Check for
Updates

Documenting Microservice Integration with MSAdoc

Georg-Daniel Schwarz
Technical Faculty
Friedrich-Alexander Universitat Erlangen-Nirnberg
Erlangen, Germany
georg.schwarz@fau.de

Abstract

Microservices are a popular software architectural style that decom-
poses a large application into smaller services. These microservices
integrate at runtime to deliver business value to the users. With
an increasing number of microservices, software projects become
more difficult to manage. Specifically, maintaining consistent and
up-to-date documentation becomes a challenge that can signifi-
cantly affect the integration efforts in such projects. In this article,
we present MSAdoc, an open source tool that helps to prevent
documentation from going out-of-date quickly. The tool (1) en-
ables decentralized documentation close to the source code of each
microservice and those who have to document it, (2) aggregates doc-
umentation centrally across individual microservices to make the
documentation accessible in one place and generate higher-order
documentation, while (3) supporting technological heterogeneity
by relying on the technology-agnostic JSON format. Using a tool
like MSAdoc that implements several best practices, practitioners
can accommodate the decentralized nature of microservice-based
projects and alleviate the problem of maintaining central documen-
tation that quickly becomes outdated.

ACM Reference Format:

Georg-Daniel Schwarz and Dirk Riehle. 2025. Documenting Microservice
Integration with MSAdoc. In the 16th International Conference on Internet-
ware (Internetware 2025), June 20-22, 2025, Trondheim, Norway. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3755881.3755980

1 Introduction

Microservices have become a widely adopted architectural style
for creating robust, scalable software systems that are well-suited
for cloud environments [1]. Rather than developing a single large
monolithic application, the system is divided into cohesive, loosely
coupled units known as microservices, each with its specific respon-
sibilities. Depending on the maturity of the project, microservices
can be deployed independently without requiring modifications to
other system components, and their development lifecycles can be
entirely separate. This loose coupling, both from a domain and or-
ganizational perspective, allows multiple teams to work in parallel
on large software projects [4].

With an increasing number of microservices, enterprise archi-
tecture management (EAM) becomes more difficult. Specifically,
maintaining consistent and up-to-date documentation becomes a
challenge that can significantly affect the integration efforts in such

This work is licensed under a Creative Commons Attribution 4.0 International License.

Internetware 2025, Trondheim, Norway

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1926-4/25/06
https://doi.org/10.1145/3755881.3755980

589

Dirk Riehle
Technical Faculty
Friedrich-Alexander Universitat Erlangen-Niirnberg
Erlangen, Germany
dirk@riehle.org

projects [3]. Enterprise documentation tooling is not tailored to
microservice-based projects [3], especially to the distributed nature
of such projects. For example, we observed that documentation
can be distributed over multiple places and can be handled slightly
differently by every team. Additionally, the potential to use dif-
ferent technologies in microservices adds further challenges to
documentation tool design.

In this article, we present MSAdoc, a tool that addresses some
of the documentation challenges in microservice-based projects by
enabling microservice teams to create and maintain documenta-
tion in a decentral manner close to the microservice code. At the
same time, the tool provides an aggregated view in a central place
to browse and read the documentation, including some generated
higher-order documentation, like architecture diagrams. The tool
implements several techniques we found in prior research, com-
bines them, and, at some points, transfers the mechanism from
other fields to documentation.

By using a tool like MSAdoc, practitioners can accommodate the
decentral nature of microservice-based projects and alleviate the
pain of maintaining central documentation that gets out of date
quickly. Future work can extend and use the tool to evaluate their
theories, e.g., the underlying techniques the tool is based on.

2 Microservice Documentation Challenges

We build our work on the findings of Kleehaus and Matthes [3]
that conducted an online survey with 58 IT practitioners. Among
others, they address the research question “What challenges do
Enterprise Architects face in documenting microservice-based IT
landscapes?”. In the following paragraphs, we discuss a subset of
eight challenges. These challenges scored with an average score of
3 or better (1 = fully disagree, 2 = disagree, 3 = agree, 4 = fully agree).
We complement them with four further challenges we observed in
industry.

Content-related Challenges (CC). The main pain point in these
challenges is bad data quality. Building documentation on data with
low quality might put the whole endeavor on a weak foundation.
Root causes are the following challenges:

e CC1: Microservice documentation is mainly created and
maintained manually

e CC2: Microservice documentation is wrong or out-of-date

e CC3: Microservice documentation is incomplete

Tooling Challenges (TC). These challenges concern the lack of
functionality in existing EAM tools. The most prominent tools
originate from times before the microservice-architectural style
became popular or are not optimized for their special needs:

https://orcid.org/0000-0001-9060-7938
https://orcid.org/0000-0002-8139-5600
https://doi.org/10.1145/3755881.3755980
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3755881.3755980
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3755881.3755980&domain=pdf&date_stamp=2025-10-27

Internetware 2025, June 20-22, 2025, Trondheim, Norway

e TC1: EAM Tools are not up-to-date with microservice archi-
tectures

e TC2: No appropriate visualization for different stakeholders

e TC3: EAM Tools lack of providing runtime KPIs

Business and Organization Challenges (BC). Next to the technical
view on microservice documentation, we also need to consider an
organizational perspective. We will not consider the challenge of
budget constraints since it did not reach an agreement score of 3 or
higher. The main challenges are the following:

e BC1: Missing motivation and clarification of responsibilities
e BC2: No alignment of superior EA concepts to sub-organiza-
tions due to missing standards

In this study, we aim to address these eight most relevant docu-
mentation challenges in microservice-based projects to support the
successful integration of microservices.

Additional Observed Challenges (OC). Further, we observed the
following challenges (OC) at our industry partners that we will
consider in the tool as well:

e OC1: Documentation is distributed over multiple places, mak-
ing it difficult to find information.

e OC2: There is a variance in how teams handle documenta-
tion, making it difficult to find information.

e OC3: Microservices embrace technical heterogeneity, allow-
ing each microservice to potentially use a different technol-
ogy stack.

e OC4: In large parts, documentation is project-specific.

3 The MSAdoc Tool

MSAdoc is an open source tool! to improve microservice documen-
tation and integration by enabling decentralized documentation
of microservices close to their source code while aggregating and
enhancing it in a central place. The following subsections detail the
features of the tool and how they address the previously presented
documentation challenges (see Table 1 for an overview).

By building a dedicated tool itself tailored to document microser-
vices (F0), it tackles the challenge of existing EAM tools not being
suitable for documenting microservices and their integration (TC1).
The upcoming subsections detail the different features and explain
how they approach the individual challenges.

3.1 Decentralized Documentation (F1)

MSAdoc facilitates decentralized documentation: each team doc-
uments its microservice within its code repository instead of in a
central place. This fits well with decentralized governance that often
accommodates microservice architectures (73.4.7 Push more respon-
sibility to teams in Schwarz et al. [5]). Per convention, there is a
msadoc.json file in each microservice root directory that documents
certain meta-information about the microservice. An example of
such a file is shown in Listing 1. At the very least, each microservice
needs a unique name. It may include links for further meta-data for
navigation to project management materials or more fine-granular
documentation (T1.3.2 Document microservice metadata in Schwarz
et al. [5]). Creating and maintaining documentation close to the

Ihttps://github.com/riehlegroup/msadoc

590

Georg-Daniel Schwarz and Dirk Riehle

Code Repository
Microservice 1

Code Repository
Microservice 2

«file» D «file» D

msadoc.json msadoc.json

* «load»

«Cl script»E

Update Docs

* «load»

«Cl script»E

Update Docs

«use»

«component»
MSAdoc CLI

6 HTTP API 6

«component» E
MSAdoc Server

«component»
MSAdoc Ul

Figure 1: MSAdoc - Decentralized Documentation

code aims to reduce the probability of documentation becoming
out-of-date (CC2). Co-locating non-application-code artifacts with
the code is a practice that finds application in infrastructure-as-
code already, where infrastructure files need to change frequently
together with different kinds of artifacts to stay in sync [2]. Moving
more documentation to the code repository makes it versioned and
traceable by default.

Continuous integration and deployment (CI/CD) scripts send
these msadoc.json files to an MSAdoc server instance that aggre-
gates documentation meta-data across all microservices and serves
as a user interface to browse the documentation in an aggregated
format (see Figure 1). The CI script simply calls an HTTP endpoint,
providing a pre-generated API key next to the payload. In this man-
ner, the documentation of the single microservices is aggregated
in a central place via standard CI/CD tooling to prevent local and
central documentation from deviating, preventing the central doc-
umentation from becoming outdated (CC2). CI/CD pipelines are
a common technique for continuously integrating and deploying
new microservice versions (73.3.1 CI/CD for automated deployment
in Schwarz et al. [5]). The centrally aggregated documentation
automatically stays up-to-date by adding a phase in the CI/CD
pipeline to publish the latest documentation next to the microser-
vice. Aggregating information about the system in a central place
is a technique that is facilitated for logging and monitoring data as
well (T3.4.19 Aggregate logging/monitoring information in a central
place in Schwarz et al. [5]).

The documentation can be accessed in a central place to reduce
the cognitive load and effort of searching for documentation in mul-
tiple places (OC1). The tool may serve as an entry point, linking to
further documentation. Having a standard place to start the search
for documentation will alleviate the pain of searching in different
locations while allowing for the use of different documentation
mechanisms at different places (OC2). Standardizing the location
of the documentation, or here more lightweight as an entry point,

https://github.com/riehlegroup/msadoc

Documenting Microservice Integration with MSAdoc

Challenge

Internetware 2025, June 20-22, 2025, Trondheim, Norway

Feature

CcC

=

: Manual documentation efforts
: Wrong/out-of-date documentation

: Incomplete documentation

: EAM tools not suitable

: No stakeholder-specific visualizations

: Lack of runtime KPIs

: Lack of clarification of responsibilities

: Missing alignment with suborganizations
: Bad discoverability of documentation

: Variance of how teams do documentation
: Technology heterogeneity

: Project-specfic Documentation

F3:
F7:
F1:
F3:

Generation of higher-order documentation,
Generation of documentation (OS community)
Decentralized Documentation

Generation of higher-order documentation

F2: JSON files with schema

Fo:
F4:
F8:
F5:

Building a dedicated tool
Stakeholder views

API for runtime data (future work)
Documentation of responsibilities

F2: JSON files with schema

F1:
F1:

Decentralized documentation
Decentralized documentation

F2: JSON files with schema

Fe:

Documentation Customization

Table 1: Mapping of Documentation Challenges to MSAdoc Features

will support stakeholders by having a default place to search and
browse the microservice documentation (73.4.1 Standardize location
of microservice documentation in Schwarz et al. [5]).

3.2 JSON Files for Configuration (F2)

The file format chosen for documentation is JSONZ. JSON files for
configuration are widespread and well-known among developers
while being interoperable with HTTP APIs. Microservices allow
for using heterogeneous technologies throughout the system since
they are decoupled by APIs [6]. We chose JSON to keep the tool
technology agnostic by using a well-designed interface and support
technological heterogeneity (OC3)

Further, by specifying a $schema field, most editors support auto-
completion and schema validation out of the box. Enforcing a cer-
tain standard ensures consistent application across all microservices
(T3.4.11 Standardization in Schwarz et al. [5]). Here, the consistency
and completeness of documentation are ensured (CC3), and sub-
organizations are enforced to align with the enterprise architecture
concepts (BC2).

3.3 Generation of Higher-Order Documentation
(F3)

Next to meta-data, users can also specify provided and consumed
API endpoints and events by the fields providedAPIs, consumedAPIs,
publishedEvents, and subscribedEvents. The MSAdoc server can link
consumed and provided APIs and published and consumed events
of each microservice to generate higher-order documentation in the
form of architecture diagrams, for instance, an high-level compo-
nent diagram as shown in Figure 2. By this mechanism, changes in
specific microservices are propagated to the high-level documenta-
tion, ensuring it stays up-to-date (CC2) as long as the microservice-
specific documentation is updated. Generating parts of the docu-
mentation requires less manual work to create and maintain docu-
mentation (CC1). Such APIinformation can be maintained manually
with the danger of getting out-of-sync or generated by community
tools (see Section 3.7).

Zhttps://www.json.org/json-en.html

591

backend
etl

extract
smedmgsewlu Exlunb.nselvbe

load
transiorm
frontend

TransformationService
WebClient

LoadService

NotiicationService.

Figure 2: Generated Architecture Diagram

3.4 Stakeholder Views (F4)

Different stakeholders are interested in different views on the sys-
tem (TC2). On the one hand, MSAdoc allows specifying a hierar-
chical group field that aggregates microservices into hierarchical
groups, e.g., bounded contexts. The generated higher-order docu-
mentation (see Section 3.3) allows displaying aggregated groups
instead of their internal details (the microservices) to facilitate a
birds-eye view over the system and incrementally going deeper
level by level.

On the other hand, MSAdoc allows filtering services according to
certain criteria, showing only a subset of microservices and groups
of services of interest.

3.5 Documentation of Responsibilities (F5)

To understand the relationship between microservices and respon-
sible individuals or teams, we capture this information in the fields
responsibles and responsibleTeam (T3.4.2 Responsibility documenta-
tion in Schwarz et al. [5]) to enable reaching the right stakehold-
ers (BC1). Next to showing this information for each microservice,
MSAdoc allows users to browse from teams to their microservices
as well.

Internetware 2025, June 20-22, 2025, Trondheim, Norway

{

// F2: Schema for auto-completion

// and validation

"$schema": "raw.githubusercontent.com/riehlegrou
p/msadoc/main/schemas/service-doc. json",

// F1: Basic meta information
"name": "NotificationService",

// F1: Links to project management resources
"repository": "github.com/jvalue/ods.git",
"taskBoard": "github.com/...",

// F1: Links to detailed documentation
"developmentDocumentation”: "github.com/...",
"apiDocumentation": "github.com/...",

// F4: Hierarchical grouping allows
// different stakeholder views
"group": "backend.notification"

// F3: API endpoints, e.g., HTTP endpoints

"providedAPIs": [
"/notifications/configs",
"/notifications/execution-stats"

1,

// F3: Events, e.g. RabbitMQ topics

"publishedEvents": [
"notification.config.created",
"notification.config.updated",
"notification.config.deleted",

1,

"subscribedEvents": [
"load.execution.success",
"load.execution.failure"

1,

// F5: Documentation of responsible people
// and/or teams

"responsibles": ["john@doe.org"],
"responsibleTeam": "notifications",

// F6: Tags for advanced filtering
// and search (customization)
"tags": ["notifications", "backend"],

// F6: Extensions for customization
// of documentation
"extensions": {
"usedInProducts": ["ProductA", "ProductB"]
}
}

Listing 1: Example of a msadoc.json file

3.6 Documentation Customization (F6)

To accommodate variations in what projects document (OC4), MSA-
doc offers two mechanisms. With the tags field, labels can be as-
signed to microservices, allowing for easy filtering in the aggregated
view. Further, the extensions field enables users to document further
information in a structured way, for example, in which products a
microservice is included.

3.7 Community Work: Generation of
Documentation (F7)

By choosing the technology-agnostic intermediate format of a JSON
file (F2), MSAdoc is open for other tools coming from the Open

592

Georg-Daniel Schwarz and Dirk Riehle

Source community to automatically derive documentation from
code to reduce manual documentation efforts (CC1). As a positive
side-effect, documentation is less likely to become outdated if gen-
erated. We see special merit in tools that utilize API specification
languages like OpenAPI® or AsyncAPI* to generate parts of the
msadoc.json file.

3.8 Future Work: API for runtime data (F8)

At the time of writing, MSAdoc does not support the enrichment
of static documentation data with runtime data (TC3). We cannot
infer the infrastructure a microservice architecture is running on as
we try to keep the tool technology agnostic (OC3). Instead, we plan
to provide an API for an agent running on the deployment platform
that periodically announces all running microservice instances, e.g.,
containers, and maps the running instances to their microservices.
This way, we can support multiple deployment platforms like cloud
providers or Kubernetes while the MSAdoc server stays agnostic
to them.

4 Conclusion

The documentation of microservices and their integration has many
challenges. Among others, microservice documentation can become
out-of-date quickly and is distributed over multiple places, making
it difficult to find necessary information.

We introduced an open source tool called MSAdoc to approach
these challenges by (1) facilitating decentralized documentation
close to the source code, (2) aggregating documentation centrally
across individual microservices to generate higher-order documen-
tation, and (3) supporting technological heterogeneity by relying
on the technology-agnostic JSON format for documentation.

Availability of Resources

The open source tool: https://github.com/riehlegroup/msadoc
The demonstration video: https://youtu.be/aUMS5ClehMo
The pre-configured demo: https://riehlegroup.github.io/msadoc

Acknowledgments

We gratefully acknowledge Martin Buchalik for their valuable as-
sistance in developing and testing the tool.

References

[1] Pooyan Jamshidi, Claus Pahl, Nabor C Mendonga, James Lewis, and Stefan Tilkov.
2018. Microservices: The journey so far and challenges ahead. IEEE Software 35, 3
(2018), 24-35.

[2] Yujuan Jiang and Bram Adams. 2015. Co-evolution of infrastructure and source
code-an empirical study. In 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories. IEEE, 45-55.

[3] Martin Kleehaus and Florian Matthes. 2019. Challenges in documenting
microservice-based IT landscape: A survey from an enterprise architecture man-
agement perspective. In 2019 IEEE 23rd International Enterprise Distributed Object
Computing Conference (EDOC). IEEE, 11-20.

[4] Sam Newman. 2021. Building microservices. O’Reilly Media".

[5] Georg-Daniel Schwarz, Andreas Bauer, Dirk Riehle, and Nikolay Harutyunyan.

2024. A Taxonomy of Microservice Integration Techniques. Manuscript accepted

but not yet published in Information and Software Technology.

Georg-Daniel Schwarz, Philip Heltweg, and Dirk Riehle. 2024. Balancing Technol-

ogy Heterogeneity in Microservice Architectures. Manuscript in submission to

Transactions on Software Engineering and Methodology.

=

3https://www.openapis.org/
*https://www.asyncapi.com/en

https://github.com/riehlegroup/msadoc
https://youtu.be/aUMS5ClehMo
https://riehlegroup.github.io/msadoc

	Abstract
	1 Introduction
	2 Microservice Documentation Challenges
	3 The MSAdoc Tool
	3.1 Decentralized Documentation (F1)
	3.2 JSON Files for Configuration (F2)
	3.3 Generation of Higher-Order Documentation (F3)
	3.4 Stakeholder Views (F4)
	3.5 Documentation of Responsibilities (F5)
	3.6 Documentation Customization (F6)
	3.7 Community Work: Generation of Documentation (F7)
	3.8 Future Work: API for runtime data (F8)

	4 Conclusion
	Acknowledgments
	References

