com-
prehension tasks (Wyrich et al. 2023).

Time to completion describes the time between seeing the source code and submitting 
a solution. At the start of each task, the source code of the data pipeline was hidden so par-
ticipants could read the available steps they had to categorize and order. We started the time 
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measurement once participants revealed the source code by pressing a button. The time is 
directly measured in milliseconds by the experiment software and defined as follows:

	 time(PL) : time of submission for task in PL − time of source code reveal� (1)

Correctness is an indirect variable that is calculated from the submitted solution by the 
participant.

For each task, a number of potential steps are available for participants to choose from. A 
subset of these available steps is present in the pipeline, in a specific order. Using the drag 
and drop interface, participants can categorize steps into Steps in Data Pipeline or used 
steps and Unused Steps and decide on an order of steps inside these categories.

To define the correctness of a solution, we consider two dimensions: Has the participant 
correctly understood which steps exist in the pipeline source code and have they understood 
the order in which they are executed?

We consider a submitted solution as correct if the participant has only selected the steps 
that actually exist in the source code and brought them into the correct order.

Any solution with a mistake in the existing steps or their order is categorized as incorrect.
Therefore, we define correctness as follows:

Fig. 2  The experiment tool during task 2 in Python/Pandas. Pipeline source code is shown on the left, the 
recreation using ordered steps on the right
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correctness(PL) :

{ 1, if selected steps and order correct
0, otherwise � (2)

Hypotheses were defined based on the goal to describe effects on speed and correctness.
For speed, we defined H0,1 as “Non-professional programmers need the same time to 

understand the structure of a data pipeline model when implemented in Jayvee compared 
to Python/Pandas.” with the alternative hypothesis H1,1, “Non-professional programmers 
do not need the same time to understand the structure of a data pipeline model when imple-
mented in Jayvee compared to Python/Pandas.”. More formally:

	

H0,1 : time(JV ) = time(PY )
H1,1 : time(JV ) ̸= time(PY )� (3)

Regarding correctness, we defined H0,2 as “Non-professional programmers understand the 
structure of a data pipeline model equally correct when implemented in Jayvee compared 
to Python/Pandas.” with the alternative hypothesis H1,2, “Non-professional programmers 
can understand the structure of a data pipeline model not equally correct when implemented 
in Jayvee compared to Python/Pandas.”. More formally:

	

H0,2 : correctness(JV ) = correctness(PY )
H1,2 : correctness(JV ) ̸= correctness(PY )� (4)

3.2.2  Experiment Design

We chose a factorial crossover design according to Vegas et al. (2016) which is a within-
subjects design in which each participant is assigned to every treatment exactly once. Cross-
over designs are well understood and commonly used for software engineering experiments 
(Wyrich et al. 2023).

The participants completed two tasks reading a data pipeline, implemented in either Jay-
vee or Python/Pandas and recreating it using a drag and drop interface. We defined two 
periods (solving task 1 and task 2) and two sequences AB and BA, see Table 1. Participants 
were randomly assigned to either sequence without experimenter input, based on a call 
to JavaScript Math.randomwhen they opened the experiment tool. One experiment session 
included both periods.

3.2.3  Participants

The experiment was executed during a masters level course on data engineering and working 
with open data, offered to students largely studying data science and artificial intelligence 
as well as some students from computer science and information systems. Because the par-
ticipants are students and the vast majority of them study degree programs that mainly work 

Period
 Sequence Task 1 Task 2
AB Jayvee Python/Pandas
BA Python/Pandas Jayvee

Table 1  Factorial crossover de-
sign of the controlled experiment 
according to Vegas et al. (2016)
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with data in a theoretical fashion rather than teach software engineering, they have limited 
experience programming but have worked on data engineering before. We considered this 
population an appropriate proxy, as discussed in Falessi et al. (2018), for data practitioners 
that have some experience with programming but are not professional software engineers.

During the course, students were introduced to Jayvee in two lectures and were encour-
aged to use Python with Pandas for an individual data science project. The course requires 
the completion of five data engineering exercises in Jayvee and Python/Pandas, with stu-
dents switching languages after each exercise. In all lectures that referenced programming 
challenges, we used examples in Jayvee and Python/Pandas. While we mentioned alterna-
tive libraries, we always used Python in combination with Pandas during the module.

We employed convenience sampling from this population by offered students to vol-
untarily participate in the experiment in place of completing the third homework exercise. 
Doing so would count as passing the exercise, and enter them into a raffle to win two gift 
cards of EUR 20 each. If they chose to complete the exercise as normal, they experienced 
no negative effects, e.g., their grade was unaffected.

3.2.4  Objects, Instrumentation, and Data Collection Procedure

Participants were asked to complete two bottom-up code comprehension tasks in which 
they had to read the provided source code of a data pipeline and recreate the structure using 
a drag and drop interface. They completed one task reading a pipeline implemented in Jay-
vee and one with a pipeline implemented in Python/Pandas, depending on their sequence 
assignment. Both tasks used a web-based experiment tool (see Fig. 2 for a task screen exam-
ple) and followed the same sequence: 

1.	 Participants were shown the available steps, categorized as unused, while the pipeline 
source code was hidden.

2.	 After reading the available steps, participants reveal the pipeline source code using a 
button press (time measurement starts).

3.	 Participants drag and drop steps into the Steps in Data Pipeline category and bring them 
in the correct order as they understand the pipeline.

4.	 When they are satisfied with their solution, participants click on “Submit Solution” 
(time measurement stops).

5.	 They are taken to a pause screen where they can start the next task whenever they feel 
ready.

In addition to time measurements, the experiment tool automatically saved the submitted 
solution so that correctness could be calculated in the analysis phase. After both tasks, the 
participants were asked to complete a follow-up survey. The exact version of the tool used 
by participants can be found online.3

Both languages were shown as text without syntax highlighting. Two researchers were in 
the room for every experiment run to monitor the screens of participants and ensure silence. 
This made sure that participants did not interact with each other or search for solutions on 
the internet.

3 All links can be found in the Data Availability Statement.
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For the tasks, we implemented equivalent data pipelines in Jayvee 0.1.0 and Python 3.11 
with Pandas 2.0, based on real open data sources. 

1.	 Task 1 is a pipeline that downloads a ZIP-file, extracts it and selects a file as CSV. It 
then translates some columns names to English, selects a subset of columns and saves 
the data to a SQLite-database.

2.	 Task 2 is a pipeline that downloads a file, interprets it as CSV and validates that data in 
one column are geographic coordinates between -90 and 90. It adds a new column with 
boolean data, based on another column. Finally, it saves the data to SQLite.

We aligned the code structure as much as possible by implementing each step similarly in 
Jayvee and script-style Python/Pandas. As an example, Fig. 3 compares the source code to 
extract a CSV file for task 1 in both languages. The example shows the more verbose syn-
tax of Jayvee, utilizing blocks to model processing steps, compared to Python/Pandas. The 
Appendix (A) includes a further comparison of source code used in task 2 (Fig. 7).

We conducted two pilot tests to ensure the data pipeline implementations and the accom-
panying step descriptions are appropriate and clear. First, we shared the tasks with other 
researchers that were neither involved in Jayvee development nor the experiment itself. 
Later, we invited students from previous semesters to take the full experiment remotely 
while we watched their screen and asked for their feedback afterward. Based on the feed-
back of both pilot groups, we made minor code and wording adjustments and gained the 
expectation that the tasks could reasonably be completed in 10 minutes each.

We defined an experiment procedure so multiple experimenters could guide the partici-
pants through the following process: 

1.	 Read and acknowledge informed consent information.
2.	 Open allowed documentation in tabs.
3.	 Provide an overview about the experiment process, how tasks work and what the exper-

iment measures. Communicate that we expect the experiment to last for roughly 30 
minutes and will announce times at 10 minutes and 20 minutes.

Fig. 3  Comparison of source code excerpts to extract data from a CSV source, shown for task 1 in Jayvee 
and Python/Pandas
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4.	 Solve an initial example task with pseudocode together with participants to familiarize 
them with the tool.

5.	 Answer any final questions before asking the participants to start their tasks and no 
longer interacting with them.

6.	 Participants complete both tasks and the follow-up survey.
7.	 Finally, thank the participants and ask them not to share the experiment setup with other 

participants.

Because we asked participants to submit their own solutions, variations can occur between 
participants that choose to be faster or more correct, depending on their confidence (Ko 
et al. 2015). To reduce this effect, we asked the participants to favor correctness over speed 
if in doubt.

The full source code of both tasks, the experiment procedure and the informed consent 
handout can be found in the replication package3.

3.3  Descriptive Survey

We designed a cross-sectional, descriptive survey according to Kitchenham and Pfleeger 
(2008) to assess how participants perceived the difficulty of understanding the data pipeline 
from Jayvee code compared to Python/Pandas.

As part of the survey, participants completed an online questionnaire after completing 
the experiment, with two agreement questions How difficult was it to understand the data 
pipeline written in Jayvee? and How difficult was it to understand the data pipeline written 
in Python?. Answers could be given on a 5-point Likert scale. We assigned numbers from 1 
(Very easy) to 5 (Very hard) to be able to calculate medians and defined difficulty(PL) as 
the median of the answers for JV and PY respectively.

To answer RQ 1c: Do data pipelines implemented in Jayvee change bottom-up program 
structure comprehension compared to Python/Pandas for non-professional programmers 
regarding perceived difficulty, we defined H0,3 as “Non-professional programmers do not 
perceive a data pipeline model as easier or harder to understand when implemented in Jay-
vee compared to Python/Pandas.” with the alternative hypothesis H1,3, “Non-professional 
programmers do perceive a data pipeline model as easier or harder to understand when 
implemented in Jayvee compared to Python/Pandas.”. More formally:

	

H0,3 : difficulty(JV ) = difficulty(PY )
H1,3 : difficulty(JV ) ̸= difficulty(PY )� (5)

In addition, participants were provided free-text input fields for the questions What makes 
data pipelines written in Jayvee difficult/easy to understand?, What makes data pipelines 
written in Python difficult/easy to understand?, and What are the differences between Jay-
vee and Python that influence how easy / hard it is to understand data pipelines?.

To analyze this qualitative data, we chose thematic analysis according to Braun and 
Clarke (2012). Because we had no preconceived theory but wanted to understand causal 
relationships for the experiment results, we chose an inductive approach, letting the themes 
emerge from the data.
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During the thematic analysis, we first familiarized ourselves with the data by reading all 
survey responses in detail.

Afterward, we created codes from the data and constructed a codebook by grouping 
related codes into themes. Our goal was the creation of a codebook that is clear and themes 
that can be consistently understood by multiple readers. We therefore worked in iterations, 
with multiple authors applying the codebook to responses independently and discussing 
any differences in coding that emerged from unclear descriptions to improve the clarity of 
themes.

For each iteration: 

1.	 We selected a subset of the responses at random
2.	 The first author coded the subset of responses and afterward updated the codebook with 

new insights
3.	 The updated codebook was shared with another author, who used the codebook to code 

the same subset of responses
4.	 The authors met to qualitatively discuss any differences in coding and the clarity of the 

codebook and the codebook was updated according to the discussion
5.	 The first author used the updated codebook to re-code all previous responses

Because our goal was to explore the diversity of reasons for the effects on program compre-
hension, we chose theoretical saturation as a guideline to judge the maturity of our code-
book, meaning no or few new insights are gained from analyzing additional data (Bowen 
2008). We counted codes that were assigned to each survey response, as well as any code-
book changes (newly created, deleted, moved or updated codes and themes). We consider 
theoretical saturation to be reached when codebook changes are rare (indicating that the 
codebook is stable), but codes are still assigned to new responses (indicating that the code-
book is relevant to the topic of the response).

4  Results

4.1  Participant Sample

Our sample consisted of 57 volunteers from a masters level course about advanced methods 
of data engineering that was completed by 98 students. Students mainly came from master’s 
degree programs in artificial intelligence, data science and computer science. At the start of 
the semester, we used an online survey with previously validated questions by Feigenspan 
et  al. (2012) to measure previous experience in programming generally and Python and 
Jayvee specifically. Median programming experience was 7 (of 10), median comparison 
to classmates 3, median experience in Python 4 and median experience in Jayvee 1 (all of 
5). At the end of the semester, we repeated the survey and the median experience of course 
participants in Jayvee had increased to 3 (n = 77). A detailed overview of the course entry 
survey results can be found in Fig. 8 (Appendix A).

After the course entry survey, all participants heard two lectures on Jayvee programming 
and solved one data engineering exercise in Jayvee as part of the training for the experiment.

1 3
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Of these 57 participants, 29 were randomly assigned to sequence AB and 28 to sequence 
BA.

4.2  Hypotheses Tests

We used Python 3.11 with Pingouin 0.5.5 (Vallat 2018) for the statistical analysis of the 
data. We consider tests at the standard α = .05 to be statistically significant.

For each participant, we calculated time on task and correctness as described in Section 
3.2.1.

For both speed and perceived difficulty, we report effect sizes based on the matched pairs 
rank-biserial correlation (RBC) as an appropriate measure of effect size for the Wilcoxon 
signed-rank test used for the experiment data (Kerby 2014). As a correlation, it is equal to 
the difference between proportions of favorable and unfavorable evidence, with 0 meaning 
no effect and positive values indicating support for H1. In addition to RBC, we also report 
CLES as a more intuitive measure of effect size, first introduced by McGraw and Wong 
(1992), but based on the generalization by Vargha and Delaney (2000) to allow non-normal 
and ordinal data such as the survey responses on a Likert scale. We interpret CLES based 
on the guidelines in Vargha and Delaney (2000) as either small (≥ .56), medium (≥ .64) or 
large (≥ .71).

4.2.1  Hypothesis 1: Speed

Initially, we performed a Shapiro-Wilk test (Shapiro and Wilk 1965) to check if the variable 
was distributed normally. At α = .05 it was non-normal. As a result, we chose the Wilcoxon 
signed-rank test (Wilcoxon 1945) as non-parametric alternative to a paired t-test because 
it is appropriate for paired data from the crossover experiment (Wohlin et al. 2012; Vegas 
et al. 2016).

The variable distribution is plotted as kernel-density-plot, included in the appendix (Fig. 
9), to give an overview and make it easy to see non-normality (Kitchenham et al. 2017).

The null hypothesis we defined for speed was H0,1: “Non-professional programmers 
need the same time to understand the structure of a data pipeline model when implemented 
in Jayvee compared to Python/Pandas.” We therefore chose a two-sided Wilcoxon signed-
rank test, with the results shown in Table 2.

We have no reason to reject the null hypothesis and accept H0,1: “Non-professional 
programmers need the same time to understand the structure of a data pipeline model when 
implemented in Jayvee compared to Python/Pandas.” Based on the data and the underlying 
distribution (see Fig. 9 in Appendix A), it is reasonable to conclude that the use of program-
ming language had no significant effect on time to completion in either direction.

Table 2  Wilcoxon signed-rank test for H0,1 : time(JV ) = time(P Y )
n MdnJV MdnP Y W-val alternative p-val RBC CLES
57 252.37 234.23 750 two-sided .546 .093 .52

1 3
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4.2.2  Hypothesis 2: Correctness

The count of correct and incorrect solutions submitted for either treatment is shown in Fig. 
4.

The null hypothesis we defined for speed was H0,2: “Non-professional programmers 
understand the structure of a data pipeline model equally correct when implemented in 
Jayvee compared to Python/Pandas.”.

We chose the McNemar’s paired chi-squared test (McNemar 1947) because the cross-
over experiment design leads to paired data. A detailed report of the participant performance 
is shown in Table 3 as a contingency table that shows the number of participants that submit-
ted the specific combination of correct/incorrect solution depending on treatment. Of most 
interest are the discordant pairs for participants that submitted a correct solution under one 
treatment and an incorrect solution under the other (5 for correct with Python/Pandas and 
incorrect with Jayvee versus 24 otherwise). As a measure of effect size, we include the odds 
ratio (OR). The results are shown in Table 4.

Python / Pandas
Incorrect Correct

Jayvee Incorrect 11 5
Correct 24 17

Table 3  Contingency table for 
correctness
 

Fig. 4  Count of correct and incorrect solutions for Jayvee compared to Python/Pandas
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Based on these results, we have reason to reject the null hypothesis and instead adopt 
H1,2: “Non-professional programmers can understand the structure of a data pipeline 
model not equally correct when implemented in Jayvee compared to Python/Pandas.”. Fig-
ure 4 shows that participants submitted significantly more correct solutions when complet-
ing the experiment using Jayvee code compared to Python/Pandas. We consider this result 
of practical relevance because improved understanding when interpreting data pipelines 
will lead to significantly reduced errors when working with them.

4.2.3  Types of Errors

For task 1, most errors were related to not including steps in the pipeline reproduction that 
existed in the source code. Most commonly, the participants did not include the Select some 
columns from the data step (missing in 13 for Python/Pandas, 2 for Jayvee), followed by 
Translate column names to English (missing in 4 for Python/Pandas, 3 for Jayvee). Lastly, 
two incorrect submissions in Jayvee were related to the wrong order of these steps. Poten-
tially, participants did miss the selection of a subset of data in Python/Pandas because it 
was done using a list of column names in selection brackets, together with applying a data 
schema using astype. This matches the logic of the TableInterpreterin Jayvee, but is less 
clear about the list of strings being column names and has a higher density of functionality 
(discussed in more detail in Section 4.4.3).

During task 2, common errors were related to three different categories. First, partici-
pants included a step (Translate column names to English) that was not in the source code 
(in 7 solutions for Python/Pandas, 3 for Jayvee). Second, they missed the step Add a new 
column based on existing data (in 7 for Python/Pandas, 3 for Jayvee). Third, they did not 
include the step Download a file from the internet (in 4 for Python/Pandas, 0 for Jayvee).

We are unsure of the reasons participants think a translation step was involved in the sec-
ond task. Potentially, because the column names included English and German words, their 
use throughout the code was interpreted as a translation of column names. With regard to 
the second error, adding a new column based on existing data uses more advanced program-
ming concepts in both treatments (mapin Python/Pandas, transformin Jayvee), which can 
be difficult to understand for inexperienced programmers (see also Section 4.4.6). Lastly, 
the use of the read_csvmethod from Pandas is likely to have led to participants missing the 
download of a file from the internet because it is able to open local files or remote files trans-
parently without any difference in the source code, except for the file location string. In con-
trast, Jayvee uses different blocks to open local files or download files from remote sources.

4.3  Descriptive Survey

The follow-up descriptive survey was filled out by 56 participants. Their impressions of 
difficulty for understanding the data pipelines in Jayvee and Python/Pandas were answered 

Table 4  McNemar’s test for H0,2 : correctness(JV ) = correctness(P Y )
n χ2

1 p-val OR
57 11.17 < .001* 4.8
* p ≤ .05
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on a 5-point Likert scale. The exact distribution of the answers can be found in Fig. 10 
(Appendix A).

After calculating medians as described in Section 3.3, we again chose the non-parametric 
Wilcoxon signed-rank test because the data is paired and the differences in ordinal data from 
Likert scales can be ranked (Wohlin et al. 2012). The null hypothesis we defined for speed 
was H0,3: “Non-professional programmers do not perceive a data pipeline model as easier 
or harder to understand when implemented in Jayvee compared to Python/Pandas.”, we 
therefore chose a two-sided test, with the results shown in Table 5.

We have no reason to reject the null hypothesis and adopt H0,3: “Non-professional pro-
grammers do not perceive a data pipeline model as easier or harder to understand when 
implemented in Jayvee compared to Python/Pandas.”

4.4  Qualitative Survey Responses

In order to identify reasons for the observed effects to answer RQ2: What reasons exist 
for effects on bottom-up program comprehension for data pipelines implemented in Jayvee 
compared to Python/Pandas for non-professional programmers?, we used thematic analysis 
according to Braun and Clarke (2012).

To complement the quantitative data analysis of experiment results in our mixed-meth-
ods design, we collected qualitative responses to describe causal effects that might have 
influenced participants’ task performance to open up future research directions and new 
hypotheses to explore. Our goal was to capture the diversity of effects that participants 
described rather than make additional statistical claims, so we included any relevant insight.

As described in Section 3, we worked iteratively and tracked code assignments as well 
as codebook changes and chose theoretical saturation to judge the maturity of our theory 
(Bowen 2008). Figure 5 shows the cumulative sum of code assignments compared to code-
book changes during the thematic analysis, with every iteration highlighted by a vertical 
red line.

We measured inter-rater reliability using Cohen’s Kappa κ by two authors using the 
codebook to code new responses after every iteration. While κ fluctuated due to the rising 
complexity of the codebook and the increasing number of codes, it consistently showed 
“substantial” agreement between the coding authors (κ1 = .79, κ2 = .74, κ3 = .64, 
κ4 = .68) (Landis and Koch 1977).

While codebook changes are frequent initially, they become much less frequent after the 
third iteration. Note that the high amount of codebook changes directly before the end of 
an iteration is due to the adaptations that are made after the qualitative discussion by the 
authors after coding a subset of responses. With changes being very rare during the fourth 
iteration, we considered theoretical saturation to be reached and are confident our codebook 
encapsulates the content of the survey responses well.

We present the results of our thematic analysis according to Braun and Clarke (2012) 
as a collection of themes with thick descriptions. Beyond the themes that directly relate to 
the research questions, we also gained further insights on the role of documentation and 

Table 5  Wilcoxon signed-rank test for perceived difficulty of using Jayvee compared to Python/Pandas, 
H0,3 : difficulty(JV ) = difficulty(P Y )
n MdnJV MdnP Y W-val alternative p-val RBC CLES
56 2.0 2.0 380.5 two-sided .153 –.23 .41
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language ecosystems. However, here we include the subset of themes that directly relate to 
the results from the controlled experiment. Please refer to the replication package for the full 
codebook with all themes and extended descriptions of codes, including additional quotes 
from participants3.

Figure 6 shows the themes that emerged from coding, with six themes related to the pro-
gramming language and three themes involving human factors.

Fig. 6  Overview of the codebook with two categories of themes, one related to the programming language 
directly and additional human factors

 

Fig. 5  Code assignments compared to codebook changes during thematic analysis, showing codebook 
changes being rare after the third iteration, while codes were consistently applied to new responses
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In the rest of the chapter, we describe the themes in detail and highlight representative 
quotes from the surveys to give a vivid impression of the major topics in each theme.

4.4.1  PL1: Pipeline Overview

Jayvee splits block definitions and the wiring-up of a pipeline by connecting blocks into 
separate code locations (in the example Jayvee model Listing 1, block definitions start in 
line 6 while the overview is created in lines 2-4). This provides an overview of the pipeline 
without showing any implementation details apart from the block name.

In contrast to Jayvee with its strictly enforced structure, this overview does not always 
exist in procedural Python scripts that are executed from top to bottom, such as the data 
pipelines in the experiment. The use of Pandas does also not enforce such a structure.

A major effect of this overview is that participants can ignore code that is not immedi-
ately needed to understand the data pipeline. This in turn improves speed for a high-level 
understanding because less code has to be read as described by S18: “The pipeline gives a 
very quick overview over what happens. When the blocks are named clearly everything can 
be seen on one quick view.”

However, if an in-depth understanding of the implementation details is actually impor-
tant to understand the data pipeline, the effect of a centralized overview on speed and under-
standing can potentially be negative. A few participants described a negative effect on both 
speed and understanding due to the additional navigation needed to read all source code. 
For example, S40 answered: “(Jayvee is difficult to understand...) due to the code structure/
layout, need to go back & forth to search for the specific function.”

The centralized overview improved understanding of data flow and order of execu-
tion. Especially in the domain of data engineering, the combination of being able to know 
how the underlying data that is manipulated by a program is changed as well as in what 
order source code is executed is important. For example, S37 wrote, “(...) since we have a 
syntax that very well shows the actual flow of the pipeline (via the block ->block ->... syn-
tax), it also easily understandable what blocks are executed in which order.”

4.4.2  PL2: Code Structure

Code structure refers to both the way source code is structured, as well as the amount of 
structure that is enforced by the language. The most significant difference in the way code 
is structured is the use of the pipes and filters architecture, with connected blocks in Jayvee 
compared to the script-style implementation in Python/Pandas.

Regarding the amount of enforced structure, Jayvee is much stricter than Python/Pandas. 
As a general-purpose programming language, Python must allow for more flexibility to 

Summary: A data pipeline overview can be separated from implementation details
in source code. The enforced structure of Jayvee means this overview always exists,

while this is not true for Python/Pandas.

– Ignoring not neededcode improves speed andunderstanding.However, additional
navigation can mean the effect becomes negative if reading details are required.

– The existing overview improves understanding of data flowand order of execution.
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enable developers to implement a wider range of programs. In contrast, as a domain-specific 
language, Jayvee can enforce a structure that is very close to the domain of data pipelines.

This consistently enforced structure enables most survey participants to understand 
Jayvee better, e.g., S29: “Big difference is the structure which Jayvee kind of enforces and 
developer can easily recognize.” The improved recognition of the structure due to how con-
sistently it is applied is a major element of the positive effect on understanding.

The use of blocks to structure data pipeline code is highlighted as a positive influence 
on pipeline understanding, especially for non-professional programmers. For example, S8 
likens the experience of using blocks to using LEGO: “The best part in Jayvee is block type 
coding, it is similar to LEGO and you can easily remember, read and write your code.”

Of course, a similar code structure can be achieved using Python with functions or classes 
but the increased flexibility means that it is not enforced and often not done as S26 points 
out: “The concept of blocks: You can manually create this in Python, but hardly anybody 
will do this.”

Lastly, the encapsulation of related code is described by participants as making it easier 
to understand the data pipeline. S44 writes: “Jayvee is much easier to understand because 
every step is divided into blocks the block types are very easy to understand. A single opera-
tion is performed in one block, which makes it easy to comprehend.” Importantly, encapsu-
lated code must be sliced so that only a single operation is done in one unit, or participants 
consider it a detractor for understanding.

4.4.3  PL3: Transparency

Transparency relates to how deeply participants can understand the operations performed 
in the data pipeline by just reading the source code. Differences can come from how vis-
ible implementation details are, depending on the level of abstraction a language aims for. 
Additionally, how much functionality can be expressed in few lines of code (which we call 
density of functionality) affects transparency in the sense that with high density of function-
ality less low-level operations are expressed in source code.

Python/Pandas was identified as having a much higher density of functionality than 
Jayvee. Regarding the effects, participants had mixed impressions. On one side, being able 
to express a lot of logic in a few lines of code makes each individual line of code harder to 
understand, potentially decreasing correctness as S30 explains: “Python makes it possible 

Summary: Code structure refers to the way source code is organized. Different
languages enforce a more or less consistent structure.

– Stricter enforcement of structure improves understanding and increases learning
effects from other data pipelines.

– Consistent structure allows readers to quickly find expected elements, such as the
data pipeline overview.

– Using blocks is a positive influence on pipeline understanding and aligns with the
mental model of data pipelines.

– Encapsulation of related code makes it easier to understand data pipelines, as
long as a single operation is performed in each section.
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to have a lot of functionality in just a few lines, which can make it hard to read if you have 
not written it yourself.”

The tradeoff is that pipeline models in a less expressive language must consist of more 
source code which is slower to read. S0 mentions this concern: “Especially in a large pipe-
line a file might get really big because of all the definitions (especially unnecessary empty 
block definitions).”. However, because the data pipeline models in our experiment were 
comparatively small, the majority of participants did not describe this problem.

One way to achieve a high density of functionality is to implement a high degree of 
automatic decisions and many operations in one unit of code. As an example, loading data 
with read_csv()can use various sources and automatically chooses structure and data types 
based on the underlying data that cannot be inferred from the source code alone. Addition-
ally, the structure of the output can potentially change without any change in the source code 
if the input data changes.

Increased automation by grouping many operations in one unit of code makes data pipe-
lines harder to understand and decreases correctness. Often, library methods of Pandas are 
singled out by participants for this kind of complexity, with S0 remarking: “Difficult: The 
methods sometimes do many things at once (example: load to a sqlite file and automatically 
choose data types).” S26 describes a similar experience: “Functions like pd.read_csvare 
hard to understand, as they can read a DF from so many sources (in Jayvee you have one 
datasource specified).”

Instead of increased automation, the inability to see all implementation details was 
identified as a negative effect on the ability to understand the data pipeline by participants. 
This effect was mostly found in Jayvee, with examples including the TableTransformerblock 
that takes input columns and output columns as properties, for which participants were 
unsure if it keeps or removes the input columns.

4.4.4  PL4: Amount of Options

A common theme in the survey responses was the large number of options to implement 
functionality in Python/Pandas and the comparatively few options in Jayvee. For example, 
to download a CSV file, Python programmers could use the standard library with urllib
or use Pandas read_csv()with nearly equivalent outcomes. DSLs can focus on a few core 
features and only provide one solutions for these.

The effect of many competing options was described as a detriment to understanding 
by participants such as S49: “In Python, there are many varieties and different options, 

Summary: Transparency relates to how well participants can understand every oper-
ation performed in a data pipeline based on the source code alone.

– High density of functionality, many operations per line of code, is a challenge
to understanding for small data pipelines. However, reading larger data pipelines

will be slow and potentially error-prone with lower density of functionality.

– Increased automation makes data pipelines harder to understand and decreases
comprehension correctness.

– Hidden implementation details can negatively affect the understanding of data
pipelines.
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libraries etc, it is harder for non-experienced to grasp the essence.” As they describe, these 
challenges impact mostly non-professional programmers or programmers unfamiliar with 
the language itself.

External libraries exacerbate this effect, adding additional ways to solve problems with 
potentially multiple libraries that solve the same set of problems. Moreover, every library 
has its own mental model of the problem space with their own glossary, code styles and 
documentation. S0 writes: “In Jayvee everything (all blocks) are from the same source, 
while in Python there are many libraries with different method styles and documentation.”

External libraries also evolve independently of the main language and each other. This 
means developers must keep up with changes from different sources to keep their under-
standing of source code up-to-date, or risk interpreting new library code wrongly.

Despite the challenges that external libraries introduce, their availability has obvious 
upsides, e.g., less work to implement common functionality. Managing the scope of lan-
guage features and how external libraries are used is therefore a tradeoff that depends on the 
experience level of the main users of the language.

4.4.5  PL5: Syntax

Participants sometimes commented on the syntax differences of the languages as reasons 
for their performance. Both languages were described as human-readable, sometimes as 
being like English text or pseudocode. Human-like language syntax was generally linked to 
making it easier to understand the data pipeline, e.g., by S31: “Jayvee has a very human-like 
language, almost like pseudocode which can be immediately understood even by non pro-
grammers in my opinion as long as they have a basic theoretic knowledge about pipelines.”

While Python is well known for its closeness to pseudocode, Jayvee uses considerably 
more special characters and an uncommon structure. We attribute the positive comments 
on Jayvee’s human-like syntax largely to the use of a glossary that is close to the problem 
domain, e.g., the use of domain entities such as pipelineas part of the syntax. Reusing a 
glossary that is familiar to domain experts allows them to more easily understand the mean-
ing of data pipeline code.

In contrast, encountering unfamiliar syntax is described as a challenge to understand-
ing data pipelines from code. This was mostly an issue for participants solving tasks in 
Jayvee as they had less previous experience with the language. However, some participants 
described similar problems with the syntax used by libraries in Python, for example, Pandas 
creating new columns in a Dataframe with an assignment operator instead of a function call.

Summary: The amount of options to implement the same functionality varies greatly
between languages, with GPLs having to be more flexible than DSLs. External

libraries add additional approaches.

– Many competing options to solving the same problem are a challenge to under-
standing data pipelines, mainly for less experienced readers.

– External libraries increase the amount of available options and have different
mental models and glossaries. However, aside from their negative effect on under-

standing, external libraries reduce required work to implement data pipelines.
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4.4.6  PL6: Language Elements

Language elements have a large influence on understanding of data pipeline code. GPLs 
such as Python must by necessity also provide general-purpose language elements, such as 
classes or functions, that can be used to build systems for any use case. In contrast, DSLs 
can express domain concepts such as pipelines, blocks and pipes, or value types directly as 
language elements.

The use of domain-specific language elements is described as making it easier to 
understand the data pipeline by participants. The explicit blocks and pipes structure that is 
enforced by Jayvee aligns closely with how users visualize data pipelines. Readers can then 
directly build their mental model of the data pipeline from the similar representation in the 
source code.

Other language elements negatively impacted understanding with some participants 
mentioning that Jayvee language elements are unusual and need to be learned (in contrast 
to Pythons language elements that are largely known from other GPLs).

An example are value types based on constraints, as S51 points out: “I found the Jayvee 
code structure a bit difficult to understand, mostly the constraints and value type.” A pos-
sible explanation could be that value types and constraints align less obviously than blocks 
and pipes with the visual model of a data pipeline.

For Python, the use of advanced programming concepts was mentioned as a problem 
participants faced understanding the experiment tasks. Concrete examples are described 
by S12: “Some functions like lambda, list comprehension and implicit operations are not 
intuitive and require documentation and comments to understand.” Advanced programming 
elements have to be used carefully and sparingly if the goal is to create a data pipeline that 
can be understood by relative junior programmers.

Summary: Language syntax is discussed by participants, but largely in regard to
personal preference for more familiar languages like Python.

– Human-readable syntax makes it easy to understand a data pipeline. Both Python
and Jayvee are described as human-readable languages.

– Unfamiliar syntax has a negative effect on understanding. New languages and
unfamiliar external libraries can introduce this effect.

Summary: Python must provide general-purpose language elements such as classes
and functions, while DSLs can introduce domain concepts such as pipes and blocks.

– Using blocks as domain-specific language elements improves pipeline under-
standing and is intuitive because it aligns with the visual model of a data pipeline.

– Unusual language elements such as value types based on constraints are a chal-
lenge to pipeline understanding.

– Advanced programming concepts like lambdas or list comprehension make
pipeline understanding harder, especially for programmerswithout previous expe-

rience in the language.
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4.4.7  HU1: Required Experience

Understanding data pipeline code is influenced by the previous experience of the reader. 
Depending on the tool used to implement the data pipeline, more or less experience might 
be needed. Further, the type of experience also matters. Subject-matter experts are often 
experts in the data they are working with, but might not have extensive software engineer-
ing experience.

The need for previous experience with programming to understand Python/Pandas 
code is mentioned by multiple participants in their surveys. As a GPL, Python must have 
many features and allow for a maximum amount of flexibility, which makes it inherently 
complex. Furthermore, more knowledge of programming is involved because the concepts 
expressed in the language cannot be domain-specific but have to be generic (e.g., classes 
and functions). S34 expresses the difference: “I think the difference might have mostly to do 
with how much experience one has in programming; I think that Python might require quite 
some knowledge to get used to, while Jayvee is a bit easier to understand even as a person 
with not much programming experience.”

The more flexible a language is, the more experience and discipline is needed to stick 
to good practices and write code that is easy to understand. With the ease of writing script-
style Python code, it is not uncommon for developers to implement prototypes in Python 
that later on get promoted to production code without a rewrite, creating hard to understand 
data pipelines.

4.4.8  HU2: Applicable Experience

How closely a language aligns with the mental model of data pipelines is important to 
reuse experience outside of software engineering. Participants describe Jayvee’s blocks and 
pipes structure as intuitive because it mirrors how they think about data pipelines. This posi-
tively affects understanding, e.g., S35 explains why Jayvee pipelines are easy to understand: 
“Jayvee code steps are directly mapped to the data engineering pipeline lifecycle.”

However, the close match to the mental model must be carefully maintained; otherwise 
it can lead to confusions. One such mismatch were the interpretation blocks in Jayvee (such 
as the TextFileInterpreter) to convert binary data to text data. Participants were confused 
about what the interpretation blocks did because the level of abstraction was lower than 
what they expected.

Summary:Required experience refers to the amount of experience required to under-
stand a data pipeline from source code. For reading source code, the main required

experience is previous programming.

– Previous experience with programming is needed to understand Python because
of the use of generic programming concepts. In contrast, Jayvee is easier to

understand for non-programmers because it is using domain-specific concepts.

– More flexibilitymeans more experience is needed to follow good habits and make
code easily readable.
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A special case of applicable experience is building up knowledge from previous experi-
ence with the same tool. High flexibility means even similar pipelines can look very dif-
ferent. A challenge with the low enforced structure of Python/Pandas is that learning effects 
from creating or reading other data pipelines are reduced. S29 summarizes the challenge as 
“No structure, every pipeline is a new pipeline.” This effect is worsened by the amount of 
different libraries that can be used to solve common problems, meaning experienced in one 
library does not necessarily apply to data pipelines that use a different library.

4.4.9  HU3: Naming

Good names improve understanding, especially for non-professionals. However, as Phil 
Karlton said “There are only two hard things in Computer Science: cache invalidation and 
naming things.”4

Generally, participants describe names in Jayvee as easy to understand, probably because 
they are close to the terminology of the domain of data pipelines. In contrast, survey answers 
mention Python and Pandas as having inconsistent and sometimes confusing naming, poten-
tially because of the generality required by being a GPL and due to the use of external librar-
ies with an inconsistent glossary.

Well named processing steps, both for language elements and user-defined names, have 
multiple positive effects. Speed is improved by being able to skim source code and clear 
names make it easier to understand the data pipeline as a whole, S18 writes: “When the 
blocks are named clearly everything can be seen on one quick view. That makes the pipeline 
easier to understand.”

Good names must follow a consistent approach, which in turn improves understanding. 
This is a challenge for a GPL like Python because much of the domain-specific functionality 
comes from external libraries such as Pandas that have different glossaries and approaches 
to capturing the domain.

Lastly, under the assumption that names are chosen well, the quantity of naming oppor-
tunities is important as well, with a higher quantity of names making it easier to understand 
a data pipeline. Script-style data pipeline implementation give few opportunities for good 
naming of steps, meaning developers must resort to comments if they want to communicate 

4 ​h​t​t​p​s​:​​​/​​/​m​a​r​t​i​n​f​o​w​l​e​​r​​.​c​o​​m​/​​b​l​i​​k​i​​/​T​w​o​H​​a​r​d​T​​h​i​n​​g​s​.​h​t​m​l

Summary: Being able to reuse experience from other sources, such as working with
spreadsheets, means data pipelines can be understood by a wider range of readers.

Often, subject-matter experts might lack programming experience but have previous

domain experience.

– Alignment of code to the mental model of data pipelines improves understanding,
even without programming experience. However, creating the expected abstrac-

tion level is important or readers are confused.

– Learning effects are reduced when similar pipelines can look different in source
code due to high flexibility.
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reasoning. Due to named blocks, Jayvee provides more naming opportunities, both for lan-
guage elements and user provided names that explain the intent behind the use of a block.

5  Discussion

Based on the results, a DSL based on a pipes and filters structure can be a valuable tool 
to build data pipelines with subject-matter experts. Participants with a non-professional 
programmer background can understand data pipeline source code more correctly, but not 
faster or more easily.

A possible explanation for the similar speed is that the participants had considerably 
more previous experience with Python/Pandas than with Jayvee, which likely influenced 
how fast they were able to understand the data pipelines in favor of Python/Pandas. This 
will not be an uncommon situation however, because a new DSL always presents a learning 
challenge, while many practitioners might already have worked with Python and Pandas. 
However, the fact that participants were still able to complete the tasks with Jayvee in a 
similar time indicates that learning a new DSL can be done in limited time and provide other 
benefits like improved correctness, even for non-professional programmers.

Additionally, Jayvee is considerably more verbose than Python/Pandas, and therefore 
some participants mentioned that they expect larger data pipelines to take longer to read 
before they would be able to solve the tasks. In the context of open data, the tasks were 
representative of real-life challenges and based on real open data sets. Most open data sets 
are small, mostly under 10 MB and published in tabular formats such as CSV (Umbrich 
et al. 2015; Mitlohner et al. 2016). However, for larger scale data pipelines, e.g. in industrial 
settings a more expressive syntax is needed. For these situations, we expect that the differ-
ence in speed for program understanding would increase in favor of Python/Pandas due to 
Jayvee’s verbosity and structure.

Similarly, more complex tasks could require functionality outside the limited feature set 
of Jayvee. In previous studies, we have found that in these situations perceived implementa-
tion difficulty increases sharply, and it stands to reason that program understanding would 
decrease as well (Heltweg et al. 2025).

During the experiment, both Jayvee and Python/Pandas source code was displayed as 
text, without syntax highlighting or the use of an IDE. We chose to not provide an IDE 
because the maturity of tool support for Python/Pandas and Jayvee differs significantly and 
would have introduced a confounding factor. In similar work, replication studies of experi-
ments with the addition of IDE support have shown that correctness improves for all treat-

Summary: Naming of elements in a pipeline has a major effect on how easy the
resulting source code is to understand.

– Good names improve understanding by allowing readers to skim the source code
and get an overview of the whole pipeline.

– Consistent naming has a positive effect on understanding. External libraries with
their own glossary can make naming less consistent.

– The quantity of human-provided names is important to communicate intend, with
a positive effect on understanding if the names are chosen well.
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ments, but the relative differences between them remain consistent (Kosar et  al. 2018). 
Therefore, we expect that the results of our experiment would not change significantly with 
the addition of IDE support.

The code structure of the Python/Pandas data pipelines might have an effect on the 
results. We chose to use script-style implementations in Python with Pandas, as they are 
common in practice for smaller data pipelines As discussed in Section 4.4.2, classes and 
functions can be used in Python to create a structure similar to Jayvee which would reduce 
the effects of using a DSL.

With regard to task design, we chose to focus on comprehension tasks of data pipeline 
structure as a first step. Alternative task goals, such as locating errors or predicting the out-
put of a data pipeline could be used in future work. We consider the comprehension of data 
pipeline structure as a necessary prerequisite for these tasks. From the qualitative feedback, 
we expect that the results would be similar for correctness, with Jayvee being more ver-
bose and prescriptive with less functionality. Especially the exact structure of data pipeline 
output was often unclear to participants due to the automated Dataframe structure creation 
when loading a data set with Pandas.

Of course, program understanding is only one part of the software development pro-
cess and other tasks such as extending existing programs or code creation would likely 
show very different results. We expect implementations in Jayvee to be slower due to the 
increased verbosity and more strict structure, but additional studies are needed to verify 
these assumptions.

5.1  Learnings for Language Designers

Multiple design decisions are contributing factors to the improved performance and can 
provide guidelines for future developers of DSLs.

Representing a data pipeline with blocks and pipes as first class language elements seems 
to be a good choice. It is described as intuitive and clear, especially because it clearly aligns 
with the mental model of data pipelines as the reader visualizes them.

A data pipeline overview that is represented directly in the syntax of the source code and 
separated from the implementation details is consistently highlighted as an important posi-
tive influence. In addition, the strongly enforced structure of a data pipeline program means 
readers can quickly orient themselves in the source code and learn with every pipeline they 
read.

The effect of well-named language elements was considerable, indicating that names are 
a major influence on data pipeline understanding and especially to provide context to imple-
mentation decisions. Consequently, language designers should pay attention to not only 
using a consistent glossary to name language elements, but also to providing opportunities 
for developers to use many descriptive names. As an example, by encapsulating function-
ality into named blocks, data pipelines implemented in Jayvee have a greater minimum 
amount of named elements than script-style implementations in Python/Pandas. Because 
this structure is strict, even non-professional programmers are guided to describe the steps 
they implement in any given pipeline.

Regarding complexity, providing multiple options that achieve the same goal, both in 
syntax as well in approaches to solve a problem, has been discussed as a barrier to under-
standing by participants. Because of this, introducing additional syntax or syntactic sugar to 
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make one specific use-case easier should always be seen as a tradeoff between the expres-
siveness of the language versus the added complexity.

6  Limitations

As a mixed-method study, multiple sets of limitations are potentially relevant to correctly 
evaluate the results. We evaluate limitations and ways to mitigate them in regard to the 
quantitative data from the Section 3.2 and the survey questions, based on threats to validity 
described in Wohlin et al. (2012). Trustworthiness criteria according to Guba (1981) are 
used for the follow-up qualitative work with answers from the descriptive survey (Section 
3.3).

While we present more than one set of limitations in this chapter, it is important to high-
light that the mixed-method approach of this study (with data- and method-triangulation) 
allows the individual methods to partially make up for the weaknesses of the other. This 
means the overall research design contributes as a mitigating factor for some of the dis-
cussed limitations.

6.1  Threats to Validity

We describe potential threads to validity according to the framework presented in Wohlin 
et al. (2012).

6.1.1  Conclusion Validity

Threats to conclusion validity are challenges to understanding the correct relationships 
between the treatment and results of an experiment.

The DSL that was investigated as treatment is in large parts designed and implemented 
by the authors of this study, therefor bias and searching for positive results is a clear threat 
to conclusion validity. In an attempt to reduce its impact, we defined the research design as 
well as hypotheses to analyze ahead of data collection, based on indicators found in previ-
ous work (Heltweg et  al. 2025) and used standard research designs and statistical tests. 
Additionally, we reported effect sizes and the results of all hypotheses tests, including ones 
without statistically significant results such as time spent on task. During data collection, we 
followed an experiment procedure document to reduce the introduction of individual bias 
when guiding participants through the experiment. In addition, participants purely inter-
acted with an automated experiment tool that implemented the treatment and took measure-
ments impartially without interaction by the researchers. Nonetheless, subconscious bias 
remains as a threat to conclusion validity. Therefore, we have shared the experiment tool3 to 
allow for thorough review and independent replication.

Normally, the heterogeneity of students as participants also provides a challenge. How-
ever, the use of a crossover experiment design mitigates this concern because they measure 
differences in comparison to the participants’ average and not between participant groups 
(Vegas et al. 2016).
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6.1.2  Internal Validity

Internal validity describes the extent to which influences outside the control of the researcher, 
apart from the treatment, influence the results of the experiment.

If the tools or tasks used for the experiment were of low quality, they could introduce 
external factors to the results. In order to reduce these influences, we tested the tool and task 
implementations in multiple sandbox tests with other researchers and in pilot experiments 
with individual students from earlier semesters and adjusted them based on feedback, as 
suggested by Ko et al. (2015).

Before the experiment runs, one of two researchers explained the experiment procedure 
to participants and answered questions. Differences in communication style could intro-
duce a threat to internal validity. We mitigated this by preparing an experiment procedure 
document that was followed by both researchers. In addition, due to the crossover design, 
every experiment cohort that was instructed by one researcher completed tasks with both 
treatments and the experiment results depend on the delta in their individual performance, 
not between groups. Nonetheless, the use of multiple researchers to instruct the participants 
could have influenced the results between groups.

By selecting volunteers out of a class of students, the results may be influenced if partici-
pants think positive responses in regard to Jayvee would have a positive influence on their 
grade. We therefor clearly communicated to students that data would be anonymized and 
participation or performance in the experiment would have no effect on their grade.

The differences in previous experience with Jayvee compared to Python/Pandas also 
introduces a threat to internal validity. We mitigated this by introducing Jayvee with two 
lectures and at least one practical exercise before the experiment. We also collected and 
reported the previous experience of participants with both languages to allow for a better 
contextualizing of the results at the start and end of the semester, but not directly before the 
experiment. It is likely that the differences in previous experience with the languages influ-
enced the results, especially regarding speed and perceived difficulty. However, we consider 
the results interesting, because due to its popularity, data practitioners often have previous 
experience in Python/Pandas and not in new DSLs. We consider our study as a first step to 
establish initial insights. In further work, replication studies with more balanced previous 
experience would be needed to confirm the results.

Crossover designs introduce the threat of carryover and familiarization effects, in which 
the administration of one treatment might influence others. It must be explicitly discussed 
as a threat to internal validity according to Vegas et al. (2016). We minimized carryover 
during the experiment design time in multiple ways. First, by randomly assigning partici-
pants to different treatment orders. Second, to reduce the effect of increasing familiarity 
with the experiment tool itself influencing later task performance, we added an initial task 
using pseudocode and placeholder step names before applying the real treatments. Lastly, 
we added a stage of hidden source code, so participants could read the available steps in the 
pipeline first to reduce the effect of recognizing some steps from the previous task.

Regardless of these measurements, we must recognize that carryover could still be an 
influencing factor on the results and aim for future replication with between-subject designs.
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6.1.3  Construct Validity

Construct validity is concerned with the appropriateness of the experiment construct to mea-
sure the underlying concept or theory and the ability to generalize the result of the experi-
ment to it.

The dependent variables in the experiment were clearly defined and measured program-
matically. Time and correctness are the most common measures used in bottom-up code 
comprehension experiments (Wyrich et al. 2023).

However, our approach of categorizing solutions into either correct or incorrect does not 
allow us to make assumptions about how much more correct or incorrect a solution was and 
means also solutions with trivial errors impact the results. Improved and validated measure-
ments for the correctness of pipeline understanding would be needed to make more detailed 
inferences.

Because only one measurement was taken for each construct, mono-method bias is a 
concern for the controlled experiment part of this study. This limitation is mitigated by the 
fact that additional insights about the underlying concepts are drawn from qualitative data as 
part of the mixed-method design. Nonetheless, additional experiments with more measure-
ments should be done in future work to strengthen the quantitative results.

6.1.4  External Validity

External validity is the ability to generalize the results, e.g., to an industry context.
We chose Masters level students as proxies for a population of subject-matter experts 

working with data in industry, that are non-professional programmers. When drawing con-
clusions from the results of this study, it is important to contextualize them with this lim-
ited population in mind (Falessi et al. 2018). Using students allows us to gather more data 
points, establish a trend and prepare future studies with practitioners (Tichy 2000). Addi-
tional experiments, replicating the same setup, with real subject-matter experts from indus-
try would be needed, but we expect the results to generalize well. Other populations, such as 
professional programmers from industry, would very likely encounter different challenges 
and the results of this study should not be taken as indication for their experience.

Because we allowed students to voluntarily opt in to the experiment, only 57 of the 98 
students that completed the course participated. We consider this number to be high enough 
to be representative of the population, however it is possible that less invested students did 
choose to skip the experiment.

6.2  Trustworthiness Criteria

For the descriptive survey, we use the trustworthiness criteria of credibility, transferability, 
dependability, and confirmability (Guba 1981).

6.2.1  Credibility

Our goal was to establish credibility, how well the findings represent the real effects, with 
various types of triangulation in the mixed-methods research design (Thurmond 2001). 
By combining the quantitative data from a controlled experiment with the qualitative data 
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of the descriptive surveys, we establish method and data triangulation. In addition, large 
parts of the qualitative data were coded by multiple researchers as a form of investigator 
triangulation.

The opt-in, voluntary nature of the experiment introduces a potential bias in the partici-
pant selection for more motivated students. We mitigated this effect but clearly stating that 
participation would have no effect on course grades, both verbally and in the experiment 
handout we provided to participants.

6.2.2  Transferability

Transferability, how well the results apply to other contexts, has to be discussed from multi-
ple angles. First, the use of students as participants is problematic when attempting to gener-
alize to professionals in industry, additional context is provided in the discussion regarding 
the external validity of the experiment that also applies to the qualitative part of the study.

Second, the responses of participants must be seen in the context of one specific DSL, 
Jayvee, and might not transfer to other DSLs. The descriptions of themes should be seen 
under this aspect, and additional research with different DSLs is needed to make sure the 
findings transfer to other languages.

Lastly, the data pipelines that participants had to understand during the experiment were 
relatively small (but based on real-world open data sets). How well the results transfer to 
larger scale data pipelines is unclear. When appropriate, we discussed the potential trade-
offs regarding small and large data pipelines in the descriptions of the themes (e.g., regard-
ing density of functionality).

To increase transferability, we provided thick descriptions of the themes and extensive 
quotes from participants in support (as well as an additional, extended description of the 
themes3). Future researchers can use this additional context to evaluate the research results 
in additional contexts.

6.2.3  Dependability

For dependability, making sure the findings are consistent and can be repeated, we reported 
the research design in detail and provided as much data as possible. In addition, the com-
plete survey question export and code used to analyze the data is available.

6.2.4  Confirmability

Confirmability, how well the findings represent the objective reality and are not influenced 
by researcher bias, is challenged by the involvement of the authors in the implementation 
of Jayvee. Because this introduces a risk of bias, we took steps to introduce additional data 
and method triangulation by prefacing the survey with a controlled experiment with auto-
mated measurements that is less subjective to researcher bias. Regardless of the mitigations 
employed, we have to acknowledge our own bias and would welcome replication by neutral 
parties. To enable other researchers to confirm our findings, we have established an audit 
trail by describing the research design in detail and providing as much data used during the 
analysis as possible. Thick descriptions of the themes and direct quotes from the survey also 
give additional context to the findings.
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7  Conclusion

In this mixed-methods study, we have asked two research questions: First, do data pipe-
lines implemented in Jayvee change bottom-up program structure comprehension com-
pared to Python/Pandas for non-professional programmers regarding speed, correctness 
and perceived difficulty? and second, what reasons exist for effects on bottom-up program 
comprehension for data pipelines implemented in Jayvee compared to Python/Pandas for 
non-professional programmers?

To do so, we have executed a controlled experiment with 57 volunteers students com-
paring their performance on data pipeline understanding tasks implemented in Jayvee and 
Python with Pandas. In addition, participants could provide qualitative feedback in a post-
experiment survey that we then analyzed using qualitative data analysis.

Based on the experiment data, participants are neither faster, nor consider it easier to understand 
a data pipeline implemented in Jayvee compared to Python/Pandas (Fig. 9, Table 2). However, 
participants can understand a data pipeline significantly more correctly (Fig. 4, Table 4).

Qualitative analysis of participant feedback revealed a variety of possible reasons for 
these effects, summarized in Fig. 6. Data pipelines in the experiment were based on real-life 
open data sets, but relatively small and further studies would be needed to verify that these 
effects generalize to larger and more complex data pipelines.

Predictably, most effects are grounded in the difference between programming languages 
themselves. Participants highlight the pipeline overview provided by Jayvee as a major posi-
tive influence on understandability. This overview is enforced due to the more rigid structure 
of Jayvee programs that make them easier to understand than Python/Pandas scripts. How 
deeply participants could understand the data pipeline, the transparency of source code, 
had mixed effects, with high density of functionality and increasing automation making a 
pipeline harder to understand but faster to read. Similarly, the amount of available options, 
especially with the introduction of external libraries, is a challenge to understandability but 
reduces the work needed to implement pipelines in the first place. Unfamiliar syntax was an 
additional problem for some participants, even if both Jayvee and Python were described 
as human-like languages. Lastly, provided language elements are a factor in the different 
outcomes because, as a domain-specific language, Jayvee could include language elements 
that were intuitive to understand in a data pipeline context while some participants struggled 
with advanced programming concepts like lambdas in Python.

In addition to the effects of the programming languages themselves, we also identified 
several human effects. First, the previous experience required to understand data pipelines 
from source code differs between the approaches. Participants identify previous programming 
experience as a necessary precursor to understanding data pipelines written in Python/Pandas, 
while they consider pipelines written in Jayvee to be approachable by novices. Second, the 
implementation language effects which previous experience is applicable to understanding 
a data pipeline. If the abstraction level is maintained well, a domain-specific language like 
Jayvee allows readers to reuse previous experience from data engineering with other tools like 
visual modeling software. Finally, depending on the reader, well-chosen, descriptive names 
have a large influence on how understandable data pipeline source code is. Languages with a 
wide library ecosystem like Python with Pandas face challenges to keep a consistent glossary 
between different authors. Additionally, the strict structure of Jayvee with extensive possibili-
ties for user-provided names allowed future readers to infer additional information.
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Besides the effects that are often described and have a clear influence, open questions remain. 
For example, the best abstraction level of a domain-specific language for data pipelines is unclear 
and might depend on the intended audience. Additionally, a good tradeoff between the reuse of 
work with a library ecosystem versus the complexity it introduces warrants further studies. Den-
sity of functionality shows a similar tradeoff between short to write and expressive code versus 
harder to understand pipelines. With more research, it might be possible to identify the reasons 
for the largest negative effects and avoid them in future language design.

In summary, domain-specific languages such as Jayvee have the potential to be more 
correct in the domain of data pipeline modeling. These effects are especially strong for non-
professional programmers, such as subject-matter experts in other domains. A variety of 
reasons for these effects exists, largely based on the programming language itself or on the 
type of reader that tries to understand the source code. However, the exact effect of many 
reasons is still an open question that needs further research to develop a comprehensive 
theory of domain-specific languages for data pipeline modeling.

In future work, we intend to explore more narrow features of domain-specific languages 
for data engineering, such as value types or selection syntax for tabular data, with additional 
controlled experiments.

Appendix A

A.1 Task Examples

Fig. 7  Comparison of source code to filter and apply a schema to data, shown for task 2 in Jayvee and 
Python/Pandas
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A.2 Extended Result Data

Fig. 8  Previous experience of experiment participants
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Fig. 9  Kernel-density-plot of time on task for Jayvee compared to Python/Pandas

 

Fig. 10  Diverging stacked bar charts according to Robbins et  al. (2011) and Heiberger and Robbins 
(2014) for perceived difficulty of using Jayvee compared to Python/Pandas.** One outlier participant 
(S25) considered using Jayvee hard (and Python/Pandas easy) due to their lack of previous experience 
with Jayvee and did not provide more details, writing: “(Jayvee) is new so I think it was not easy to 
understand or read”
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