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Abstract

In many application domains, domain-specific languages can allow domain experts to
contribute to collaborative projects more correctly and efficiently. To do so, they must be
able to understand program structure from reading existing source code. With high-quality
data becoming an increasingly important resource, the creation of data pipelines is an
important application domain for domain-specific languages. We execute a mixed-method
study consisting of a controlled experiment and a follow-up descriptive survey among the
participants to understand the effects of a domain-specific language on bottom-up program
understanding and generate hypotheses for future research. During the experiment, partici-
pants (n = 57) need the same time (Wilcoxon signed-rank test, W = 750, p = .546, RBC
= .093) to solve program structure comprehension tasks, but submit significantly more
correct solutions (McNemar’s test, x3 = 11.17, p =< .001, OR = 4.8) when using the
domain-specific language. In the descriptive survey, participants describe reasons related
to the programming language itself, such as a better pipeline overview, more enforced
code structure, and a closer alignment to the mental model of a data pipeline. In addition,
human factors such as less required programming experience and the ability to reuse ex-
perience from other data engineering tools are discussed. Based on these results, domain-
specific languages are a promising tool for creating data pipelines that can increase correct
understanding of program structure and lower barriers to entry for domain experts. Open
questions exist to make more informed implementation decisions for domain-specific lan-
guages for data pipelines in the future.
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1 Introduction

Domain-specific languages (DSLs) can be a useful alternative to general-purpose program-
ming languages (GPLs) in many application domains. By focussing on one domain, they
can have a reduced scope and re-use glossary and concepts from the application domain,
making them easier to learn and more efficient to program for domain experts (Kosar et al.
2018; Johanson and Hasselbring 2017). However, because DSLs are a specialized tool, they
have to be carefully evaluated to determine whether they provide enough benefits to make
their adoption a good choice.

When working on non-trivial software applications, developers must first understand the
program structure from source code. Only then can they make changes to extend existing
implementations or fix bugs. Program comprehension, in general, is estimated to be the
dominant activity while programming, with more than 50% of time spent (Roberto Minelli
and Lanza 2015; Xia et al. 2018). Therefore, the effects of a DSL on program structure com-
prehension are essential for the usefulness of a DSL in an application domain.

The evaluation of DSLs generally has to be domain-specific (Kosar et al. 2018). Increas-
ingly, high-quality data, and with it data engineering, is of large importance in industry
because many innovative apps and Al applications rely on access to data. Sources for data
sets vary from company internal data to open data, with open data mainly published by
governments but also by some private entities.

Depending on the type of data, creating an automated data pipeline is a major part of data
engineering. An example is regularly changing data, such as schedules released as open
transport data, that should be ingested and improved automatically with updated releases.

In complex domains, data-engineers must collaborate with subject-matter experts to
understand the meaning of data. A common challenge during these collaborations is that
subject-matter experts lack programming experience, which complicates it to find a shared
collaboration artifact with professional programmers (Heltweg and Riehle 2023).

Domain-specific languages can be a useful middle-ground, that enables subject-matter
experts to contribute directly to the creation of data pipelines, as previously shown in other
domains (Johanson and Hasselbring 2017; Lopes et al. 2021).

DSLs can be grounded in the formal and informal glossary of domain experts, such as
sketches (Wile 2004). A common mental model for a data pipeline is a graph of process-
ing steps connected by pipes, known from visual programming. A DSL can provide an
explicit syntax and semantics to express this data pipeline structure with the pipes and filters
architecture.

In previous explorative work, we found using a domain-specific language based on this
architecture had positive effects on speed, quality of the solution and perceived difficulty
when solving data engineering exercises on real life open data sets (Heltweg et al. 2025).

Building on this high-level validation, we aim to understand how domain-specific lan-
guages contribute to improved performance by subject-matter experts and what language
features are important in more detail. To do so, we conduct a series of empirical evaluations
using quantitative and qualitative methods. Previous research shows that programming lan-
guage research lacks empirical studies, instead focusing on solution proposals (do Nasci-
mento et al. 2012). However, empirical user studies to evaluate usability are essential tools
that can lead to insights that would not have been gained otherwise (Buse et al. 2011; Barisi¢
etal. 2018).
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When contributing to a collaborative data engineering project, the first thing a subject-
matter expert will need to do is read and understand the intention behind data pipeline
source code. To start, we therefore focus on bottom-up program comprehension, the process
of inferring the intentions behind an implementation from reading source code (Wyrich
et al. 2023); we do so in the domain of building data pipelines by non-professional program-
mers (subject-matter experts).

In the context of this mixed-methods study, we compare data pipelines implemented in a
DSL using an explicit pipes and filters architecture (Jayvee) to imperative scripts in a GPL
with libraries for data engineering (Python with Pandas). We performed an initial controlled
experiment to gather quantitative data on task performance in terms of time and correctness.
In a follow-up survey, we look for causal influences for the experiment outcomes..

With the results, we answer the following research questions:

Research Question 1 Do data pipelines implemented in Jayvee change bottom-up program
structure comprehension compared to Python/Pandas for non-professional programmers...

a: regarding speed?
b: regarding correctness?
c: regarding the perceived difficulty?

Research Question 2 What reasons exist for effects on program comprehension for data
pipelines implemented in Jayvee compared to Python/Pandas for non-professional
programmers?

In this article, we contribute:

1. A mixed-methods approach, combining a controlled experiment with a descriptive sur-
vey, to evaluate the effects of DSLs in the domain of data pipeline modelling.

2. Quantitative data, based on a controlled experiment, on how strongly the use of a DSL
in the domain of data pipeline modelling can influence pipeline structure understand-
ing, contributing to the growing literature on domain-specific languages and motivating
their use in data engineering.

3. Explanations for these effects from participant surveys to guide future practitioners or
researchers that implement DSLs for data engineering.

2 Related Work

Empirical research into the effects of domain-specific languages has been performed across
multiple domains. Kosar et al. have used controlled experiments to compare DSLs with
GPLs and libraries. Initially, in the context of GUI programming, they compared the DSL
XAML with C# Forms, with XAML performing better for answering questions on provided
source code (Kosar et al. 2010).

With a similar approach, Kosar et al. (2012) extended the insights to the domains of
feature diagrams and graphical descriptions, again comparing a DSL with a GPL and an
appropriate library. While the previous experiments were performed on paper, a replication
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study in Kosar et al. (2018) allowed the use of IDEs. In all studies, participants performed
more accurate and efficient in program comprehension tasks using a DSL than a GPL with
libraries.

Similar to our work, Kosar et al. have evaluated the use of DSLs for different domains
using experiments and note that because DSLs are domain-specific, they must be evaluated
for each domain. Our goal is to extend their work with the domain of creating data pipelines
for data engineering. In addition to a purely quantitative comparison of performance, we
also provide qualitative insights into potential reasons for different performance.

Other DSLs with similar structure, either for data pipelines or using blocks, have been
proposed. Cingolani et al. (2015) present an external DSL for the creation of data pipelines
in the domain of biological data called BigDataScript. They similarly plan to support sub-
ject-matter experts, but do so by replicating script-style programming and abstracting from
the underlying architecture. In contrast to our work, they demonstrate the independence
towards architecture, robustness, and scalability of the language implementation technically
but do not evaluate it empirically.

PACE is an external DSL for continuous integration pipelines with a block structure that
compiles to JSON, presented in Fonseca et al. (2020). In a controlled experiment, partici-
pants are tasked with pipeline creation and extension while thinking aloud, comparing PACE
with their previous system of manually creating JSON configs with the results showing an
improvement using PACE. We use a similar mixed-methods research design, however, in a
very different context (understanding data pipelines by non-professional developers instead
of creation of CI pipelines in an industrial setting).

In their PhD thesis, Misale (2017) designed and developed PiCo, a DSL based on pipes
and the data flow computational model. They demonstrate the capability of their design
and evaluate the performance of the implementation using case studies and experiments
with Flink and Spark. In comparison, our work provides an empirical evaluation of code
comprehension instead.

As with our study, students are commonly used as participants in controlled experiments,
which can provide useful data if their use as a proxy for a specific type of developer is
appropriate (Falessi et al. 2018).

Lopes et al. compared a text-based DSL with a graphical tool in a different domain
(entity-relationship modeling) with students (Lopes et al. 2021). Their results are aligned
with ours, showing that a textual approach using a DSL is possible with a slight advantage in
quality but no difference in effort. A similar controlled experiment on readability (speed and
correctness) of type inference rules shown in a DSL or Java implementation is described in
Klanten et al. (2024). The authors point out that research into programming language design
lacks empirical studies, a research gap our work contributes to reducing.

Hoffmann et al. evaluated Athos, a DSL that targets subject-matter experts in the domain
of vehicle routing and traffic simulation, compared to JSpirit (Java with libraries) (Hoff-
mann et al. 2022). As with the previous studies, the DSL improved efficiency. In addition,
participants reported improved user satisfaction when using Athos. Even with the planned
end users being subject-matter experts, the authors rely on students as proxies for subject-
matter experts.

Similar to these studies, our work uses students as participants because we consider them
a good approximation for practitioners that had first programming experiences but are not
professional developers (such as subject-matter experts that have to do data engineering).
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Empirical evaluations of DSLs with subject-matter experts are rare. An example is
Johanson and Hasselbring (2017) in which ecologists use the Sprat Ecosystem DSL and the
GPL C++ to solve program comprehension tasks related to ecosystem simulations. Partici-
pants are subject-matter experts from a non-technical domain (marine science) with only
moderate previous programming experience. Time to task completion and correctness were
measured, with the tasks being solved in less time and with higher correctness using the
DSL. The context of our research are also subject-matter experts and not technical users. We
extend the insights gathered in this study by investigating a different domain (the creation
of data pipelines).

3 Methods

We used a mixed method research design (Johnson et al. 2007), combining quantitative data
from a controlled experiment according to Ko et al. (2015) and a descriptive survey accord-
ing to Kitchenham and Pfleeger (2008) with qualitative data from free-text responses to the
same survey. We chose thematic analysis according to Braun and Clarke (2012) to extract
common themes from the survey responses. An overview of the complete research design
is shown in Fig. 1.

The combination of these methods allows us to validate our hypotheses in a rigorous
manner and uncover potential causal relationships that strengthen the insights and enable us
to generate further hypotheses to test in future work. Additionally, the qualitative responses

Controlled Experiment Descriptive Survey
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Fig. 1 Overview of the mixed method research design, split into data collection and data analysis
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also touch other topics of program comprehension in addition to program structure, allow-
ing us to describe a wider diversity of effects regarding RQ2.

3.1 Jayvee, a Domain-specific Language for Data Pipelines

Jayvee is a DSL for data engineering following the well-known pipes and filters architec-
ture described in Garlan and Shaw (1993) and Shaw and Garlan (1995). The language is
designed to align as closely as possible with the mental model of data pipelines as directed
acyclical graphs of processing steps, thereby making it easier for subject-matter experts to
use than traditional GPLs.

The main elements of a Jayvee pipeline model is a top level pipeline, consisting
of multiple blocks, each representing a processing step. The inputs and outputs of these
blocks are connected using pipes. Blocks have an oftype relationship with block-
types, which defines the input and output types of the block as well as its properties that
can be configured.

Jayvee is an external DSL that is not embedded in a host programming language but has
its own syntax and semantics. The syntax is implemented using a context free grammar
language provided by Langium' while a TypeScript based interpreter acts as a reference
implementation for the language semantics.

Listing 1 shows an example of a data pipeline implemented in Jayvee. The pipeline
consists of three blocks, each performing a step in the data processing. At the top of the
pipeline definition (line 2-4), the pipeline structure is defined by connecting the blocks using
the pipe syntax—>.

|| pipeline CarDataPipeline {

2 CarDataCSVExtractor

3 -> CarDatalnterpreter

4 -> CarDataSQLiteLoader;

5

6 block CarDataCSVExtractor oftype CSVExtractor
7 url: "https://example.org/data.csv";

8 enclosing: '"’;

ol )

10 block CarDatalInterpreter oftype TableInterpreter
11 header: true;

12 columns: [

13 "name" oftype text,

14 // ... further assignments

15 1;

16 }

17 block CarDataSQLiteLoader oftype SQLiteLoader {
18 table: "Cars'";

19 file: "./cars.db";

20 }

2|}

Listing 1 Data pipeline extracting CSV data and writing it to a SQLite database, written in Jayvee.

Jayvee includes more advanced concepts such as user-defined value types and a standard
library of prebuilt, domain-specific blocks. The language is open source and available on
GitHub,? additional documentation is hosted at https://jvalue.github.io/jayvee.

Uhttps://langium.org/
Zhttps://github.com/jvalue/jayvee
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3.2 Controlled Experiment

We follow the guidelines on reporting experiments described in Wohlin et al. (2012), origi-
nally by Jedlitschka and Pfahl (2005). We first provide informal information about research
goals and the context of the experiment, and then report details of the experimental design.
The experiment execution and resulting data is reported in Section 4.

We followed the Goal/Question/Metric template to define the research objective of the
controlled experiment (Wohlin et al. 2012; Basili and Rombach 1988):

1. Analyze a DSL and a GPL with a specific data engineering library

2. for the purpose of their effect on bottom-up program structure comprehension for data
pipelines

3. with respect to speed and correctness

4. from the point of view of researchers

5. in the context of a university course with masters level students learning data science
(as proxies for non-professional programmers).

Our goal was to understand the influence of a DSL on professionals of non-programming
disciplines that work with data as part of their jobs. Some examples include data scien-
tists or subject-matter experts, e.g., in biology, that analyze data. Representatives from this
population have base programming skills from working with data, but are not professional
software engineers.

The experiment was conducted with student participants in person, over two days in
computer labs provided by the university. During the experiment, participants solved two
program structure understanding tasks by reading source code of a pipeline and recreating
the data pipeline structure afterward.

We use a concrete example task as an overview before describing the experiment design
in detail in the following sections. Figure 2 is a screenshot of a task view in the web-based
experiment tool the participants used. On the left-hand side, under Pipeline Code the source
code of a data pipeline is shown. This data pipeline was implemented either in Jayvee or
Python/Pandas, depending on the treatment group. On the right-hand side, under Pipeline
Steps, participants had to recreate the data pipeline structure by dragging steps from the list
of Unused Steps into the Steps in Data Pipeline and bringing them into the correct order.
Once they were satisfied with their solution, they could submit it using the Submit Solution
button and attempt the next task.

3.2.1 Goals, Hypotheses, and Variables

We defined one independent variable, the programming language PL used to implement a
data pipeline, either Jayvee (JV) or Python/Pandas (PY).

From the research objectives, we chose time to task completion and correctness as
dependent variables. The combination of time and correctness is the most common for com-
prehension tasks (Wyrich et al. 2023).

Time to completion describes the time between seeing the source code and submitting
a solution. At the start of each task, the source code of the data pipeline was hidden so par-
ticipants could read the available steps they had to categorize and order. We started the time
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Understanding Data Pipelines

Please bring the steps on the right in the order they appear in the data pipeline code on the left. To do so, drag the steps into the "Steps in Data Pipeline" container. Leave
any steps that do not appear in the pipeline code in the "Unused Steps" container.

Pipeline Code Pipeline Steps
import pandas as pd

fileName = 'https://geo.sv.rostock r s sv*
data = pd.read_csv(fileName, delimiter=',', decimal=',')

Steps in Data Pipeline

data = datal
[

‘uid’, Download a file from the internet
"latitude’,
*longitude',
‘bezeichnung*,
'traeger_bezeichnung',
'traeger_art’,

Interpret a file as CSV with the delimiter ',

‘website", Unused Steps
]
]
data = data.astype({ Translate column names to English
‘uuid': str,
‘latitude': float,
*longitude': float, Save the data to a PostgreSQL database

*bezeichnung': str,

‘traeger_bezeichnung': str, -
‘traeger_art': str, Add a new column based on existing data

‘website': str,

3 Calculate the average of a column
data = dataldata('latitude'].apply(lambda input: input >= -99 and input <= 90)]
data = dataldatal'longitude'].apply(lambda input: input >= -90 and input <= 90)] Validate that latitude and longitude are valid
datalpubliclyFunded'] = datal'traeger_art'].map( geographic coordinates
lambda input: input == 'Gffentlich’
) Save the data to a SQLite database

sinkFile = 'rescuestations.db’
tableName = 'rescuestations' Download a ZIP file from the internet
engine = create_engine(f'sqlite:///{sinkFile}')

data.to_sql(tableName, engine, if_exists='replace’, index=False)

engine.dispose()

Delete the last ten rows of data

Fig.2 The experiment tool during task 2 in Python/Pandas. Pipeline source code is shown on the left, the
recreation using ordered steps on the right

measurement once participants revealed the source code by pressing a button. The time is
directly measured in milliseconds by the experiment software and defined as follows:

time(PL) : time of submission for task in PL — time of source code reveal (1)

Correctness is an indirect variable that is calculated from the submitted solution by the
participant.

For each task, a number of potential steps are available for participants to choose from. A
subset of these available steps is present in the pipeline, in a specific order. Using the drag
and drop interface, participants can categorize steps into Steps in Data Pipeline or used
steps and Unused Steps and decide on an order of steps inside these categories.

To define the correctness of a solution, we consider two dimensions: Has the participant
correctly understood which steps exist in the pipeline source code and have they understood
the order in which they are executed?

We consider a submitted solution as correct if the participant has only selected the steps
that actually exist in the source code and brought them into the correct order.

Any solution with a mistake in the existing steps or their order is categorized as incorrect.

Therefore, we define correctness as follows:
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1, if selected steps and order correct

correctness(PL) : { 0. otherwise )

Hypotheses were defined based on the goal to describe effects on speed and correctness.

For speed, we defined Hy 1 as “Non-professional programmers need the same time to
understand the structure of a data pipeline model when implemented in Jayvee compared
to Python/Pandas.” with the alternative hypothesis H 1, “Non-professional programmers
do not need the same time to understand the structure of a data pipeline model when imple-
mented in Jayvee compared to Python/Pandas.”. More formally:

Hy 1 : time(JV) = time(PY)

Hiy 1 time(JV) # time(PY) )
Regarding correctness, we defined Hy 2 as “Non-professional programmers understand the
structure of a data pipeline model equally correct when implemented in Jayvee compared
to Python/Pandas.” with the alternative hypothesis H o, “Non-professional programmers
can understand the structure of a data pipeline model not equally correct when implemented
in Jayvee compared to Python/Pandas.”. More formally:

Hy s : correctness(JV) = correctness(PY)

4
H 5 : correctness(JV) # correctness(PY) @

3.2.2 Experiment Design

We chose a factorial crossover design according to Vegas et al. (2016) which is a within-
subjects design in which each participant is assigned to every treatment exactly once. Cross-
over designs are well understood and commonly used for software engineering experiments
(Wyrich et al. 2023).

The participants completed two tasks reading a data pipeline, implemented in either Jay-
vee or Python/Pandas and recreating it using a drag and drop interface. We defined two
periods (solving task 1 and task 2) and two sequences AB and BA, see Table 1. Participants
were randomly assigned to either sequence without experimenter input, based on a call
to JavaScript math.randomwhen they opened the experiment tool. One experiment session
included both periods.

3.2.3 Participants

The experiment was executed during a masters level course on data engineering and working
with open data, offered to students largely studying data science and artificial intelligence
as well as some students from computer science and information systems. Because the par-
ticipants are students and the vast majority of them study degree programs that mainly work

Table 1 Factorial crossover de- Period
sign of the controlled experiment

according to Vegas et al. (2016) Sequence Task 1 Task 2
AB Jayvee Python/Pandas
BA Python/Pandas Jayvee
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with data in a theoretical fashion rather than teach software engineering, they have limited
experience programming but have worked on data engineering before. We considered this
population an appropriate proxy, as discussed in Falessi et al. (2018), for data practitioners
that have some experience with programming but are not professional software engineers.

During the course, students were introduced to Jayvee in two lectures and were encour-
aged to use Python with Pandas for an individual data science project. The course requires
the completion of five data engineering exercises in Jayvee and Python/Pandas, with stu-
dents switching languages after each exercise. In all lectures that referenced programming
challenges, we used examples in Jayvee and Python/Pandas. While we mentioned alterna-
tive libraries, we always used Python in combination with Pandas during the module.

We employed convenience sampling from this population by offered students to vol-
untarily participate in the experiment in place of completing the third homework exercise.
Doing so would count as passing the exercise, and enter them into a raffle to win two gift
cards of EUR 20 each. If they chose to complete the exercise as normal, they experienced
no negative effects, e.g., their grade was unaffected.

3.2.4 Objects, Instrumentation, and Data Collection Procedure

Participants were asked to complete two bottom-up code comprehension tasks in which
they had to read the provided source code of a data pipeline and recreate the structure using
a drag and drop interface. They completed one task reading a pipeline implemented in Jay-
vee and one with a pipeline implemented in Python/Pandas, depending on their sequence
assignment. Both tasks used a web-based experiment tool (see Fig. 2 for a task screen exam-
ple) and followed the same sequence:

1. Participants were shown the available steps, categorized as unused, while the pipeline
source code was hidden.

2. After reading the available steps, participants reveal the pipeline source code using a
button press (time measurement starts).

3. Participants drag and drop steps into the Steps in Data Pipeline category and bring them
in the correct order as they understand the pipeline.

4. When they are satisfied with their solution, participants click on “Submit Solution”
(time measurement stops).

5. They are taken to a pause screen where they can start the next task whenever they feel
ready.

In addition to time measurements, the experiment tool automatically saved the submitted
solution so that correctness could be calculated in the analysis phase. After both tasks, the
participants were asked to complete a follow-up survey. The exact version of the tool used
by participants can be found online.?

Both languages were shown as text without syntax highlighting. Two researchers were in
the room for every experiment run to monitor the screens of participants and ensure silence.
This made sure that participants did not interact with each other or search for solutions on
the internet.

3 All links can be found in the Data Availability Statement.
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For the tasks, we implemented equivalent data pipelines in Jayvee 0.1.0 and Python 3.11
with Pandas 2.0, based on real open data sources.

1. Task 1 is a pipeline that downloads a ZIP-file, extracts it and selects a file as CSV. It
then translates some columns names to English, selects a subset of columns and saves
the data to a SQLite-database.

2. Task 2 is a pipeline that downloads a file, interprets it as CSV and validates that data in
one column are geographic coordinates between -90 and 90. It adds a new column with
boolean data, based on another column. Finally, it saves the data to SQLite.

We aligned the code structure as much as possible by implementing each step similarly in
Jayvee and script-style Python/Pandas. As an example, Fig. 3 compares the source code to
extract a CSV file for task 1 in both languages. The example shows the more verbose syn-
tax of Jayvee, utilizing blocks to model processing steps, compared to Python/Pandas. The
Appendix (A) includes a further comparison of source code used in task 2 (Fig. 7).

We conducted two pilot tests to ensure the data pipeline implementations and the accom-
panying step descriptions are appropriate and clear. First, we shared the tasks with other
researchers that were neither involved in Jayvee development nor the experiment itself.
Later, we invited students from previous semesters to take the full experiment remotely
while we watched their screen and asked for their feedback afterward. Based on the feed-
back of both pilot groups, we made minor code and wording adjustments and gained the
expectation that the tasks could reasonably be completed in 10 minutes each.

We defined an experiment procedure so multiple experimenters could guide the partici-
pants through the following process:

1. Read and acknowledge informed consent information.
Open allowed documentation in tabs.

3. Provide an overview about the experiment process, how tasks work and what the exper-
iment measures. Communicate that we expect the experiment to last for roughly 30
minutes and will announce times at 10 minutes and 20 minutes.

1 HttpDataSource 1 import pandas as pd
2 ->TextInterpreter 2
3 ->CSVFileInterpreter 3| fileName = ’https://geo.sv.
4 //... further blocks rostock.de/download/
5 opendata/rettungswachen/
6 block HttpDataSource oftype rettungswachen.csv’
HttpExtractor { 4
7 url: ’https://geo.sv.rostock.de/ 5| data = pd.read_csv(fileName,
download/opendata/rettungswachen/ delimiter=’,’, decimal=
rettungswachen.csv’; ’,7)
8| }
9
10 block TextInterpreter oftype
TextFileInterpreter {}
11
12 block CSVFileInterpreter oftype
CSVInterpreter {
13 delimiter: ’,’;
14 enclosing: ’"’;
15| }

Fig.3 Comparison of source code excerpts to extract data from a CSV source, shown for task 1 in Jayvee
and Python/Pandas
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4. Solve an initial example task with pseudocode together with participants to familiarize
them with the tool.

5. Answer any final questions before asking the participants to start their tasks and no
longer interacting with them.

6. Participants complete both tasks and the follow-up survey.

7. Finally, thank the participants and ask them not to share the experiment setup with other
participants.

Because we asked participants to submit their own solutions, variations can occur between
participants that choose to be faster or more correct, depending on their confidence (Ko
et al. 2015). To reduce this effect, we asked the participants to favor correctness over speed
if in doubt.

The full source code of both tasks, the experiment procedure and the informed consent
handout can be found in the replication package’.

3.3 Descriptive Survey

We designed a cross-sectional, descriptive survey according to Kitchenham and Pfleeger
(2008) to assess how participants perceived the difficulty of understanding the data pipeline
from Jayvee code compared to Python/Pandas.

As part of the survey, participants completed an online questionnaire after completing
the experiment, with two agreement questions How difficult was it to understand the data
pipeline written in Jayvee? and How difficult was it to understand the data pipeline written
in Python?. Answers could be given on a 5-point Likert scale. We assigned numbers from 1
(Very easy) to 5 (Very hard) to be able to calculate medians and defined di f ficulty(PL) as
the median of the answers for JV and PY respectively.

To answer RQ lc: Do data pipelines implemented in Jayvee change bottom-up program
structure comprehension compared to Python/Pandas for non-professional programmers
regarding perceived difficulty, we defined Hy 3 as “Non-professional programmers do not
perceive a data pipeline model as easier or harder to understand when implemented in Jay-
vee compared to Python/Pandas.” with the alternative hypothesis H; 3, “Non-professional
programmers do perceive a data pipeline model as easier or harder to understand when
implemented in Jayvee compared to Python/Pandas.”. More formally:

Hy s : dif ficulty(JV) = dif ficulty(PY)

Hy g dif ficulty(JV) # dif ficulty(PY) )
In addition, participants were provided free-text input fields for the questions What makes
data pipelines written in Jayvee difficult/easy to understand?, What makes data pipelines
written in Python difficult/easy to understand?, and What are the differences between Jay-
vee and Python that influence how easy / hard it is to understand data pipelines?.

To analyze this qualitative data, we chose thematic analysis according to Braun and
Clarke (2012). Because we had no preconceived theory but wanted to understand causal
relationships for the experiment results, we chose an inductive approach, letting the themes
emerge from the data.
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During the thematic analysis, we first familiarized ourselves with the data by reading all
survey responses in detail.

Afterward, we created codes from the data and constructed a codebook by grouping
related codes into themes. Our goal was the creation of a codebook that is clear and themes
that can be consistently understood by multiple readers. We therefore worked in iterations,
with multiple authors applying the codebook to responses independently and discussing
any differences in coding that emerged from unclear descriptions to improve the clarity of
themes.

For each iteration:

1. We selected a subset of the responses at random

2. The first author coded the subset of responses and afterward updated the codebook with
new insights

3. The updated codebook was shared with another author, who used the codebook to code
the same subset of responses

4. The authors met to qualitatively discuss any differences in coding and the clarity of the
codebook and the codebook was updated according to the discussion

5. The first author used the updated codebook to re-code all previous responses

Because our goal was to explore the diversity of reasons for the effects on program compre-
hension, we chose theoretical saturation as a guideline to judge the maturity of our code-
book, meaning no or few new insights are gained from analyzing additional data (Bowen
2008). We counted codes that were assigned to each survey response, as well as any code-
book changes (newly created, deleted, moved or updated codes and themes). We consider
theoretical saturation to be reached when codebook changes are rare (indicating that the
codebook is stable), but codes are still assigned to new responses (indicating that the code-
book is relevant to the topic of the response).

4 Results
4.1 Participant Sample

Our sample consisted of 57 volunteers from a masters level course about advanced methods
of data engineering that was completed by 98 students. Students mainly came from master’s
degree programs in artificial intelligence, data science and computer science. At the start of
the semester, we used an online survey with previously validated questions by Feigenspan
et al. (2012) to measure previous experience in programming generally and Python and
Jayvee specifically. Median programming experience was 7 (of 10), median comparison
to classmates 3, median experience in Python 4 and median experience in Jayvee 1 (all of
5). At the end of the semester, we repeated the survey and the median experience of course
participants in Jayvee had increased to 3 (n = 77). A detailed overview of the course entry
survey results can be found in Fig. 8 (Appendix A).

After the course entry survey, all participants heard two lectures on Jayvee programming
and solved one data engineering exercise in Jayvee as part of the training for the experiment.
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Of these 57 participants, 29 were randomly assigned to sequence AB and 28 to sequence
BA.

4.2 Hypotheses Tests

We used Python 3.11 with Pingouin 0.5.5 (Vallat 2018) for the statistical analysis of the
data. We consider tests at the standard a = .05 to be statistically significant.

For each participant, we calculated time on task and correctness as described in Section
3.2.1.

For both speed and perceived difficulty, we report effect sizes based on the matched pairs
rank-biserial correlation (RBC) as an appropriate measure of effect size for the Wilcoxon
signed-rank test used for the experiment data (Kerby 2014). As a correlation, it is equal to
the difference between proportions of favorable and unfavorable evidence, with 0 meaning
no effect and positive values indicating support for H;. In addition to RBC, we also report
CLES as a more intuitive measure of effect size, first introduced by McGraw and Wong
(1992), but based on the generalization by Vargha and Delaney (2000) to allow non-normal
and ordinal data such as the survey responses on a Likert scale. We interpret CLES based
on the guidelines in Vargha and Delaney (2000) as either small (> .56), medium (> .64) or
large (> .71).

4.2.1 Hypothesis 1: Speed

Initially, we performed a Shapiro-Wilk test (Shapiro and Wilk 1965) to check if the variable
was distributed normally. At o = .05 it was non-normal. As a result, we chose the Wilcoxon
signed-rank test (Wilcoxon 1945) as non-parametric alternative to a paired t-test because
it is appropriate for paired data from the crossover experiment (Wohlin et al. 2012; Vegas
et al. 2016).

The variable distribution is plotted as kernel-density-plot, included in the appendix (Fig.
9), to give an overview and make it easy to see non-normality (Kitchenham et al. 2017).

The null hypothesis we defined for speed was Hy 1: “Non-professional programmers
need the same time to understand the structure of a data pipeline model when implemented
in Jayvee compared to Python/Pandas.” We therefore chose a two-sided Wilcoxon signed-
rank test, with the results shown in Table 2.

We have no reason to reject the null hypothesis and accept Hy 1: “Non-professional
programmers need the same time to understand the structure of a data pipeline model when
implemented in Jayvee compared to Python/Pandas.” Based on the data and the underlying
distribution (see Fig. 9 in Appendix A), it is reasonable to conclude that the use of program-
ming language had no significant effect on time to completion in either direction.

Table 2 Wilcoxon signed-rank test for Ho,1 : time(JV) = time(PY)
n Mdn jv Mdnpy W-val alternative p-val RBC CLES
57 252.37 234.23 750 two-sided .546 .093 .52

@ Springer



Empirical Software Engineering (2026) 31:17 Page 150f38 17

Solutions
B Correct
I Incorrect
50
40
-
5
3 30
|
20
10
0
Python Jayvee
Fig.4 Count of correct and incorrect solutions for Jayvee compared to Python/Pandas
Table 3 Contingency table for Python / Pandas
correctness
Incorrect Correct
Jayvee Incorrect 11 5
Correct 24 17

4.2.2 Hypothesis 2: Correctness

The count of correct and incorrect solutions submitted for either treatment is shown in Fig.
4.

The null hypothesis we defined for speed was Hy o: “Non-professional programmers
understand the structure of a data pipeline model equally correct when implemented in
Jayvee compared to Python/Pandas.”.

We chose the McNemar’s paired chi-squared test (McNemar 1947) because the cross-
over experiment design leads to paired data. A detailed report of the participant performance
is shown in Table 3 as a contingency table that shows the number of participants that submit-
ted the specific combination of correct/incorrect solution depending on treatment. Of most
interest are the discordant pairs for participants that submitted a correct solution under one
treatment and an incorrect solution under the other (5 for correct with Python/Pandas and
incorrect with Jayvee versus 24 otherwise). As a measure of effect size, we include the odds
ratio (OR). The results are shown in Table 4.
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Table 4 McNemar’s test for Ho 2 : correctness(JV) = correctness(PY)

n X2 p-val OR
57 11.17 < .001* 4.8
*p < .05

Based on these results, we have reason to reject the null hypothesis and instead adopt
H, »: “Non-professional programmers can understand the structure of a data pipeline
model not equally correct when implemented in Jayvee compared to Python/Pandas.”. Fig-
ure 4 shows that participants submitted significantly more correct solutions when complet-
ing the experiment using Jayvee code compared to Python/Pandas. We consider this result
of practical relevance because improved understanding when interpreting data pipelines
will lead to significantly reduced errors when working with them.

4.2.3 Types of Errors

For task 1, most errors were related to not including steps in the pipeline reproduction that
existed in the source code. Most commonly, the participants did not include the Select some
columns from the data step (missing in 13 for Python/Pandas, 2 for Jayvee), followed by
Translate column names to English (missing in 4 for Python/Pandas, 3 for Jayvee). Lastly,
two incorrect submissions in Jayvee were related to the wrong order of these steps. Poten-
tially, participants did miss the selection of a subset of data in Python/Pandas because it
was done using a list of column names in selection brackets, together with applying a data
schema using astype. This matches the logic of the TableInterpreterin Jayvee, but is less
clear about the list of strings being column names and has a higher density of functionality
(discussed in more detail in Section 4.4.3).

During task 2, common errors were related to three different categories. First, partici-
pants included a step (Translate column names to English) that was not in the source code
(in 7 solutions for Python/Pandas, 3 for Jayvee). Second, they missed the step Add a new
column based on existing data (in 7 for Python/Pandas, 3 for Jayvee). Third, they did not
include the step Download a file from the internet (in 4 for Python/Pandas, 0 for Jayvee).

We are unsure of the reasons participants think a translation step was involved in the sec-
ond task. Potentially, because the column names included English and German words, their
use throughout the code was interpreted as a translation of column names. With regard to
the second error, adding a new column based on existing data uses more advanced program-
ming concepts in both treatments (mapin Python/Pandas, transformin Jayvee), which can
be difficult to understand for inexperienced programmers (see also Section 4.4.6). Lastly,
the use of the reada_csvmethod from Pandas is likely to have led to participants missing the
download of a file from the internet because it is able to open local files or remote files trans-
parently without any difference in the source code, except for the file location string. In con-
trast, Jayvee uses different blocks to open local files or download files from remote sources.

4.3 Descriptive Survey

The follow-up descriptive survey was filled out by 56 participants. Their impressions of
difficulty for understanding the data pipelines in Jayvee and Python/Pandas were answered
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on a 5-point Likert scale. The exact distribution of the answers can be found in Fig. 10
(Appendix A).

After calculating medians as described in Section 3.3, we again chose the non-parametric
Wilcoxon signed-rank test because the data is paired and the differences in ordinal data from
Likert scales can be ranked (Wohlin et al. 2012). The null hypothesis we defined for speed
was Hy 3: “Non-professional programmers do not perceive a data pipeline model as easier
or harder to understand when implemented in Jayvee compared to Python/Pandas.”, we
therefore chose a two-sided test, with the results shown in Table 5.

We have no reason to reject the null hypothesis and adopt Hy 3: “Non-professional pro-
grammers do not perceive a data pipeline model as easier or harder to understand when
implemented in Jayvee compared to Python/Pandas.”

4.4 Qualitative Survey Responses

In order to identify reasons for the observed effects to answer RQ2: What reasons exist
for effects on bottom-up program comprehension for data pipelines implemented in Jayvee
compared to Python/Pandas for non-professional programmers?, we used thematic analysis
according to Braun and Clarke (2012).

To complement the quantitative data analysis of experiment results in our mixed-meth-
ods design, we collected qualitative responses to describe causal effects that might have
influenced participants’ task performance to open up future research directions and new
hypotheses to explore. Our goal was to capture the diversity of effects that participants
described rather than make additional statistical claims, so we included any relevant insight.

As described in Section 3, we worked iteratively and tracked code assignments as well
as codebook changes and chose theoretical saturation to judge the maturity of our theory
(Bowen 2008). Figure 5 shows the cumulative sum of code assignments compared to code-
book changes during the thematic analysis, with every iteration highlighted by a vertical
red line.

We measured inter-rater reliability using Cohen’s Kappa s by two authors using the
codebook to code new responses after every iteration. While « fluctuated due to the rising
complexity of the codebook and the increasing number of codes, it consistently showed
“substantial” agreement between the coding authors (k; = .79, ko = .74, k3 = .64,
k4 = .68) (Landis and Koch 1977).

While codebook changes are frequent initially, they become much less frequent after the
third iteration. Note that the high amount of codebook changes directly before the end of
an iteration is due to the adaptations that are made after the qualitative discussion by the
authors after coding a subset of responses. With changes being very rare during the fourth
iteration, we considered theoretical saturation to be reached and are confident our codebook
encapsulates the content of the survey responses well.

We present the results of our thematic analysis according to Braun and Clarke (2012)
as a collection of themes with thick descriptions. Beyond the themes that directly relate to
the research questions, we also gained further insights on the role of documentation and

Table 5 Wilcoxon signed-rank test for perceived difficulty of using Jayvee compared to Python/Pandas,
Ho 3 : dif ficulty(JV) = dif ficulty(PY")

n Mdnyy Mdnpy W-val alternative p-val RBC CLES
56 2.0 2.0 380.5 two-sided 153 -23 41
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Code Assigments and Codebook Changes During Thematic Analysis
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Fig. 5 Code assignments compared to codebook changes during thematic analysis, showing codebook
changes being rare after the third iteration, while codes were consistently applied to new responses

PL: Programming Language HU: Human Factors

PL1: Pipeline Overview ———-> HU1: Required Experience

Fig.6 Overview of the codebook with two categories of themes, one related to the programming language
directly and additional human factors

language ecosystems. However, here we include the subset of themes that directly relate to
the results from the controlled experiment. Please refer to the replication package for the full
codebook with all themes and extended descriptions of codes, including additional quotes
from participants’.

Figure 6 shows the themes that emerged from coding, with six themes related to the pro-
gramming language and three themes involving human factors.
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In the rest of the chapter, we describe the themes in detail and highlight representative
quotes from the surveys to give a vivid impression of the major topics in each theme.

4.4.1 PL1:Pipeline Overview

Jayvee splits block definitions and the wiring-up of a pipeline by connecting blocks into
separate code locations (in the example Jayvee model Listing 1, block definitions start in
line 6 while the overview is created in lines 2-4). This provides an overview of the pipeline
without showing any implementation details apart from the block name.

In contrast to Jayvee with its strictly enforced structure, this overview does not always
exist in procedural Python scripts that are executed from top to bottom, such as the data
pipelines in the experiment. The use of Pandas does also not enforce such a structure.

A major effect of this overview is that participants can ignore code that is not immedi-
ately needed to understand the data pipeline. This in turn improves speed for a high-level
understanding because less code has to be read as described by S18: “The pipeline gives a
very quick overview over what happens. When the blocks are named clearly everything can
be seen on one quick view.”

However, if an in-depth understanding of the implementation details is actually impor-
tant to understand the data pipeline, the effect of a centralized overview on speed and under-
standing can potentially be negative. A few participants described a negative effect on both
speed and understanding due to the additional navigation needed to read all source code.
For example, S40 answered: “(Jayvee is difficult to understand...) due to the code structure/
layout, need to go back & forth to search for the specific function.”

The centralized overview improved understanding of data flow and order of execu-
tion. Especially in the domain of data engineering, the combination of being able to know
how the underlying data that is manipulated by a program is changed as well as in what
order source code is executed is important. For example, S37 wrote, “(...) since we have a
syntax that very well shows the actual flow of the pipeline (via the block ->block ->... syn-
tax), it also easily understandable what blocks are executed in which order.”

Summary: A data pipeline overview can be separated from implementation details
in source code. The enforced structure of Jayvee means this overview always exists,
while this is not true for Python/Pandas.

— Ignoring not needed code improves speed and understanding. However, additional
navigation can mean the effect becomes negative if reading details are required.
— The existing overview improves understanding of data flow and order of execution.

4.4.2 PL2:Code Structure

Code structure refers to both the way source code is structured, as well as the amount of
structure that is enforced by the language. The most significant difference in the way code
is structured is the use of the pipes and filters architecture, with connected blocks in Jayvee
compared to the script-style implementation in Python/Pandas.

Regarding the amount of enforced structure, Jayvee is much stricter than Python/Pandas.
As a general-purpose programming language, Python must allow for more flexibility to
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enable developers to implement a wider range of programs. In contrast, as a domain-specific
language, Jayvee can enforce a structure that is very close to the domain of data pipelines.

This consistently enforced structure enables most survey participants to understand
Jayvee better, e.g., S29: “Big difference is the structure which Jayvee kind of enforces and
developer can easily recognize.” The improved recognition of the structure due to how con-
sistently it is applied is a major element of the positive effect on understanding.

The use of blocks to structure data pipeline code is highlighted as a positive influence
on pipeline understanding, especially for non-professional programmers. For example, S8
likens the experience of using blocks to using LEGO: “The best part in Jayvee is block type
coding, it is similar to LEGO and you can easily remember, read and write your code.”

Of course, a similar code structure can be achieved using Python with functions or classes
but the increased flexibility means that it is not enforced and often not done as S26 points
out: “The concept of blocks: You can manually create this in Python, but hardly anybody
will do this.”

Lastly, the encapsulation of related code is described by participants as making it easier
to understand the data pipeline. S44 writes: “Jayvee is much easier to understand because
every step is divided into blocks the block types are very easy to understand. A single opera-
tion is performed in one block, which makes it easy to comprehend.” Importantly, encapsu-
lated code must be sliced so that only a single operation is done in one unit, or participants
consider it a detractor for understanding.

Summary: Code structure refers to the way source code is organized. Different
languages enforce a more or less consistent structure.

— Stricter enforcement of structure improves understanding and increases learning
effects from other data pipelines.

— Consistent structure allows readers to quickly find expected elements, such as the
data pipeline overview.

— Using blocks is a positive influence on pipeline understanding and aligns with the
mental model of data pipelines.

— Encapsulation of related code makes it easier to understand data pipelines, as
long as a single operation is performed in each section.

4.4.3 PL3:Transparency

Transparency relates to how deeply participants can understand the operations performed
in the data pipeline by just reading the source code. Differences can come from how vis-
ible implementation details are, depending on the level of abstraction a language aims for.
Additionally, how much functionality can be expressed in few lines of code (which we call
density of functionality) affects transparency in the sense that with high density of function-
ality less low-level operations are expressed in source code.

Python/Pandas was identified as having a much higher density of functionality than
Jayvee. Regarding the effects, participants had mixed impressions. On one side, being able
to express a lot of logic in a few lines of code makes each individual line of code harder to
understand, potentially decreasing correctness as S30 explains: “Python makes it possible
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to have a lot of functionality in just a few lines, which can make it hard to read if you have
not written it yourself.”

The tradeoff is that pipeline models in a less expressive language must consist of more
source code which is slower to read. SO mentions this concern: “Especially in a large pipe-
line a file might get really big because of all the definitions (especially unnecessary empty
block definitions).”. However, because the data pipeline models in our experiment were
comparatively small, the majority of participants did not describe this problem.

One way to achieve a high density of functionality is to implement a high degree of
automatic decisions and many operations in one unit of code. As an example, loading data
with read csv()can use various sources and automatically chooses structure and data types
based on the underlying data that cannot be inferred from the source code alone. Addition-
ally, the structure of the output can potentially change without any change in the source code
if the input data changes.

Increased automation by grouping many operations in one unit of code makes data pipe-
lines harder to understand and decreases correctness. Often, library methods of Pandas are
singled out by participants for this kind of complexity, with SO remarking: “Difficult: The
methods sometimes do many things at once (example: load to a sqlite file and automatically
choose data types).” S26 describes a similar experience: “Functions like pd.read csvare
hard to understand, as they can read a DF from so many sources (in Jayvee you have one
datasource specified).”

Instead of increased automation, the inability to see all implementation details was
identified as a negative effect on the ability to understand the data pipeline by participants.
This effect was mostly found in Jayvee, with examples including the TableTransformerblock
that takes input columns and output columns as properties, for which participants were
unsure if it keeps or removes the input columns.

Summary: Transparency relates to how well participants can understand every oper-
ation performed in a data pipeline based on the source code alone.

— High density of functionality, many operations per line of code, is a challenge
to understanding for small data pipelines. However, reading larger data pipelines
will be slow and potentially error-prone with lower density of functionality.

— Increased automation makes data pipelines harder to understand and decreases
comprehension correctness.

— Hidden implementation details can negatively affect the understanding of data
pipelines.

4.4.4 PL4: Amount of Options

A common theme in the survey responses was the large number of options to implement
functionality in Python/Pandas and the comparatively few options in Jayvee. For example,
to download a CSV file, Python programmers could use the standard library with uri1ib
or use Pandas read csv()with nearly equivalent outcomes. DSLs can focus on a few core
features and only provide one solutions for these.

The effect of many competing options was described as a detriment to understanding
by participants such as S49: “In Python, there are many varieties and different options,
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libraries etc, it is harder for non-experienced to grasp the essence.” As they describe, these
challenges impact mostly non-professional programmers or programmers unfamiliar with
the language itself.

External libraries exacerbate this effect, adding additional ways to solve problems with
potentially multiple libraries that solve the same set of problems. Moreover, every library
has its own mental model of the problem space with their own glossary, code styles and
documentation. SO writes: “In Jayvee everything (all blocks) are from the same source,
while in Python there are many libraries with different method styles and documentation.”

External libraries also evolve independently of the main language and each other. This
means developers must keep up with changes from different sources to keep their under-
standing of source code up-to-date, or risk interpreting new library code wrongly.

Despite the challenges that external libraries introduce, their availability has obvious
upsides, e.g., less work to implement common functionality. Managing the scope of lan-
guage features and how external libraries are used is therefore a tradeoff that depends on the
experience level of the main users of the language.

Summary: The amount of options to implement the same functionality varies greatly
between languages, with GPLs having to be more flexible than DSLs. External
libraries add additional approaches.

— Many competing options to solving the same problem are a challenge to under-
standing data pipelines, mainly for less experienced readers.

— External libraries increase the amount of available options and have different
mental models and glossaries. However, aside from their negative effect on under-
standing, external libraries reduce required work to implement data pipelines.

4.4.5 PL5: Syntax

Participants sometimes commented on the syntax differences of the languages as reasons
for their performance. Both languages were described as human-readable, sometimes as
being like English text or pseudocode. Human-like language syntax was generally linked to
making it easier to understand the data pipeline, e.g., by S31: “Jayvee has a very human-like
language, almost like pseudocode which can be immediately understood even by non pro-
grammers in my opinion as long as they have a basic theoretic knowledge about pipelines.”

While Python is well known for its closeness to pseudocode, Jayvee uses considerably
more special characters and an uncommon structure. We attribute the positive comments
on Jayvee’s human-like syntax largely to the use of a glossary that is close to the problem
domain, e.g., the use of domain entities such as pipelineas part of the syntax. Reusing a
glossary that is familiar to domain experts allows them to more easily understand the mean-
ing of data pipeline code.

In contrast, encountering unfamiliar syntax is described as a challenge to understand-
ing data pipelines from code. This was mostly an issue for participants solving tasks in
Jayvee as they had less previous experience with the language. However, some participants
described similar problems with the syntax used by libraries in Python, for example, Pandas
creating new columns in a Dataframe with an assignment operator instead of a function call.
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Summary: Language syntax is discussed by participants, but largely in regard to
personal preference for more familiar languages like Python.

— Human-readable syntax makes it easy to understand a data pipeline. Both Python
and Jayvee are described as human-readable languages.

— Unfamiliar syntax has a negative effect on understanding. New languages and
unfamiliar external libraries can introduce this effect.

4.4.6 PL6:Language Elements

Language elements have a large influence on understanding of data pipeline code. GPLs
such as Python must by necessity also provide general-purpose language elements, such as
classes or functions, that can be used to build systems for any use case. In contrast, DSLs
can express domain concepts such as pipelines, blocks and pipes, or value types directly as
language elements.

The use of domain-specific language elements is described as making it easier to
understand the data pipeline by participants. The explicit blocks and pipes structure that is
enforced by Jayvee aligns closely with how users visualize data pipelines. Readers can then
directly build their mental model of the data pipeline from the similar representation in the
source code.

Other language elements negatively impacted understanding with some participants
mentioning that Jayvee language elements are unusual and need to be learned (in contrast
to Pythons language elements that are largely known from other GPLs).

An example are value types based on constraints, as S51 points out: “I found the Jayvee
code structure a bit difficult to understand, mostly the constraints and value type.” A pos-
sible explanation could be that value types and constraints align less obviously than blocks
and pipes with the visual model of a data pipeline.

For Python, the use of advanced programming concepts was mentioned as a problem
participants faced understanding the experiment tasks. Concrete examples are described
by S12: “Some functions like lambda, list comprehension and implicit operations are not
intuitive and require documentation and comments to understand.” Advanced programming
elements have to be used carefully and sparingly if the goal is to create a data pipeline that
can be understood by relative junior programmers.

Summary: Python must provide general-purpose language elements such as classes
and functions, while DSLs can introduce domain concepts such as pipes and blocks.

— Using blocks as domain-specific language elements improves pipeline under-
standing and is intuitive because it aligns with the visual model of a data pipeline.

— Unusual language elements such as value types based on constraints are a chal-
lenge to pipeline understanding.

— Advanced programming concepts like lambdas or list comprehension make
pipeline understanding harder, especially for programmers without previous expe-
rience in the language.
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4.4.7 HU1:Required Experience

Understanding data pipeline code is influenced by the previous experience of the reader.
Depending on the tool used to implement the data pipeline, more or less experience might
be needed. Further, the type of experience also matters. Subject-matter experts are often
experts in the data they are working with, but might not have extensive software engineer-
ing experience.

The need for previous experience with programming to understand Python/Pandas
code is mentioned by multiple participants in their surveys. As a GPL, Python must have
many features and allow for a maximum amount of flexibility, which makes it inherently
complex. Furthermore, more knowledge of programming is involved because the concepts
expressed in the language cannot be domain-specific but have to be generic (e.g., classes
and functions). S34 expresses the difference: “I think the difference might have mostly to do
with how much experience one has in programming; I think that Python might require quite
some knowledge to get used to, while Jayvee is a bit easier to understand even as a person
with not much programming experience.”

The more flexible a language is, the more experience and discipline is needed to stick
to good practices and write code that is easy to understand. With the ease of writing script-
style Python code, it is not uncommon for developers to implement prototypes in Python
that later on get promoted to production code without a rewrite, creating hard to understand
data pipelines.

Summary: Required experience refers to the amount of experience required to under-
stand a data pipeline from source code. For reading source code, the main required
experience is previous programming.

— Previous experience with programming is needed to understand Python because
of the use of generic programming concepts. In contrast, Jayvee is easier to
understand for non-programmers because it is using domain-specific concepts.

— More flexibility means more experience is needed to follow good habits and make
code easily readable.

4.4.8 HU2: Applicable Experience

How closely a language aligns with the mental model of data pipelines is important to
reuse experience outside of software engineering. Participants describe Jayvee’s blocks and
pipes structure as intuitive because it mirrors how they think about data pipelines. This posi-
tively affects understanding, e.g., S35 explains why Jayvee pipelines are easy to understand:
“Jayvee code steps are directly mapped to the data engineering pipeline lifecycle.”

However, the close match to the mental model must be carefully maintained; otherwise
it can lead to confusions. One such mismatch were the interpretation blocks in Jayvee (such
as the TextFileInterpreter) to convert binary data to text data. Participants were confused
about what the interpretation blocks did because the level of abstraction was lower than
what they expected.
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A special case of applicable experience is building up knowledge from previous experi-
ence with the same tool. High flexibility means even similar pipelines can look very dif-
ferent. A challenge with the low enforced structure of Python/Pandas is that learning effects
from creating or reading other data pipelines are reduced. S29 summarizes the challenge as
“No structure, every pipeline is a new pipeline.” This effect is worsened by the amount of
different libraries that can be used to solve common problems, meaning experienced in one
library does not necessarily apply to data pipelines that use a different library.

Summary: Being able to reuse experience from other sources, such as working with
spreadsheets, means data pipelines can be understood by a wider range of readers.
Often, subject-matter experts might lack programming experience but have previous
domain experience.

— Alignment of code to the mental model of data pipelines improves understanding,
even without programming experience. However, creating the expected abstrac-
tion level is important or readers are confused.

— Learning effects are reduced when similar pipelines can look different in source
code due to high flexibility.

4.4.9 HU3:Naming

Good names improve understanding, especially for non-professionals. However, as Phil
Karlton said “There are only two hard things in Computer Science: cache invalidation and
naming things.”

Generally, participants describe names in Jayvee as easy to understand, probably because
they are close to the terminology of the domain of data pipelines. In contrast, survey answers
mention Python and Pandas as having inconsistent and sometimes confusing naming, poten-
tially because of the generality required by being a GPL and due to the use of external librar-
ies with an inconsistent glossary.

Well named processing steps, both for language elements and user-defined names, have
multiple positive effects. Speed is improved by being able to skim source code and clear
names make it easier to understand the data pipeline as a whole, S18 writes: “When the
blocks are named clearly everything can be seen on one quick view. That makes the pipeline
easier to understand.”

Good names must follow a consistent approach, which in turn improves understanding.
This is a challenge for a GPL like Python because much of the domain-specific functionality
comes from external libraries such as Pandas that have different glossaries and approaches
to capturing the domain.

Lastly, under the assumption that names are chosen well, the quantity of naming oppor-
tunities is important as well, with a higher quantity of names making it easier to understand
a data pipeline. Script-style data pipeline implementation give few opportunities for good
naming of steps, meaning developers must resort to comments if they want to communicate

“https://martinfowler.com/bliki/TwoHard Things.html
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reasoning. Due to named blocks, Jayvee provides more naming opportunities, both for lan-
guage elements and user provided names that explain the intent behind the use of a block.

Summary: Naming of elements in a pipeline has a major effect on how easy the
resulting source code is to understand.

— Good names improve understanding by allowing readers to skim the source code
and get an overview of the whole pipeline.

— Consistent naming has a positive effect on understanding. External libraries with
their own glossary can make naming less consistent.

— The quantity of human-provided names is important to communicate intend, with
a positive effect on understanding if the names are chosen well.

5 Discussion

Based on the results, a DSL based on a pipes and filters structure can be a valuable tool
to build data pipelines with subject-matter experts. Participants with a non-professional
programmer background can understand data pipeline source code more correctly, but not
faster or more easily.

A possible explanation for the similar speed is that the participants had considerably
more previous experience with Python/Pandas than with Jayvee, which likely influenced
how fast they were able to understand the data pipelines in favor of Python/Pandas. This
will not be an uncommon situation however, because a new DSL always presents a learning
challenge, while many practitioners might already have worked with Python and Pandas.
However, the fact that participants were still able to complete the tasks with Jayvee in a
similar time indicates that learning a new DSL can be done in limited time and provide other
benefits like improved correctness, even for non-professional programmers.

Additionally, Jayvee is considerably more verbose than Python/Pandas, and therefore
some participants mentioned that they expect larger data pipelines to take longer to read
before they would be able to solve the tasks. In the context of open data, the tasks were
representative of real-life challenges and based on real open data sets. Most open data sets
are small, mostly under 10 MB and published in tabular formats such as CSV (Umbrich
et al. 2015; Mitlohner et al. 2016). However, for larger scale data pipelines, e.g. in industrial
settings a more expressive syntax is needed. For these situations, we expect that the differ-
ence in speed for program understanding would increase in favor of Python/Pandas due to
Jayvee’s verbosity and structure.

Similarly, more complex tasks could require functionality outside the limited feature set
of Jayvee. In previous studies, we have found that in these situations perceived implementa-
tion difficulty increases sharply, and it stands to reason that program understanding would
decrease as well (Heltweg et al. 2025).

During the experiment, both Jayvee and Python/Pandas source code was displayed as
text, without syntax highlighting or the use of an IDE. We chose to not provide an IDE
because the maturity of tool support for Python/Pandas and Jayvee differs significantly and
would have introduced a confounding factor. In similar work, replication studies of experi-
ments with the addition of IDE support have shown that correctness improves for all treat-
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ments, but the relative differences between them remain consistent (Kosar et al. 2018).
Therefore, we expect that the results of our experiment would not change significantly with
the addition of IDE support.

The code structure of the Python/Pandas data pipelines might have an effect on the
results. We chose to use script-style implementations in Python with Pandas, as they are
common in practice for smaller data pipelines As discussed in Section 4.4.2, classes and
functions can be used in Python to create a structure similar to Jayvee which would reduce
the effects of using a DSL.

With regard to task design, we chose to focus on comprehension tasks of data pipeline
structure as a first step. Alternative task goals, such as locating errors or predicting the out-
put of a data pipeline could be used in future work. We consider the comprehension of data
pipeline structure as a necessary prerequisite for these tasks. From the qualitative feedback,
we expect that the results would be similar for correctness, with Jayvee being more ver-
bose and prescriptive with less functionality. Especially the exact structure of data pipeline
output was often unclear to participants due to the automated Dataframe structure creation
when loading a data set with Pandas.

Of course, program understanding is only one part of the software development pro-
cess and other tasks such as extending existing programs or code creation would likely
show very different results. We expect implementations in Jayvee to be slower due to the
increased verbosity and more strict structure, but additional studies are needed to verify
these assumptions.

5.1 Learnings for Language Designers

Multiple design decisions are contributing factors to the improved performance and can
provide guidelines for future developers of DSLs.

Representing a data pipeline with blocks and pipes as first class language elements seems
to be a good choice. It is described as intuitive and clear, especially because it clearly aligns
with the mental model of data pipelines as the reader visualizes them.

A data pipeline overview that is represented directly in the syntax of the source code and
separated from the implementation details is consistently highlighted as an important posi-
tive influence. In addition, the strongly enforced structure of a data pipeline program means
readers can quickly orient themselves in the source code and learn with every pipeline they
read.

The effect of well-named language elements was considerable, indicating that names are
a major influence on data pipeline understanding and especially to provide context to imple-
mentation decisions. Consequently, language designers should pay attention to not only
using a consistent glossary to name language elements, but also to providing opportunities
for developers to use many descriptive names. As an example, by encapsulating function-
ality into named blocks, data pipelines implemented in Jayvee have a greater minimum
amount of named elements than script-style implementations in Python/Pandas. Because
this structure is strict, even non-professional programmers are guided to describe the steps
they implement in any given pipeline.

Regarding complexity, providing multiple options that achieve the same goal, both in
syntax as well in approaches to solve a problem, has been discussed as a barrier to under-
standing by participants. Because of this, introducing additional syntax or syntactic sugar to
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make one specific use-case easier should always be seen as a tradeoff between the expres-
siveness of the language versus the added complexity.

6 Limitations

As a mixed-method study, multiple sets of limitations are potentially relevant to correctly
evaluate the results. We evaluate limitations and ways to mitigate them in regard to the
quantitative data from the Section 3.2 and the survey questions, based on threats to validity
described in Wohlin et al. (2012). Trustworthiness criteria according to Guba (1981) are
used for the follow-up qualitative work with answers from the descriptive survey (Section
3.3).

While we present more than one set of limitations in this chapter, it is important to high-
light that the mixed-method approach of this study (with data- and method-triangulation)
allows the individual methods to partially make up for the weaknesses of the other. This
means the overall research design contributes as a mitigating factor for some of the dis-
cussed limitations.

6.1 Threats to Validity

We describe potential threads to validity according to the framework presented in Wohlin
etal. (2012).

6.1.1 Conclusion Validity

Threats to conclusion validity are challenges to understanding the correct relationships
between the treatment and results of an experiment.

The DSL that was investigated as treatment is in large parts designed and implemented
by the authors of this study, therefor bias and searching for positive results is a clear threat
to conclusion validity. In an attempt to reduce its impact, we defined the research design as
well as hypotheses to analyze ahead of data collection, based on indicators found in previ-
ous work (Heltweg et al. 2025) and used standard research designs and statistical tests.
Additionally, we reported effect sizes and the results of all hypotheses tests, including ones
without statistically significant results such as time spent on task. During data collection, we
followed an experiment procedure document to reduce the introduction of individual bias
when guiding participants through the experiment. In addition, participants purely inter-
acted with an automated experiment tool that implemented the treatment and took measure-
ments impartially without interaction by the researchers. Nonetheless, subconscious bias
remains as a threat to conclusion validity. Therefore, we have shared the experiment tool® to
allow for thorough review and independent replication.

Normally, the heterogeneity of students as participants also provides a challenge. How-
ever, the use of a crossover experiment design mitigates this concern because they measure
differences in comparison to the participants’ average and not between participant groups
(Vegas et al. 2016).
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6.1.2 Internal Validity

Internal validity describes the extent to which influences outside the control of the researcher,
apart from the treatment, influence the results of the experiment.

If the tools or tasks used for the experiment were of low quality, they could introduce
external factors to the results. In order to reduce these influences, we tested the tool and task
implementations in multiple sandbox tests with other researchers and in pilot experiments
with individual students from earlier semesters and adjusted them based on feedback, as
suggested by Ko et al. (2015).

Before the experiment runs, one of two researchers explained the experiment procedure
to participants and answered questions. Differences in communication style could intro-
duce a threat to internal validity. We mitigated this by preparing an experiment procedure
document that was followed by both researchers. In addition, due to the crossover design,
every experiment cohort that was instructed by one researcher completed tasks with both
treatments and the experiment results depend on the delta in their individual performance,
not between groups. Nonetheless, the use of multiple researchers to instruct the participants
could have influenced the results between groups.

By selecting volunteers out of a class of students, the results may be influenced if partici-
pants think positive responses in regard to Jayvee would have a positive influence on their
grade. We therefor clearly communicated to students that data would be anonymized and
participation or performance in the experiment would have no effect on their grade.

The differences in previous experience with Jayvee compared to Python/Pandas also
introduces a threat to internal validity. We mitigated this by introducing Jayvee with two
lectures and at least one practical exercise before the experiment. We also collected and
reported the previous experience of participants with both languages to allow for a better
contextualizing of the results at the start and end of the semester, but not directly before the
experiment. It is likely that the differences in previous experience with the languages influ-
enced the results, especially regarding speed and perceived difficulty. However, we consider
the results interesting, because due to its popularity, data practitioners often have previous
experience in Python/Pandas and not in new DSLs. We consider our study as a first step to
establish initial insights. In further work, replication studies with more balanced previous
experience would be needed to confirm the results.

Crossover designs introduce the threat of carryover and familiarization effects, in which
the administration of one treatment might influence others. It must be explicitly discussed
as a threat to internal validity according to Vegas et al. (2016). We minimized carryover
during the experiment design time in multiple ways. First, by randomly assigning partici-
pants to different treatment orders. Second, to reduce the effect of increasing familiarity
with the experiment tool itself influencing later task performance, we added an initial task
using pseudocode and placeholder step names before applying the real treatments. Lastly,
we added a stage of hidden source code, so participants could read the available steps in the
pipeline first to reduce the effect of recognizing some steps from the previous task.

Regardless of these measurements, we must recognize that carryover could still be an
influencing factor on the results and aim for future replication with between-subject designs.
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6.1.3 Construct Validity

Construct validity is concerned with the appropriateness of the experiment construct to mea-
sure the underlying concept or theory and the ability to generalize the result of the experi-
ment to it.

The dependent variables in the experiment were clearly defined and measured program-
matically. Time and correctness are the most common measures used in bottom-up code
comprehension experiments (Wyrich et al. 2023).

However, our approach of categorizing solutions into either correct or incorrect does not
allow us to make assumptions about how much more correct or incorrect a solution was and
means also solutions with trivial errors impact the results. Improved and validated measure-
ments for the correctness of pipeline understanding would be needed to make more detailed
inferences.

Because only one measurement was taken for each construct, mono-method bias is a
concern for the controlled experiment part of this study. This limitation is mitigated by the
fact that additional insights about the underlying concepts are drawn from qualitative data as
part of the mixed-method design. Nonetheless, additional experiments with more measure-
ments should be done in future work to strengthen the quantitative results.

6.1.4 External Validity

External validity is the ability to generalize the results, e.g., to an industry context.

We chose Masters level students as proxies for a population of subject-matter experts
working with data in industry, that are non-professional programmers. When drawing con-
clusions from the results of this study, it is important to contextualize them with this lim-
ited population in mind (Falessi et al. 2018). Using students allows us to gather more data
points, establish a trend and prepare future studies with practitioners (Tichy 2000). Addi-
tional experiments, replicating the same setup, with real subject-matter experts from indus-
try would be needed, but we expect the results to generalize well. Other populations, such as
professional programmers from industry, would very likely encounter different challenges
and the results of this study should not be taken as indication for their experience.

Because we allowed students to voluntarily opt in to the experiment, only 57 of the 98
students that completed the course participated. We consider this number to be high enough
to be representative of the population, however it is possible that less invested students did
choose to skip the experiment.

6.2 Trustworthiness Criteria

For the descriptive survey, we use the trustworthiness criteria of credibility, transferability,
dependability, and confirmability (Guba 1981).

6.2.1 Credibility
Our goal was to establish credibility, how well the findings represent the real effects, with

various types of triangulation in the mixed-methods research design (Thurmond 2001).
By combining the quantitative data from a controlled experiment with the qualitative data
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of the descriptive surveys, we establish method and data triangulation. In addition, large
parts of the qualitative data were coded by multiple researchers as a form of investigator
triangulation.

The opt-in, voluntary nature of the experiment introduces a potential bias in the partici-
pant selection for more motivated students. We mitigated this effect but clearly stating that
participation would have no effect on course grades, both verbally and in the experiment
handout we provided to participants.

6.2.2 Transferability

Transferability, how well the results apply to other contexts, has to be discussed from multi-
ple angles. First, the use of students as participants is problematic when attempting to gener-
alize to professionals in industry, additional context is provided in the discussion regarding
the external validity of the experiment that also applies to the qualitative part of the study.

Second, the responses of participants must be seen in the context of one specific DSL,
Jayvee, and might not transfer to other DSLs. The descriptions of themes should be seen
under this aspect, and additional research with different DSLs is needed to make sure the
findings transfer to other languages.

Lastly, the data pipelines that participants had to understand during the experiment were
relatively small (but based on real-world open data sets). How well the results transfer to
larger scale data pipelines is unclear. When appropriate, we discussed the potential trade-
offs regarding small and large data pipelines in the descriptions of the themes (e.g., regard-
ing density of functionality).

To increase transferability, we provided thick descriptions of the themes and extensive
quotes from participants in support (as well as an additional, extended description of the
themes?). Future researchers can use this additional context to evaluate the research results
in additional contexts.

6.2.3 Dependability

For dependability, making sure the findings are consistent and can be repeated, we reported
the research design in detail and provided as much data as possible. In addition, the com-
plete survey question export and code used to analyze the data is available.

6.2.4 Confirmability

Confirmability, how well the findings represent the objective reality and are not influenced
by researcher bias, is challenged by the involvement of the authors in the implementation
of Jayvee. Because this introduces a risk of bias, we took steps to introduce additional data
and method triangulation by prefacing the survey with a controlled experiment with auto-
mated measurements that is less subjective to researcher bias. Regardless of the mitigations
employed, we have to acknowledge our own bias and would welcome replication by neutral
parties. To enable other researchers to confirm our findings, we have established an audit
trail by describing the research design in detail and providing as much data used during the
analysis as possible. Thick descriptions of the themes and direct quotes from the survey also
give additional context to the findings.
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7 Conclusion

In this mixed-methods study, we have asked two research questions: First, do data pipe-
lines implemented in Jayvee change bottom-up program structure comprehension com-
pared to Python/Pandas for non-professional programmers regarding speed, correctness
and perceived difficulty? and second, what reasons exist for effects on bottom-up program
comprehension for data pipelines implemented in Jayvee compared to Python/Pandas for
non-professional programmers?

To do so, we have executed a controlled experiment with 57 volunteers students com-
paring their performance on data pipeline understanding tasks implemented in Jayvee and
Python with Pandas. In addition, participants could provide qualitative feedback in a post-
experiment survey that we then analyzed using qualitative data analysis.

Based on the experiment data, participants are neither faster, nor consider it easier to understand
a data pipeline implemented in Jayvee compared to Python/Pandas (Fig. 9, Table 2). However,
participants can understand a data pipeline significantly more correctly (Fig. 4, Table 4).

Qualitative analysis of participant feedback revealed a variety of possible reasons for
these effects, summarized in Fig. 6. Data pipelines in the experiment were based on real-life
open data sets, but relatively small and further studies would be needed to verify that these
effects generalize to larger and more complex data pipelines.

Predictably, most effects are grounded in the difference between programming languages
themselves. Participants highlight the pipeline overview provided by Jayvee as a major posi-
tive influence on understandability. This overview is enforced due to the more rigid structure
of Jayvee programs that make them easier to understand than Python/Pandas scripts. How
deeply participants could understand the data pipeline, the transparency of source code,
had mixed effects, with high density of functionality and increasing automation making a
pipeline harder to understand but faster to read. Similarly, the amount of available options,
especially with the introduction of external libraries, is a challenge to understandability but
reduces the work needed to implement pipelines in the first place. Unfamiliar syntax was an
additional problem for some participants, even if both Jayvee and Python were described
as human-like languages. Lastly, provided language elements are a factor in the different
outcomes because, as a domain-specific language, Jayvee could include language elements
that were intuitive to understand in a data pipeline context while some participants struggled
with advanced programming concepts like lambdas in Python.

In addition to the effects of the programming languages themselves, we also identified
several human effects. First, the previous experience required to understand data pipelines
from source code differs between the approaches. Participants identify previous programming
experience as a necessary precursor to understanding data pipelines written in Python/Pandas,
while they consider pipelines written in Jayvee to be approachable by novices. Second, the
implementation language effects which previous experience is applicable to understanding
a data pipeline. If the abstraction level is maintained well, a domain-specific language like
Jayvee allows readers to reuse previous experience from data engineering with other tools like
visual modeling software. Finally, depending on the reader, well-chosen, descriptive names
have a large influence on how understandable data pipeline source code is. Languages with a
wide library ecosystem like Python with Pandas face challenges to keep a consistent glossary
between different authors. Additionally, the strict structure of Jayvee with extensive possibili-
ties for user-provided names allowed future readers to infer additional information.
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Besides the effects that are often described and have a clear influence, open questions remain.
For example, the best abstraction level of a domain-specific language for data pipelines is unclear
and might depend on the intended audience. Additionally, a good tradeoff between the reuse of
work with a library ecosystem versus the complexity it introduces warrants further studies. Den-
sity of functionality shows a similar tradeoff between short to write and expressive code versus
harder to understand pipelines. With more research, it might be possible to identify the reasons
for the largest negative effects and avoid them in future language design.

In summary, domain-specific languages such as Jayvee have the potential to be more
correct in the domain of data pipeline modeling. These effects are especially strong for non-
professional programmers, such as subject-matter experts in other domains. A variety of
reasons for these effects exists, largely based on the programming language itself or on the
type of reader that tries to understand the source code. However, the exact effect of many
reasons is still an open question that needs further research to develop a comprehensive
theory of domain-specific languages for data pipeline modeling.

In future work, we intend to explore more narrow features of domain-specific languages
for data engineering, such as value types or selection syntax for tabular data, with additional
controlled experiments.

Appendix A

A.1 Task Examples

1| constraint GeographicCoordinateScale on 1| data = datall
decimal: value >= -90 and value <= 2 uuid’,
90; 3 ’latitude’,
2 4 ’longitude’,
3 valuetype GeographicCoordinate oftype 5 ’bezeichnung’,
decimal { 6 ’traeger_bezeichnung’,
4 constraints: [ 7 ’traeger_art’,
GeographicCoordinateScalel; 8 ’website’,
5 } 9| 11
6 10
7 block ValuetypeValidator oftype 11 data = data.astype ({
TableInterpreter { 12 ’uuid’: str,
8 header: true; 13 ’latitude’: float,
9 columns: [ 14 ’longitude’: float,
10 ’uuid’ oftype text, 15 ’bezeichnung’: str,
11 ’latitude’ oftype 16 ’traeger_bezeichnung’: str
GeographicCoordinate, N
12 ’longitude’ oftype 17 ’traeger_art’: str,
GeographicCoordinate, 18 ’website’: str,
13 ’bezeichnung’ oftype text, 9 B
14 ’traeger_bezeichnung’ oftype text, 20
15 ’traeger_art’ oftype text, 21 data = datal[data[’latitude’
16 ‘website’ oftype text, ].apply(lambda input:
17 1; input >= -90 and input
18| % <= 90)1]
22 | data = datal[data[’longitude’
].apply (lambda input:
input >= -90 and input
<= 90)1]

Fig. 7 Comparison of source code to filter and apply a schema to data, shown for task 2 in Jayvee and
Python/Pandas
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A.2 Extended Result Data

On a scale from 1 to 10, how do you How do you estimate your programming
estimate your programming experience? experience compared to your classmates?
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10 . o3
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= 0.10
= 0.2
6 10
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0 0.00 0 0.0
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125 + 30 -
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Fig. 8 Previous experience of experiment participants
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Fig. 9 Kemnel-density-plot of time on task for Jayvee compared to Python/Pandas
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Fig. 10 Diverging stacked bar charts according to Robbins et al. (2011) and Heiberger and Robbins
(2014) for perceived difficulty of using Jayvee compared to Python/Pandas.** One outlier participant
(S25) considered using Jayvee hard (and Python/Pandas easy) due to their lack of previous experience
with Jayvee and did not provide more details, writing: “(Jayvee) is new so I think it was not easy to
understand or read”
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