
Accepted: 3 June 2025
© The Author(s) 2025

Communicated by: Xin Peng.

 Georg-Daniel Schwarz
georg.schwarz@fau.de

Philip Heltweg
philip@heltweg.org

Dirk Riehle
dirk@riehle.org

1 Computer Science Department, Friedrich-Alexander-Universität Erlangen-Nürnberg,
Martensstr. 3, 91058 Erlangen, Germany

Balancing technology heterogeneity in microservice
architectures

Georg-Daniel Schwarz1 · Philip Heltweg1 · Dirk Riehle1

Empirical Software Engineering (2025) 30:127
https://doi.org/10.1007/s10664-025-10684-4

Abstract
Microservices are a popular architectural style that allows systems to be built from a po-
tentially large number of microservices, all of which can be developed independently and
by their own teams. As a resulting benefit, development teams can choose the technologies
optimal for their microservices, leading to a diversity of different programming languages,
frameworks, and further technology in use. However, this heterogeneity presents challeng-
es as it prevents code reuse and complicates moving individuals between microservices
due to knowledge hurdles. We performed 15 expert interviews in a qualitative survey to
build a theory on how technological heterogeneity can be balanced in microservice archi-
tectures to reach a context-dependent compromise between its benefits and drawbacks. We
contribute by (1) gathering empirical data from industry professionals on a research topic
that has been acknowledged but has only seen limited exploration so far, (2) developing
a comprehensive theory of technology heterogeneity as a major integration challenge in
microservice-based projects, (3) proposing a framework to overcome the challenge of
balancing technological heterogeneity in microservice architectures, (4) optimizing the
theory’s presentation for practical use in industry by using the well-known pattern format,
and (5) generating research hypotheses to guide and inspire future investigations into this
phenomenon.

Keywords Microservices · Technologies · Technological heterogeneity · Integration ·
Governance · Best practices

1 3

http://orcid.org/0000-0001-9060-7938
http://orcid.org/0000-0002-4236-2689
http://orcid.org/0000-0002-8139-5600
https://doi.org/10.1007/s10664-025-10684-4
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-025-10684-4&domain=pdf&date_stamp=2025-6-17

Empirical Software Engineering (2025) 30:127

1 Introduction

Microservices have gained widespread adoption as an architectural style for building robust,
scalable, and suitable software systems for cloud environments (Jamshidi et al. 2018).
Instead of building one big monolithic application, the system is split into cohesive and
loosely coupled units, each with distinct responsibilities, called microservices. Depending
on the project’s maturity, microservices can be deployed independently without requiring
changes to other system components, and their development lifecycles may be completely
independent. The loose coupling from a domain perspective and the loose organizational
coupling of microservices teams enable parallel development of large software projects by
multiple teams (Newman 2021).

Microservice-based systems are distributed systems that present unique challenges. For
example, unlike monolithic applications, microservices cannot rely on in-process commu-
nication but instead must integrate over the network. As a result, complexity shifts from
the application layer to the network and integration layer. Transitioning from a monolith
to microservices makes integration a predominant and more explicit challenge (Baškarada
et al. 2018).

Contrary to monolithic applications that are packaged as one big application, microser-
vices operate independently and do not share a process or a runtime, such as a JVM. By lift-
ing the restriction of being packaged together, each microservice has the potential to utilize
a completely different technology stack (Krylovskiy et al. 2015). Differences in technolo-
gies may cover using different programming languages, frameworks, libraries, runtimes,
communication protocols, etc. The architecture itself enables this diversity of technology
but doesn’t imply a necessity for it to emerge. Relaxing centralized governance of standards
and technology platforms enables technological heterogeneity (Krylovskiy et al. 2015).
Projects may adopt different technologies for each microservice (complete heterogene-
ity), a single technology across all microservices (complete homogeneity), or something in
between those two extremes. Thus, we speak of the degree of technological heterogeneity,
which is specific to each project.

This technological freedom presents opportunities like the selection of the best tool for
a given situation. The system can gradually adopt new technologies by re-implementing
one microservice at a time (Krylovskiy et al. 2015). This approach also fosters a culture of
innovation and experimentation (Bogner and Zimmermann 2016).

However, technological heterogeneity presents a significant challenge to expanding proj-
ects as the number of technologies used grows (Di Francesco et al. 2018). Compared to
technological uniformity as the antagonist, the effects of building and sharing knowledge
among teams and utilizing in-house libraries and operational efforts cannot be effectively
adopted due to the diversity of technology. Additionally, moving individuals between teams
becomes more challenging due to the increased ramp-up time required for learning the tech-
nologies of another microservice (Chen 2018).

The degree of technological heterogeneity in a system is a trade-off between its benefits
and drawbacks:

 “[Technology heterogeneity] behaves like many things. The value curve is [...] a
parabola, logically speaking. It has a sweet spot. Too little is not good; too much isn’t
good either.” - Interview G4, translated from German

1 3

 127 Page 2 of 46

Empirical Software Engineering (2025) 30:127

Thus, we provide readers with a toolkit to converge toward a context-dependent compro-
mise by answering the following research question:

RQ How to balance the benefits and drawbacks of technical heterogeneity in microservice
architectures?

To answer the research question, we built a theory on balancing technological heterogeneity
by performing a qualitative survey with a total of 15 conducted expert interviews (Section
3.1) and applied thematic analysis (Section 3.2) for data analysis.

A theory consists of abstract knowledge aimed at explaining a phenomenon or predicting
outcomes and is primarily a set of (typically interrelated) hypotheses rooted in data. This
article presents such a theory in the format of a multi-tier influence research model and an
actionable and practitioner-relevant set of 13 best practices.

The primary contributions of this article are as follows:

 – We present a comprehensive theory of technological heterogeneity as a major challenge
in integrating microservices.

 – We present a collection of best practices to balance technological heterogeneity. For
each best practice, we describe the problem it addresses and in which context it is appli-
cable, followed by a reusable solution. By using this actionable format, practitioners can
use those patterns as a guide to overcome their project-specific challenges.

 – Our article advances the field of microservice research by highlighting the organiza-
tional aspect of balancing technological heterogeneity that, to the best of our knowl-
edge, has not been covered in such depth in academic literature.

 – We generate hypotheses based on our insights to guide and inspire future research.

We first discuss relevant related literature in Section 2. Section 3 presents our research
methodology and data analysis methods, followed by the results of the study in Section 4.
The implications of our findings and their potential applications are outlined in Section 5.
Section 6 outlines the study’s limitations. Finally, we summarize our contributions and sug-
gestions for future research directions in Section 7. Supplementary materials to browse the
results are made available.1

2 Related Work

Governing heterogeneity in IT systems is a topic that has found attention in research. For
example, Widjaja and Gregory (2012) propose design principles for heterogeneity princi-
ples in enterprise architecture (EA) management. They define ”IT heterogeneity as diversity
of attributes of components in an EA“ and take infrastructure elements but also business
processes into consideration. We extend their work in a more specific and narrow context.
Our study focuses on technological heterogeneity, a subset of IT heterogeneity, and the con-
text of microservice-based systems.

Few studies investigate the technological heterogeneity of microservice-based projects
as a secondary subject. Di Francesco et al. (2018) cite one of their interviewees that unifor-

1 Supplementary materials are available on Zenodo: https://doi.org/10.5281/zenodo.15632039

1 3

Page 3 of 46 127

https://doi.org/10.5281/zenodo.15632039

Empirical Software Engineering (2025) 30:127

mity across their services is currently their most significant challenge. Chen (2018) points
out the consequences of technological diversity as increased operational overhead. They
mention their solution is putting technologies under governance by employing a review
process. We build on their work by adding more depth to the challenge of technological het-
erogeneity and its implications, as well as detailing the governance process and techniques
as potential alternatives to classical top-down review processes.

Rademacher et al. (2019, 2020) propose approaches to streamlining different technolo-
gies by using aspect-oriented modeling and meta-modeling in a microservice-based system.
By modeling technologies within an architecture, the decision for and against introducing
new technologies becomes explicit. We extend their work by including organizational pro-
cesses and other measures to cope with technological heterogeneity. At the same time, our
research approach differs. While their studies each propose a new technique and evaluate it
in a case study, we use expert interviews to learn from practitioners about techniques that
are already successfully used in practice.

Existing literature presents patterns and best practices in the context of microservice
architectures from different viewpoints. Balalaie et al. (2018), for example, present migra-
tion patterns, Harms et al. (2017) present patterns related to front-ends. Weerasinghe and
Perera (2022) present patterns for service decomposition, data management patterns,
deployment, APIs, service discovery, and resilience. Márquez and Astudillo (2018) evalu-
ate the application of communication, orchestration, deployment, and backend patterns in
open-source projects. Taibi et al. (2018) present a pattern catalog with deployment patterns,
data storage patterns, and patterns for orchestration and coordination.

These studies present valuable and actionable patterns by focusing on the architectural,
technological, and operational aspects. We complement their work by shedding light on
an organizational topic, the balancing of technological heterogeneity within microservice-
based projects. In contrast to their work, who present practical experiences in pattern form
based on the experiences of their authors or use systematic reviews, our study relies on first-
hand empirical industry data by way of a broad interview study.

In summary, we present an in-depth investigation of how to balance technological het-
erogeneity when building and maintaining microservices-based systems. In addition to our
work on technical challenges and beyond prior and related work, we also include organiza-
tional challenges as a key part of our theory.

3 Research Approach

Figure 1 gives an overview of the overall research approach we applied to answer the fol-
lowing research question:

RQ How to balance the benefits and drawbacks of technical heterogeneity in microservice
architectures?

We built a theory on balancing technological heterogeneity in microservice-based projects
by conducting a qualitative survey (Jansen et al. 2010) based on 15 expert interviews (Sec-
tion 3.1). We applied thematic analysis for data analysis and synthesis (Section 3.2).

1 3

 127 Page 4 of 46

Empirical Software Engineering (2025) 30:127

Fig. 1 Research approach

1 3

Page 5 of 46 127

Empirical Software Engineering (2025) 30:127

Section 4 presents the resulting theory as two artifacts. The first is targeted to the scien-
tific community: a structured research model that describes about the relation between dif-
ferent influencing variables when dealing with technological heterogeneity. The second is
targeted to the practitioner community: a list of governance best practices on how to balance
the technological heterogeneity in industry projects.

3.1 Expert Interviews

We conducted two iterations of expert interviews (see Table 1). The first iteration was con-
ducted in the context of a prior study (Schwarz et al. 2025) to explore the challenges of
microservice integration and their solutions broadly. Among other topics, the six conducted
interviews pointed towards balancing technological heterogeneity as a major integration
challenge. We also found first solution approaches, such as introducing standardization, but
in a broader context of simplifying coordination among microservice teams. Those results
motivated us to deepen our understanding in a follow-up iteration of expert interviews that
was narrowly focused on the topic of technological heterogeneity. We used the insights to
design the research question and the interview guide for the second set of interviews. Fur-
ther, we used the interview transcripts as the first iteration of this follow-up study.

In this second iteration, we conducted nine interviews to specifically answer the RQ
on balancing technological heterogeneity in microservice-based projects. We re-coded the
interview transcripts from the first iteration in relation to the updated research question to
strengthen the evidence of the best practices on how to balance technological heterogeneity
with additional insights.

For all 15 interviews, we followed the qualitative survey approach defined by Jansen
et al. (2010).

3.1.1 Interviewee Sampling

To select suitable interviewees, we first created a sampling model (see Table 1; includes the
sampled population). It contains fine-grained categories towards factors that might influ-
ence how microservice integration is facilitated: the interviewee’s company, project, role,
and experience.

As a quality measure, we asked an established expert in the field to provide feedback
and confirm the chosen categories. We employed generic classifications for the expert’s
role since each company might define its specific roles with more fine-grained responsibili-
ties that would be difficult to match against each other. On a higher level, we distinguish
between in-house employees and consultants, as the latter tend to experience many different
project contexts.

For the first set of interviews on microservice integration challenges in general, we
utilized our group’s network, the mailing list of the working group for microservices and
DevOps by the German Informatics Society. We contacted 72 speakers at practitioner con-
ferences like microxchg2 or Microservice Summit.3 We received 20 answers from willing
interviewees, arranging them into our sampling model by filling out an online form.

2 https://microxchg.io/2020/index.html
3 https://microservices-summit.de/

1 3

 127 Page 6 of 46

https://microxchg.io/2020/index.html
https://microservices-summit.de/

Empirical Software Engineering (2025) 30:127

For the second set of interviews on technological heterogeneity in micro-service-based
systems, we utilized our research group’s network, personal contacts, and snowballing to
reach out to practitioners. We contacted 11 practitioners and received ten answers. We base
the significantly better response rate than the first set of interviews on relying more on
personal connections and targeting specifically practitioners we knew were working on the
microservice-based projects.

When selecting the interviewees for the study, we conducted polar sampling to capture
the diversity of experiences with technological heterogeneity in the industry by covering
each category within the sampling model adequately. According to Eisenhardt and Graeb-
ner (2007), using polar types of samples “leads to very clear pattern recognition of central
constructs, relationships, and logic of the focal phenomenon”.

Table 1 presents the sampled population arranged in the sampling model’s major catego-
ries, showing our sample’s diversity. Please note that we did not receive complete answers
from G4 and T8 for the project-related questions. The main reason was that they wanted to
elaborate on their experience across multiple project contexts rather than focusing on one
specifically.

3.1.2 Interview Preparation

We followed the five phases presented by Kallio et al. (2016) to prepare for both sets of
interviews, leading to two interview guides as artifacts.

Category / Feature # Interviews
Expert role High-level consultant (3) G2, G5, T3

Low-level consultant (1) G4
Architect (3) G6, T1, T2
Project manager (2) G3, T4
Developer (4) G6, T5, T6, T7
Operator / DevOps (3) G1, T8, T9
Other (1) G4

Phase Innovation (1) G3
New software (4) G5, T3, T6, T9
Rewrite (1) G1
Evolution (7) G2, G6, T1, T2,

T4, T5, T7
Teams 1 team (1) T5

2-10 teams (7) G2, G3, G6, T2,
T3, T4, T7

10+ teams (5) G1, G5, T1, T6, T9
Services 1-10 services (3) G3, G6, T6

11-50 services (8) G2, G5, T1, T2,
T3, T4, T5, T7

50+ services (3) G1, T8, T9
Deploy Customer-managed (4) G1, G5, G6, T6

In-house (3) G1, T3, T7
Cloud (8) G2, G3, T1, T2,

T4, T5, T8, T9

Table 1 Interview sampling

1 3

Page 7 of 46 127

Empirical Software Engineering (2025) 30:127

Phase 1 - Identifying prerequisites: We first evaluated the appropriateness of semi-struc-
tured interviews according to our research questions. Semi-structured interviews allow
us to study different organizational contexts and angles on the topic for a diverse percep-
tion and to discover topics especially relevant to practitioners.

Phase 2 - Previous knowledge: A preceding literature review study gave us a comprehensive
understanding of the domain to prepare and conduct semi-structured interviews. We
utilized our insights to construct the interview guides.

Phase 3 - Preliminary interview guide: We used the knowledge previously gained from the
first set of interviews on general microservice integration for the second set of inter-
views on balancing technological heterogeneity in microservice-based architectures.
We structured the interviews into multiple phases. Each phase consists of questions that
allow the interview to steer toward our area of interest but are flexible and loose enough
to allow open conversation. We led with open questions to get an unbiased response
from the reviewer. Afterward, we followed up on interesting points the interviewees
themselves or previous ones brought up. For example, the interview guide of the second
iteration details the relation of technology heterogeneity to costs and innovation speed -
two interesting features we condensed from the first set of interviews.

Phase 4 - Pilot testing: The interview guides were reviewed internally by members of our
research group to avoid ambiguous or leading questions. We applied live field-test-
ing by reviewing the interview guide after each interview, allowing for incremental
improvements.

Phase 5 - Presenting the interview guide: Appendices A.2 and A.3 contain both interview
guides.

We sent the interview guide with additional notes to our interviewees before the interview.
Understanding the context and scope of the interview allowed them to prepare thematically
and mentally. We included the following information:

 – The context of our research.
 – The process of an interview (time frame, the way we ask questions).
 – The data assessment process (audio recording, interview transcription).
 – The approval process: We send out each interview transcription to the interviewee to

correct errors and misunderstandings. We use the interview transcription for further
analysis only after approval by the interviewee.

 – Data confidentiality and privacy (data pseudonymization for data analysis and anony-
mization in publications).

3.1.3 Data Collection

We found the interview guides especially useful to streamline our interviews. They sup-
ported us in sticking to the semi-structured frame and avoiding deviations from the topic of
interest. In the first set of interviews, we used the guide as a checklist rather than sticking
to it strictly, as the topic was broad. In the second set of interviews, we strictly followed
the interview guide but still allowed for spontaneous follow-up questions where we saw fit.

After the interview, we transcribed the audio recording. The transcript was sent to the
interviewee for review to detect misunderstandings and consider second thoughts on some

1 3

 127 Page 8 of 46

Empirical Software Engineering (2025) 30:127

of the insights they gave us. After their final approval, we added the interview transcripts as
primary materials for analysis.

Myers and Newman (2007) present interview situations as a dramaturgical model. We
followed their guidelines to prepare for an ”excellent performance“:

1. Situating the researcher as actor: Next to our initial letter to the interviewees, we
devoted a section in the preamble phase of the interview to introduce us, our research,
and the goal of the particular interviews. This step was especially helpful in familiar-
izing the interviewees with our research and setting the context for the interview.

2. Minimize social dissonance: To create a comfortable and natural environment for the
interviewees, we included some small talk in the preamble phase of the interviews. We
offered every interviewee to review the interview transcription to establish trust and
allow for second thoughts after the interview as a quality measure.

3. Represent various ”voices“: We sampled for different roles in the organizations to
avoid one predominant ”voice“ to emerge - see Section 3.1.1.

4. Everyone is an interpreter: We acknowledge in Section 6 that conducting the interviews
and analyzing their transcripts have an interpretative factor.

5. Use Mirroring in questions and answers: We avoided imposing our language on the
interviewees by mainly asking open questions, giving time for thinking, and elaborating
on answers. We practiced mirroring by repeating phrases of previous answers to ques-
tions, moving from more general to specific topics. This technique aligns with the ver-
bal and non-verbal probing techniques Kallio et al. (2016) recommend. Those probing
techniques during the interviews enhanced the accuracy and clarity of both questions
and responses, as well as supported us to uncover hidden information.

6. Flexibility: We applied semi-structured interviews with an interview guide, leaving
details open for improvisation. The guide allowed us to follow up on topics the inter-
viewee seemed most knowledgeable about, comfortable with, and confident in.

7. Ethics of Interviewing: We explained the confidential handling of obtained permission
to use the interview data individually before, during, and after the interview: In the ini-
tial letter to interviewees, the preamble of the interview, and the post-processing of the
interviews sending out the transcripts to the interviewees. We treated the interviewees
respectfully and acknowledged their time by pointing out when we reached the planned
time frame. We only extended the interview if they offered it. We allowed the interview-
ees to review the materials and provide feedback before publishing.

3.1.4 Choice of Analysis Method

We applied thematic analysis to build our theory of balancing technological heterogeneity
in microservice-based projects. Section 3.2 details the analysis process.

Next to thematic analysis, we considered grounded theory as a competing methodology for
data analysis and synthesis. Grounded theory approaches, as described by Strauss and Corbin
(1998), act as a framework for generating theories from qualitative data. The approach is pre-
dominantly inductive with the goal of creating a theory purely from the data; prior in-depth
familiarization with the topic is discouraged to avoid the researchers’ prior knowledge influ-
encing the results. Grounded theory follows a structured coding process. First, the researchers
break down data into the initial codes in the open coding phase. After, they identify relation-

1 3

Page 9 of 46 127

Empirical Software Engineering (2025) 30:127

ships among codes in the axial coding phase. Eventually, structured codes are refined into
a central category that becomes the foundation of the theory in the selective coding phase.

In contrast, thematic analysis, as described by Clarke et al. (2015), is a flexible data analy-
sis method that focuses on identifying patterns of meaning within data rather than on gen-
erating a hierarchical theory. Thematic analysis employs a more adaptable coding process.
First, researchers generate initial codes, then search for themes, and then finally review and
refine the themes; the full process is detailed below. This method supports both inductive and
deductive approaches, either deriving themes directly from the data in a bottom-up fashion,
similar to grounded theory, or in a top-down fashion, guided by research questions and prior
knowledge. The output of thematic analysis is not necessarily a hierarchical, structured theory
as in grounded theory; rather, it is a collection of themes that can nonetheless support theory
building, offering the researcher considerable flexibility in interpretation and presentation.

The tradeoff described makes thematic analysis a more flexible option. We chose the-
matic analysis because it aligns better with our research question. Building on our previ-
ous research in the field of microservices allowed us to effectively combine deductive and
inductive approaches rather than relying solely on grounded theory, which would require all
theoretical constructs to emerge inductively from the data.

3.2 Thematic Analysis

We applied thematic analysis, as described by Clarke et al. (2015), to build our theory on balancing
technological heterogeneity in microservice-based projects. Thematic analysis is an accessible and
systematic research method and procedure to discover, analyze, and interpret patterns of meaning
within qualitative data. The researcher takes an active role in generating codes from the qualitative
data, guided by the research question. Codes are labeled annotations of text segments that capture
interesting features of the data relevant to the research question. Codes are aggregated into themes
- patterns of meaning. Underlying is a central organizing concept for the analytic observations.

As primary material for thematic analysis, we used 15 transcriptions of interviews with
practitioners (Section 3.1). In an iterative process, we analyzed the primary materials.

We followed an inductive approach, creating themes from data without a predetermined
theory, following the six-step process postulated by Braun and Clarke (2006):

1. Familiarize with the data We read the primary material actively and noted the first cod-
ing ideas. We used the transcription process for the interviews as an excellent way to
familiarize ourselves with the interview data.

2. Generate initial codes We worked through the primary materials and annotated data
segments with preliminary names. We coded as detailed as possible as time permitted
and included the context in the coded text segments. Generally, a text segment can be
uncoded, coded once, or as frequently as relevant.

3. Search for themes We took the long list of codes and considered how differently the
codes may be combined. We created the potential themes by aggregating codes that
seemed cohesive to us. We thought of relationships between codes and themes and
arranged them hierarchically.

4. Review the themes We reviewed the themes and codes to reflect on how the individual
themes represent the data set. We paid attention to clear distinction criteria of themes
and discussed ambiguous ones.

1 3

 127 Page 10 of 46

Empirical Software Engineering (2025) 30:127

5. Define and name themes Until now, themes had a working title. We went over each
theme individually and identified what is of interest about them concerning the research
question and why. We made sure that the themes were not too complex and not too
broad by using sub-themes. Additionally, we explicitly put down the definition of each
theme and criteria when and when not it applies.

The execution of this process was not as sequential as presented. Moving back and forth
between the phases was necessary as we gained new insights during coding and building
themes (Braun and Clarke 2006).

To cope with the number of emerging themes, we used the MaxQDA4 software to support
our coding and theme-building process. We attached a memo to each code summarizing its
theme in prose and specifying when the code is not applied. The codes, together with these
memos, are called the codebook. For reporting, we decided to present codes that were only
discussed in a single interview to showcase the diversity of the phenomenon rather than
making statistical statements on the relevance of single codes. The exceptions are codes
for the best practices where we required evidence from multiple different interviews. The
themes’ relevance is backed by aggregating multiple codes in a meaningful way.

During the coding process, we periodically saved snapshots to assess the influence of inter-
views on the code system (after one, two, five, seven, and nine interviews). Figure 2 illustrates
the number of themes and codes added per interview. While additional lower-level codes con-
tinued to refine the diversity of the phenomenon, like the advantage of technological unifor-
mity simplifying achieving service-level agreements, no new themes or best practices emerged
after the first five interviews. We ceased data collection after T9, as further interviews were
unlikely to yield novel themes or best practices, which were our core interest to answer the
research questions. This decision was based on theoretical saturation, a stopping criterion used
in theory building to balance research efforts against the likelihood of gaining new insights.

We conducted two inter-coder reliability sessions to improve the quality and validity
of our emerging codebook (O’Connor and Joffe 2020). We chose one secondary rater per
iteration that was experienced in the software architecture field to perform investigator
triangulation (Guion et al. 2011). The chosen secondary raters applied the existing themes
and codes to parts of the uncoded primary materials supported by the codebook entries.
The themes, codes, and codebook quality were evaluated qualitatively by comparing the
result with the original coding. The secondary raters took notes of missing themes, themes

4 https://www.maxqda.com/

Fig. 2 New insights per interview

1 3

Page 11 of 46 127

https://www.maxqda.com/

Empirical Software Engineering (2025) 30:127

that need refinement (renaming, redefinition), re-categorization within the themes, and
other comments. We discussed the notes jointly afterward to define improvements to the
themes and the codebook. Table 2 summarizes the inter-coder reliability sessions. We mea-
sured the agreement of the intercoder with the original coder by calculating Cohen’s Kappa
when coding areas overlap using the features of MaxQDA. According to the interpretation
of Landis and Koch (1977), both sessions achieved a moderate agreement with kappa
scores of 0.52 and 0.54. After individually checking each coding difference, we trace the
moderate agreement back to interview paragraphs with no obvious but rather subtle mean-
ings where the coder’s level of knowledge led to different coding decisions. Like in the
”negotiated agreement“ approach of Campbell et al. (2013), we discussed disagreements
“in an effort to reconcile them and arrive at a final version in which as many discrepan-
cies as possible have been resolved”. This qualitative discussion of all codings showed a
reduction in change proposals across sessions, indicating the maturity of the code system.
We avoided a learning effect between intercoder sessions by choosing different secondary
coders per session.

The results and interpretations were sent to our interviewees, asking them for honest
feedback. By conducting a member-checking procedure, we aimed to reduce the risk of
potential misinterpretations, omissions, or inaccuracies in our findings (Motulsky 2021).
Of the nine interviewees T1-T9, we received three responses within the given time-
frame of three weeks. The overall feedback was positive and confirmed our results, with
some suggestions on how to improve their presentation. We incorporated their feedback
accordingly.

The first feedback included thoughts on how to proceed in their company to work
towards a better degree of heterogeneity. In their project, a strong standardization leads
to inexperienced teams applying the same mechanisms to every problem. As a result, they
see the need to reduce central governance to introduce new technological variations where
they are beneficial. Therefore, they acknowledged our set of best practices as a helpful
checklist and will evaluate which of them to apply. One open question was how their
high-pressure situation to deliver new features would affect the introduction of such new
technologies. Further, we received some feedback on the presentation of our theory, such
as the use of abbreviations. The second feedback confirmed our findings and gave us an
update on their project progress. They introduced a Python microservice recently, with
Python being a new technology in their stack. In this context, reading the best practices
called forth a feeling of familiarity. The third feedback focused on the style of presenta-
tion. They recommended that we improve the use of abbreviations and introduce some
overview tables in the results section.

Session #1 #2
Kappa score 0.52 0.54
Suggestions Add theme 1 1

Refine theme 5 1
Recategorize theme 1 0
Rename theme 2 0
Sum 9 2

Table 2 Inter-coder reliability

1 3

 127 Page 12 of 46

Empirical Software Engineering (2025) 30:127

4 Results

The result of our study is a theory, abstract knowledge aimed at explaining a phenomenon
or predicting outcomes, primarily a set of (typically interrelated) hypotheses rooted in data.
We present this theory in the format of a structured research model and an actionable and
practitioner-relevant set of 13 best practices.

Figure 3 gives an overview of the built research model by laying out constructs (vari-
ables) and hypothesized relationships of balancing technological heterogeneity (TH) in
microservice-based industry projects. Following the definition of Palvia et al. (2006), the
presented model is a prescriptive multi-tier influence research model as we identify different
kinds of variables (represented as boxes) and model influencing relationships between them
(represented as arrows). We define the independent, intermediate, and dependent variables
as follows:

 – Current degree of TH (independent variable): An n-dimensional record of values (n is
the number of considered type of technology (TT)), each as a position on a scale of het-
erogeneity expressing how heterogeneous the technology choices are in this category;
from the same technology used in every microservice on the one end to a different tech-
nology in every microservice on the other end.

 – Trade-off effects (independent variable): Effects of higher or lower degrees of TH, such
as the benefits of heterogeneity (BH) and of uniformity (BU) for the project and how
they affect the project costs (CP).

 – Environmental factors (independent variable): Factors (F) of the organizational con-
text that TH decisions are made in, such as developer experience, regulatory boundaries,
or project maturity.

 – Optimal degree of TH (intermediate variable): Similar to the current degree, a degree
of TH with n dimensions; it leads to optimal results depending on the prioritization of
the trade-offs and the environmental factors.

Fig. 3 Research model presenting our theory

1 3

Page 13 of 46 127

Empirical Software Engineering (2025) 30:127

 – Delta of the current degree of TH and optimal TH (intermediate variable): The n
-dimensional difference from the current degree of TH to the optimal degree of TH, one
value per technological dimension.

 – Intent to change (dependent variable): The intent is to bring the current degree of TH
closer to the optimal degree of TH, minimizing the delta between both states. The intent
to change is usually manifested by an active governance process.

The research model describes the decision process to change the current degree of TH and
captures the phenomenon at a certain point in time. The result of the intent to change and the
actions that are consequently performed lead to a new degree of TH in the future. Although not
modeled in Fig. 3, this implies that the current degree of TH is the result of a previous iteration
and, thus, is influenced by past environmental factors, past trade-off effects, and the actions
taken to implement the intent to change. Introducing and removing technology in projects is a
tedious activity, so the iterative nature of the process is well suited to make the endeavor more
approachable. Adding or removing technologies one by one allows a gradual migration toward
the optimal degree of TH. In addition, environmental factors can change over the course of a
project, and so can the optimal degree of TH. Thus, we recommend revisiting the assessment
of the degree of TH regularly and viewing the balancing of TH as an ongoing process.

Minimal Example: Consider a project with three microservices, each using a PostgreSQL
database. Two microservices are written in JavaScript and one in PHP. The company
employs experienced software engineers whose project goal is automated text extraction
from PDFs.

Environmental factors are the high experience level of the developers and the project
domain of extracting text from PDF using machine learning.
The relevant trade-off effects of a higher degree of TH leads to a better technology fit
with lower operation costs in the long run on the upside but introduces technological
complexity as a drawback. A lower degree of TH leads to opposing effects.
The current degree of TH is defined independently for each technological dimension;
One technology in three microservices for databases and two technologies in three
microservices for programming languages.
The optimal degree of TH would be reached by using Python for more efficient machine
learning workflows; One technology in three microservices for databases and three
technologies in three microservices for programming languages.
The delta of adding TH with a third programming language is motivated by choosing
a better technology to lower operational costs, while the experienced developers can
manage the additional complexity.
From this delta follows an intent to change that should be actively managed by gov-
ernance; Keep database technology the same and add Python as a third programming
language.

The following subsections detail the variables and their manifestations. Section 4.1 details
the variables current degree of TH, optimal degree of TH, and delta of current and optimal
degree of TH by defining the scale of heterogeneity. Section 4.2 describes the trade-off
effects. Section 4.3 presents four categories of environmental factors. Section 4.4 depicts the

1 3

 127 Page 14 of 46

Empirical Software Engineering (2025) 30:127

intent to change. Last, Section 4.5 presents best practices (BPs) on how to govern the degree
of TH on an organizational level.

4.1 Degree of Technological Heterogeneity (Current, Optimal, Delta)

4.1.1 The Scale of Heterogeneity

The interviews that specifically targeted technological heterogeneity (T1-T9) each reported
on their current degree of TH and the experienced effects. We infer from the interviews
that there is a scale of heterogeneity in every microservice-based project. The following
representative quote from an interview of the set on general integration challenges (G1-G6)
describes this scale:

 “[Technology heterogeneity] behaves like many things. The value curve is [...] a
parabola, logically speaking. It has a sweet spot. Too little is not good; too much isn’t
good either.” - Interview G4, translated from German

On the one end, every microservice uses a different technology, so there is no overlap
between microservices. We call this state ”complete heterogeneity“. On the other end, all
microservices use the same technology, so there is no diversity at all. We call this state
”complete uniformity“. Both ends delimit a scale where each project can position itself in
the current state (see Fig. 4). Further, we can define an optimal state considering the proj-
ect’s environment and the prioritization of trade-off effects. In some projects, a range of
practically acceptable goal states might be close to the optimum. For the sake of presenta-
tion, we assume that companies strive towards the optimal degree of TH; the insights also
find application when striving towards a ”good-enough“ goal state. If the current state is not
optimal, then there is a delta that serves as an input to drive change.

As an example, T4 explained that they use Javascript in most microservices except for
video rendering services, where they utilize C++ as a programming language. In terms of
programming languages, this positions the project closer to the uniform side, not at the
extreme, though, where one and only one programming language is used.

Summary: Technological uniformity and technological heterogeneity are the two ends of
a scale of an identifying value of heterogeneity for a given project. We call this value the
degree of TH. Even without active management, projects always land somewhere on the
scale for their current state. Additionally, projects can define a (range or a single) goal state
close to the optimal state to which they aim to converge.

Current state

Uniformity
Complete Complete

Heterogeneity

Optimal state

Delta

Fig. 4 Technological heterogeneity vs. uniformity

1 3

Page 15 of 46 127

Empirical Software Engineering (2025) 30:127

4.1.2 One Dimension per Technology Type

Programming languages are only one technological dimension where such a trade-off
occurs. Table 3 gives a complete list of technological dimensions that the interviewees dis-
cussed, each covering related types of technologies (TT). We distilled the following catego-
ries of technological dimensions:

 – Application technology: programming languages, frameworks, libraries, databases
(TT1, TT7, TT6, TT3)

 – Deployment technology: CI/CD pipelines, deployment platform, service configuration
(TT2, TT4, TT12)

 – Cross-cutting aspects technology: microservice APIs, logging and monitoring, docu-
mentation, testing, user interface, authentication (TT5, TT8, TT9, TT11, TT10, TT13)

 “So in the language area, I think we’re quite strict. [...] if someone goes into intro-
ducing a cache, I think it would be more flexible. If we think about long-term storage
and so on, then a little bit more strict as well due to our regulations [...] It’s really
standardized, and our services communicate with each other in the same manner.” -
Interview T2

We discovered that the technological dimension influences the degree of TH projects strive
for. The implications of diversity in some types of technology vary significantly. For exam-
ple, deploying to different deployment platforms will impact the daily development and
operation efforts more than using different technologies to document the microservices.

Technology Type Interviews
TT1 Programming language T1, T2, T3, T4, T5, T6, T7,

T8, T9
TT2 CI/CD pipeline T1, T2, T3, T4, T5, T6, T7,

T8, T9
TT3 Database T1, T2, T3, T4, T5, T6, T7,

T8, T9
TT4 Deployment platform T1, T3, T4, T5, T6, T7, T8, T9
TT5 Microservice APIs T1, T2, T3, T4, T5, T7, T8, T9
TT6 Programming library T2, T4, T5, T6, T7, T8, T9
TT7 Programming framework T4, T5, T6, T7
TT8 Logging and monitoring T1, T2, T7, T8
TT9 Documentation T2, T4, T7
TT10 User interface T3, T6, T7
TT11 Testing T2, T8
TT12 Service configuration T6
TT13 Authentication T9
TT14 Quality criteria of

microservice*
T2, T3, T8, T9

TT15 Internal structure of
microservice*

T1, T2, T4, T7

TT16 Coding style* T7
TT17 Cloud resource

ownership*
T1

Table 3 Technology types

1 3

 127 Page 16 of 46

Empirical Software Engineering (2025) 30:127

We conclude that the TH of a project can be classified along n axes, where n is the num-
ber of technological dimensions considered. For each technological dimension, the trade-off
between heterogeneity and uniformity can be made. For example, a project may use one uni-
form CI/CD pipeline technology and only two selected API technologies for microservices
while using a diverse set of programming languages and databases.

Notably, some interviewees also reported heterogeneity considerations on non-techno-
logical subjects, indicated by a * in Table 3. The most frequent representatives are non-func-
tional quality criteria of microservices (TT14), like adhering to security standards ensured
by vulnerability scanning and the internal structure of microservices (TT15). Code styling
(TT16) and ownership of cloud resources (TT17) fall into the same non-technology bucket.

Summary: The degree of TH may vary depending on the technological dimension. A proj-
ect can be uniform in one technological dimension (e.g., the programming language) but
heterogeneous in another (e.g., the storage technologies).

4.2 Trade-off Effects

4.2.1 Benefits of Both Sides

The benefits of technological heterogeneity and uniformity pull to both ends of the scale.
Each benefit of one side poses a drawback to the other. Table 4 lists four benefits of techno-
logical heterogeneity (BH) and seven benefits of uniformity (BU) the interviewees reported.
In the table, the desirable trade-off effect is boldfaced for each benefit.

 “ Advantages are [...] that you are free to choose what is best for the microservice’s
question. For instance, we have one microservice which is based or written in Python
as it’s using machine learning and all the machine learning libraries. [...] It’s kind of
natural for having this language there.

 [...]

[The service written in Python], I think it’s the one who’s usually causing some moni-
toring issues. [...] But also, there’s nobody in our company [...] who actually knows
Python or the respective REST API framework. [...] I think it’s more an advantage
than a disadvantage to have a uniform programming language. ” - Interview T1

Using these best-fitting technologies (BH1) and learning which technologies work best in
specific scenarios (BH2) are the primary motivations for favoring technological hetero-
geneity. The main drivers for technological uniformity are simplified maintenance (BU1),
code reuse (BU2), reducing the impact of knowledge barriers and entailed learning efforts
in terms of onboarding in new teams and code bases (BU3), moving engineers between
teams from a capacity planning perspective (BU4), becoming experts in the used technol-
ogy (BU5), and being able to contribute to other services occasionally (BU6).

We found that whether heterogeneity saves or causes costs is more complex than a linear
relation. Thus, we devote the next subsubsection to explaining the effect on costs in a project
separately.

1 3

Page 17 of 46 127

Empirical Software Engineering (2025) 30:127

Weighing the benefits of technological heterogeneity against the benefits of technological
uniformity depends on the project’s context. For example, choosing the best tool for the job
may outweigh all the benefits of uniformity in a scenario where an inappropriate technology
makes an implementation infeasible or inefficient. Other projects might favor maintain-
ability by a uniform technology stack over all the benefits of technological heterogeneity.

Summary: Finding the right trade-off means finding the right balance between (a) a good
technology fit and long-term flexibility and (b) the more complex maintenance, the lack of
code reuse, and increased efforts for onboarding and people management. The prioritization
of benefits impacts the optimal degree of TH.

4.2.2 Costs of Introducing Technology

Besides the presented benefits of technological heterogeneity and uniformity, we found a
complex relationship between introducing new technology and costs for the project (CP).
To understand which side of the trade-off costs favor, we asked the interviewees about the
relationship between the degree of technological heterogeneity and the project costs. Our

Characteristic Complete
Uniformity

Complete
Heterogeneity

Inter-
views

BH1 Ability to use
best fitting tech

low high T1, T2,
T5, T6,
T7, T8,
T9

BH2 Knowledge
which tech
works best

low high T3, T9

BH3 Coupling by
technology

high low T2

BH4 Technology
lock-in

high low T4

BU1 Complexity of
maintenance

low high T1, T3,
T5, T7,
T8

BU2 Code reuse high low T1, T2,
T5, T6,
T9

BU3 Onboarding and
learning efforts

low high T1, T4,
T6, T7,
T8

BU4 Ability to move
engineers betw.
teams

high low T2, T3,
T5

BU5 Potential to build
deep knowledge

high low T4, T5,
T6, T9

BU6 Ability to con-
tribute to other
services

high low T4, T7

BU7 Complexity to
achieve SLAs

low high T9

Table 4 Trade-off between
technological heterogeneity and
uniformity

The desired manifestation of
each characteristic is boldfaced

1 3

 127 Page 18 of 46

Empirical Software Engineering (2025) 30:127

findings in Table 5 suggest that the degree of technological heterogeneity does not linearly
correlate with the costs it causes.

 “I think if you stay non-heterogeneous, uniform, then at least the cost is easy to
calculate. But on the other hand, you can also get to a situation where you never get
the benefits of something new. So at least taking a look at new technologies, there’s
always reasons why somebody invents new mechanisms. Usually, the reason is that
it makes development faster or easier. And I think changing the technology is always
an investment. But every investment also has a return of investment.” - Interview T1

On the one hand, a well-chosen technology can save costs in the long run by using more
efficient and sustainable technology (CP2). Heterogeneity may decrease hiring costs since
a larger pool of applicants is available (CP8). Relying on multiple technologies can prevent
coupling to technology and reduce the costs of technology lock-in (CP9).

On the other hand, each introduction of further technology causes increased short-term
costs (CP1), but also maintenance, operation, governance, and learning and onboarding
costs (CP3-CP6). Furthermore, uniformity simplifies cost estimation (CP7).

Summary: Introducing new technology imposes short-term costs on the project with the
potential to save costs in the long run by an increase in efficiency. The prioritization of dif-
ferent types of costs impacts the optimal degree of TH.

Characteristic Complete
Uniformity

Complete
Heterogeneity

Inter-
views

CP1 Short-term
costs (tech
introduction)

none some T1, T2,
T3, T4,
T5, T6,
T9

CP2 Long-term costs
(from tech fit)

high low T1, T2,
T3, T5,
T6, T8

CP3 Maintenance
cost

low high T1, T5,
T7, T8,
T9

CP4 Operation cost low high T1, T2,
T4, T5,
T6, T7,
T9

CP5 Governance cost low high T2
CP6 Learning/train-

ing cost
low high T2, T5,

T6, T7,
T8

CP7 Complexity of
cost estimation

low high T1, T2

CP8 Hiring cost high low T5
CP9 Costs of tech-

nology lock-in
high low T4, T9

Table 5 Costs effects of
heterogeneity

The desired manifestation of
each characteristic is boldfaced

1 3

Page 19 of 46 127

Empirical Software Engineering (2025) 30:127

4.3 Environmental Factors

The direction to which a project naturally leans and where the optimum is located depends
on its environment. We distilled four categories of environmental factors that influence how
the benefits of technological heterogeneity on the one side and uniformity on the other are
weighed against each other.

The software engineers’ skills (F1) provide a foundation for what technologies can be
adopted efficiently. If there is existing expertise in a technology that is about to be intro-
duced, the efforts of introducing and operating the technology (BU3, CP4, CP6) decrease
significantly. If engineers are proficient with multiple technologies of the same type, the
advantage of uniformity of moving them between teams becomes less significant (BU4).

 “It’s more the question, what expertise do we have? And can we afford to add another
technology where only very few people are aware of it? So there is a pressure to use
the technology where we have a critical mass of staff who knows how to deal with that
technology [...]” - Interview T8

The culture of the company and the project (F2) decide how additional introduced
technology will be accepted and who the driver for technological innovation is. The
company’s age, size, and maturity lead to different fundamental values that we sum-
marize in this influence factor. A culture generally accepting new technology lowers
onboarding and learning efforts (BU3, CP6). Bureaucratic processes and hierarchical
structures can affect the governance costs of technology (CP5) and the short-term costs
of introducing new technology in general (CP1). “At some point, the size becomes a
bottleneck in the sense of too many voices. [...] Because you have too many voices and
too many different opinions, and then either each team does whatever they want, and
you don’t have any consensus and then you lose this flexibility that I mentioned before
about switching resources. And thus we need a governance body or a very top-down
approach to even enforce techs onto the teams.” - Interview T5

The project phase (F3) determines how much resources are spent on introducing and
maintaining additional technology in the context of balancing the agility and stabil-
ity of the project. The priorities for spending the budget change over the course of a
project. In the beginning phases of a project, more budget is planned for programming
features, while it shifts to maintenance efforts over time. Thus, introducing new tech-
nology can be perceived as worthwhile in the early stages of a project as the impact
of certain types of costs on the overall budget changes. “If you want to be very fast, if
you want to release new features like every couple of days, for example, and if, basi-
cally, speed is the thing that defines that you should give independence or the freedom
of choice to the teams. If costs are more of a driving factor, you will focus on cost-
efficient designs. There can also be a shift in focus from speed of innovation towards
reduction of cost.” - Interview T9

1 3

 127 Page 20 of 46

Empirical Software Engineering (2025) 30:127

The project’s domain (F4) can impose restrictions on how heterogeneous technolo-
gies can be and which ones are available in the first place. For example, regulated
industries like finance or healthcare require specifically certificated technologies and
limit the pool of available technology. This boundary condition limits the possible
technology fit (BH1, CP2) that heterogeneity can achieve. “[...] if you’re looking at
the financial sectors, insurance companies, they are a bit narrow with the technolo-
gies used. It’s gaining more and more speed to introduce new technologies. It just
takes a bit more time. Nevertheless, you see a couple of different databases. Compared
to the younger industries like e-commerce and online platforms, for example, they
introduce technologies more frequently and you see a wider range of databases and
a wider range of programming languages. So there is a difference depending on how
regulated the industries are [...].” - Interview T3

Summary: The environment of a project impacts which technologies are introduced natu-
rally, leading to the current state of TH. Further, the environmental factors influence how the
benefits of both sides of the trade-offs and the individual costs of introducing a technology
are perceived and weighed against each other, impacting the optimal degree of TH.

4.4 Intent to Change

The delta of the current to the optimal degree of TH leads to an intent to change. In prac-
tice, this delta must be large enough to trigger action. The long-term general and financial
benefits of changing the current degree of TH must outweigh the initial costs and general
drawbacks of introducing/maintaining or removing technology.

We logically infer that the reason technology is introduced contributes majorly to the
profitability of the decision. Similarly to Brooks and Bullet (1987) who introduce the con-
cepts of essential and accidental difficulties in software engineering, we distinguish between
essential and accidental heterogeneity.

If technology is or was introduced only for technology’s sake, e.g., because the technol-
ogy is fun or the engineers’ favorite, then the benefits of the increased heterogeneity will
likely not outweigh the costs because the benefits cannot be actively reaped. We call this
kind of diversity accidental heterogeneity. The technology choices then exceed what is nec-
essary to encompass the software domain’s unique requirements, constraints, and intricacies
- making the technology landscape more complex than it has to be.

If, however, technology is or was introduced with a clear goal in mind, e.g., to increase
development or operation efficiency, then the benefits of the technology have a high prob-
ability of outweighing its costs. We call this kind of introduced diversity essential hetero-
geneity. The technology choices then serve to address the software domain’s subtleties
effectively and efficiently without adding more complexity to the technology landscape than
necessary.

If no goal state can be worked against, accidental heterogeneity can be introduced to the
system, significantly affecting the project’s costs.

1 3

Page 21 of 46 127

Empirical Software Engineering (2025) 30:127

 “I think [...] the governing aspect of it is almost more important than the technology
itself. [...] so far where I have experienced [...] the most friction or complications is
almost more in the organizational side of it than in the technological side of it.” -
Interview T4

Technologies should be governed in a project to avoid the entry of accidental heterogeneity.
Section 4.5 presents best practices to govern the technological heterogeneity of a project.

Summary: Accidental technological heterogeneity emerges by introducing technology for
technology’s sake, while essential technological heterogeneity emerges by introducing tech-
nology with a good reason. Technologies should be managed to avoid accidental TH and to
encourage essential TH.

4.5 Governance Best Practices

We distilled 13 industry best practices (BPs) from the interviews that can guide the intent to
change. We present each best practice in the classical pattern format with context, problem,
and solution. We choose this form to easily match a specific problem situation to the part of
our theory and explain how to solve the problem (Riehle and Züllighoven 1996). This pre-
sentation is optimized for practitioner relevance and ease of access. We intentionally refer
to them as best practices rather than patterns to emphasize that they result from a research
methodology, grounded in the insights provided by the interviewees. In future work, these
best practices can be expanded to patterns with repeated practical observation or develop-
ment through workshops, as is common in the pattern community.

Figure 5 provides an overview of the contents of this section and outlines the presented
practices and their interconnection. Standardization is the core governance tool to balance
the trade-off between technological heterogeneity and uniformity. Standardization captures
the consensus of all or most microservice teams on a particular aspect.

BP1: Meaningful standardization
Context:
There are multiple cross-functional teams, each responsible for one or more microservices.
Problem:
(1) The diversity of technology (tech stacks, programming languages, frameworks, data stores) leads to
additional costs, and limits the effectiveness of moving people from one team to another due to high knowl-
edge barriers.
(2) The stringent enforcement of one specific technology stack limits the flexibility and introduces com-
plexity by using not suiting tools.
Solution:
Introduce meaningful standardization to welcome essential technological heterogeneity and prevent acci-
dental one. Establish processes and mechanisms to (i) create standardization, (ii) disperse the knowledge of
their existence and how to implement them across the microservices teams, and (iii) consistently apply them.
Sources of evidence:
T1, T2, T3, T4, T5, T6, T7, T8, T9, G1, G2, G4, G5, G6
Representative quotes:
"It makes sense to define a set of minimal standards so that [the microservice teams] don’t have to start at
zero when coordinating, so that coordination can be reduced to the minimal amount that is necessary. It is
a trade-off at the end of the day. [...] The value curve is kind of a bell-shaped curve or a parabola, logically
speaking. It has a sweet spot. Too little is not good; too much isn’t good either." - G4, translated from German

1 3

 127 Page 22 of 46

Empirical Software Engineering (2025) 30:127

Establishing BP1: meaningful standardization ensures that no accidental technology is
introduced. Thus, it reduces the impact of the drawbacks emerging by technology becoming
too heterogeneous by chance. Standardization may describe multiple agreed-on technology
stacks that serve as alternatives for different use cases. In this way, standardization allows
for essential and meaningful heterogeneity that enables drawing benefits from technological
heterogeneity while limiting its drawbacks.

For many subjects, focusing the standardization on an interface rather than the underly-
ing technology makes sense. This allows a free choice of technology as long as the interface
is implemented. Exemplary candidates to standardize the interfaces over technology are:

 – The communication protocols used between microservices (e.g., HTTP) over the pro-
gramming languages and frameworks used within the microservices (e.g., Java);

 – The interfaces for collecting logging, monitoring, and tracing data (e.g., logging to std-
out stream) over libraries used for the implementation (e.g., Log4j);

 – The deployment artifact each microservice produces to allow uniform deployment to a
common deployment platform (e.g., container images to deploy to a Kubernetes cluster)
over a script to build the deployment artifact optimized for a specific deployment plat-
form (e.g., bash scripts to deploy to a Glassfish application server).

Deciding whether to standardize the interface rather than the implementing technology
depends on the project context. The best practices presented in the upcoming subsections
apply to both scenarios.

To create and maintain meaningful standardization, we structured the best practices into
three major activities. First, meaningful standardization needs to be actively created. Sec-
ond, the awareness of the existence of created standardization needs to be dispersed across
the organization. Executing entities must be aware of standards and build the required know-
how to implement them. Third, the consistent application of the standardization needs to be
ensured. Dedicated organizational and technical mechanisms can enforce or incentivize the
consistent application of standardization.

The following subsections detail how to create standardization (Section 4.5.1), how to
disperse knowledge and awareness for such across an organization (Section 4.5.2), and how

Fig. 5 Best practices overview

1 3

Page 23 of 46 127

Empirical Software Engineering (2025) 30:127

to ensure the consistent application of standardization (Section 4.5.3). For readability pur-
poses, we highlight one best practice per chapter. The complete list of best practices is
available in Appendix A.1.

4.5.1 Creation of Standardization

This set of best practices is applicable when multiple cross-functional teams are responsible
for one or more microservices, and BP1: meaningful standardization shall be introduced.

However, there is a lack of knowledge to select suitable technology for such standardiza-
tion, or the standardization may lack the backing of the microservice teams.

Standardization can emerge from various groups in an enterprise environment. We found
the following organizational units to suit the creation of standardization (see Fig. 6).
If the standardized technology is questioned or even partially ignored by the microservice
teams, BP2: inter-team communities can take responsibility for the creation of standard-
ization. Such communities are composed of delegates of the microservice teams, often
brought together by a similar role in their team or their interest in certain topics. For exam-
ple, each team sends their architecture-savvy person to the architecture community or their
security-savvy person to the security community. The communities can be organized demo-
cratically or be chaired by a global role, like the global architect. Even though the chair-
person might have the final word, every team can participate in the discussions. In addition
to general coordination, those communities can be responsible for defining standardization
within their topic of expertise. By involving the microservice teams in this manner, the
standardization has a higher chance of being backed by the individual teams.

BP2: Inter-team communities
Context:
There are multiple cross-functional teams, each responsible for one or more microservices. The project
aims to introduce meaningful standardization (P1).
Problem:
Global decisions for standardization lack the backing of the teams, are questioned, or are even partially
ignored.
Solution:
Establish inter-team communities for decision-making, like standardization. Communities revolve around
certain subjects, usually around a cross-cutting concern or a technology type. Subject-savvy and interested
members of the different microservice teams can participate in the communities and represent their team
in the community. The community (a) keeps an overview of their topic, (b) makes critical decisions, (c)
assigns the responsibility of shared capabilities or bears it itself, and (d) disperses information across teams
by their representatives.
Sources of evidence:
T1, T2, T4, T5, T6, T7, T8, T9, G2, G3, G4, G5, G6
Representative quotes:
"We like to speak of micro and macro architecture or micro and macro decisions. Micro is everything I
can decide on my own. Macro would be something like the API design guide [...], or a security concept,
or which tracing infrastructure and format to support. [...] these are macro decisions that someone has
to make. Usually a group. What we frequently do is that every service team sends an architecture-savvy
representative to an architecture board. And there exactly these decisions are made [...]." - G2, translated
from German

1 3

 127 Page 24 of 46

Empirical Software Engineering (2025) 30:127

If the additional load on the microservice teams caused by the need to use the standard-
ized technology is an issue, introduce BP3: teams for cross-cutting concerns as organi-
zational units. Such a team takes responsibility for a cross-cutting concern and, thus, is a
natural fit to define standardization and support the individual microservice teams adhering
to the standardization. For example, a monitoring team takes full responsibility for oper-
ating the monitoring infrastructure and defines the logging and monitoring formats each
microservice has to implement. Such entities are particularly suited for standardization cre-
ation when technology can be maintained and operated as a shared component.

If the microservice teams cannot live up to the knowledge requirements to use the stan-
dardized technology, establish BP4: a taskforce team as a front-runner team. Its job is
to evaluate and introduce technologies across the whole architecture, like the monitoring
infrastructure described beforehand. Afterward, they support the individual microservice
teams in coping with the challenges and act like an internal consultancy unit. Compared to
teams for cross-cutting concerns, a taskforce team does not take long-term responsibility for
shared components but moves on to tackle new challenges. A taskforce team evaluates suit-
ing technology in this process and may introduce systematic standardization. The interviews
suggest that such a taskforce team is a generic best practice to tackle various challenges of
introducing a microservice-based architecture beyond purely introducing technology.

If the currently standardized technology does not satisfy all use cases efficiently, con-
sider BP5: deliberate experimentation. Allowing for experimentation phases is a planned
approach to discovering new technologies and evaluating their fit and whether they are
worth the cost to introduce them across the architecture. Experimentation can occur glob-
ally to introduce a new technology to the standardization or in a dedicated taskforce team.
Still, it might also occur locally within a microservice to solve a specific problem and then
be adopted for standardization afterward.

4.5.2 Dispersion of Standardization

This set of best practices is applicable when multiple cross-functional teams are responsible
for one or multiple microservices and first efforts were made to introduce BP1: meaningful
standardization by the creation of some project-wide standards (Section 4.5.1). How-
ever, the information on standardization is not flowing well to the individual microservice
teams. The awareness and knowledge of standards is crucial. Without, there can’t be a con-
sistent implementation across the project.

On the one hand, this information can be dispersed by the units responsible for creating
the standardization (see Section 4.5.1). On the other hand, there might also be more sophis-
ticated dispersion mechanisms like the following best practices (see Fig. 7).

Fig. 6 Best practices for standardization creation

1 3

Page 25 of 46 127

Empirical Software Engineering (2025) 30:127

BP6: Documentation of standardization and its decision process can serve as a look-up for
the microservice teams on the current standardization. Such documentation should include
an allow-list of technology that can be used without discussion. Maintaining the standard-
ization documentation in one place allows easy access and improves its discoverability.

BP6: Documentation of standardization
Context:
There are multiple cross-functional teams, each responsible for one or more microservices. The project
aims to introduce meaningful standardization (P1). A standardization has been created or updated.
Problem:
The information of standardization decisions does not flow to the microservice teams which should adhere
to the standardization.
Solution:
Document the standardization at a defined place. Documenting not only the outcome but also the consid-
erations surrounding technology decisions serves as a look-up for the microservice teams. Developers can
inspect which technology is usable without any discussion. Organizing all standardization documentation
in one location instead of dispersing it to multiple locations improves discoverability.
Sources of evidence:
T1, T2, T4, T5, T9, G2, G5
Representative quotes:
"But this was documented then in the end of the session in the Confluence [wiki] page. And there was also a
complete tech stack page that every engineer could look up and just see what were green-lighted techs that
they could use already without discussion." - T5

If situations arise that point to a lack of knowledge transfer between teams in general,
BP7: regular cross-team discussions can be utilized to announce and present new aspects
of the standardization besides presenting the teams’ progress and general insight. Teams
may send representatives who return the knowledge to their teams instead of attending with
all team members. Introducing such regular meetings can be as simple as reserving a fixed
time slot and offering a stage for the different microservice teams.

If there is a lack of knowledge on how to implement some standardization, internal or
external BP8: education programs can further coach microservice teams to implement
the standardization correctly. Such education may come in different formats, like lectures,
workshops, blueprints, or tutorials.

4.5.3 Application of Standardizations

This set of best practices is applicable when multiple cross-functional teams are responsible
for one or multiple microservices and efforts were made to introduce BP1: meaningful
standardization by the creation of some project-wide standards (Section 4.5.1) and the
dispersion of knowledge about these standards (Section 4.5.2). However, the standard-
ization is not consistently applied across all microservice teams.

Fig. 7 Best practices for standardization dispersion

1 3

 127 Page 26 of 46

Empirical Software Engineering (2025) 30:127

On the one hand, the dispersed awareness and knowledge of standardized technol-
ogy will improve standards adoption (see Section 4.5.2). On the other hand, there can be
more sophisticated mechanisms to enforce or incentivize adherence to the standardization.
Enforcing mechanisms entail adhering to the standardization becomes mandatory for every
microservice team. Incentivizing mechanisms encourage adhering to the standardization
but do not enforce doing so. We found the following best practices to apply standardization
consistently (see Fig. 8).

To enforce the standardization, a mandatory BP9: technology sign-off process can
be introduced that requires explicit approval of not yet utilized technology. This process
empowers a central organizational entity to keep an overview of the development of the
technology landscape and actively govern it. Introducing the need to justify additional tech-
nology in front of a technology committee and getting their approval as additional effort can
significantly reduce the amount of accidental technology in a system.

In addition, BP10: audits for the detection of deviations from the standardized technology
can be utilized. Regularly reviewing the technologies the individual microservice teams use
helps to detect accidentally introduced technology. Such audits can be implemented as parts of
existing review processes, like code reviews. Especially in regulated industries like finance or
health care, audits are a commonly employed regulatory process and are a natural fit to ensure
only standardized technologies are used. Such domains might pose additional restrictions on
technology; for example, they might require certain certifications for the technologies used.
Complementary or as an alternative to audits, the BP11: automation of the detection of
deviations from the standardized technology can be strived for. Software tests can be imple-
mented and added to Continuous Integration pipelines by making the standardization mea-
surable. Depending on the implementation of whether a warning or an error is raised on a
deviation, the mechanism can serve for enforcement or incentivization. Including additional
context information on the standardization can also serve as a communication tool to dis-
perse required knowledge.

BP11: Automation of the deviation detection
Context:
There are multiple cross-functional teams, each responsible for one or more microservices. The project
aims to introduce meaningful standardization (BP1). A standardization has been created or updated. The
microservice teams are aware of that and have the knowledge to adhere to the standardization
Problem:
Some microservice teams do not adhere to the standardization.

Fig. 8 Best practices for standardization application

1 3

Page 27 of 46 127

Empirical Software Engineering (2025) 30:127

BP11: Automation of the deviation detection
Solution:
Automate the detection of deviations from the standardization, e.g., as software tests in the CI pipeline.
Making the standardization measurable and bringing it to the attention of the developers enforces or incen-
tivizes adherence to the standardization, depending on whether the CI pipeline fails or just logs a warning.
If furnished with a clue on how to implement the standardization, such automatization can also serve as a
communication tool to disperse knowledge.
Sources of evidence:
T1, T2, T4, T9, G1, G2, G6
Representative quotes:
"Similar to if you use Sonar cloud for checking your code quality. [...] So having like a measurable stan-
dard. All automated for sure. That would help a lot. That you have this one dashboard where it says, okay,
these two services are running behind the standard. [...] So I would not enforce but rather kind of point out
that the standard is violated. With a clear indication on how to fix it." - T1

To incentivize the use of standardized technology, BP12: service templates can be
introduced. A service template serves as a starting point for new microservices with all the
required standardization built in. The convenience of a quick start into a new microservice
like this incentivizes using the standardized technology rather than spending efforts to create
a different microservice seed.

Complementary or as an alternative to service templates, BP13: collaboration on cross-
cutting tools and libraries can incentivize using the standardized technology. Enabling
the reuse of existing tools and libraries poses an incentive to use standardized technology
instead of re-implementing an equivalent solution. Since the use cases of microservices
might slightly differ, adopting an open-source-like process within the company (called inner
source) can foster a seamless evolution of such shared tools.

5 Discussion

In this section, we discuss the implications of our findings. Section 5.1 describes how practi-
tioners can use our results as a practical guide. Section 5.2 discusses the implications of our
findings in the field of microservice research.

5.1 A Guide for Practitioners

Section 4.5 presents the best practices we derived from the underlying interviews via the-
matic analysis, a method to ground a research theory in data meticulously. Still, practitioners
might want further guidance that exceeds the presented research model and best practices.
Thus, we intend to showcase how the best practices can be employed in combination over
the lifetime of a project depending on the influential factors we carved out in Section 4.

This subsection complements the empirical data by incorporating our broader observa-
tions from extended engagement with industry practitioners beyond the presented inter-
views. As such, it offers an informed but interpretative guide for practitioners, synthesizing
key insights into actionable recommendations. However, as these recommendations are
not derived directly from the collected data, future research should further validate their

1 3

 127 Page 28 of 46

Empirical Software Engineering (2025) 30:127

applicability. Table 6 gives an overview of the underlying hypotheses that can be validated
in future work. We added more fine-grained hypotheses that complement the higher-level
ones. This is not a complete list of hypotheses, but rather a selection we expect to be the
most interesting and have the highest chances of holding true in validation studies.

Hypotheses
H1 The project phase has a significant impact on the optimal

degree of TH.
H1.1 Early-stage projects benefit significantly less from stan-

dardization (BP1).
H1.2 Mid and late stage projects benefit significantly more

from standardization (BP1).
H1.3 Using cross-functional discussions (BP7) in early-stage

projects reduces the degree of TH without explicit gover-
nance of technologies.

H2 The project has a significant impact on the degree of TH.
H2.1 The naturally emerging degree of TH without active gov-

ernance is significantly higher in projects with a culture
that values technology openness compared to those that
value established technology.

H2.2 The optimal degree of TH is significantly higher in
projects with a culture that values technology openness
compared to those that value established technology.

H2.3 Service templates (BP12) are adopted significantly better
in projects with a culture that values technology open-
ness compared to those that value established technology.

H2.4 Deliberate experimentation (BP5) has a significantly
greater effect in projects that value established technol-
ogy compared to those that value technology openness.

H3 The skill level of software engineers has a significant
impact on which best practices have the most positive
impact.

H3.1 Projects with inexperienced software engineers benefit
significantly more from taskforce teams (BP4) compared
to projects with very experienced software engineers.

H3.2 Project with inexperienced software engineers benefit
significantly longer from deliberate experimentation
(BP5) compared to projects with experienced software
engineers.

H4 The project domain has a significant impact on the
degree of TH.

H4.1 Projects in regulated domains (e.g., healthcare) lead to
a significantly lower naturally emerging degree of TH
without governance.

H4.2 Projects in regulated domains (e.g., healthcare) lead to a
significantly lower optimal degree of TH.

H4.3 Projects in unregulated domains benefit significantly
more from best practices that incentivize the application
of standardization (BP12, BP13) compared to ones that
enforce standardization (BP9, BP10, BP11).

H4.4 Projects in regulated domains benefit significantly more
from best practices that enforce the application of stan-
dardization (BP9, BP10, BP11) compared to ones that
incentivize standardization (BP12, BP13).

Table 6 Hypotheses for future
validation studies underlying the
practitioner guide

1 3

Page 29 of 46 127

Empirical Software Engineering (2025) 30:127

5.1.1 Influence of the Project Phase (F3)

In our experience, early-stage projects often prioritize moving fast and breaking things over
maintaining the stability of the existing software. Thus, we advise being more open to het-
erogeneity in the early stages of a project, which allows learning which technology works
well (BH2) for the teams and the project domain. It has proven beneficial to introduce the
obligation to discuss technological decisions in the form of BP7: regular cross-team dis-
cussions soon. A frequent exchange of the teams’ learnings has the potential to naturally
limit the choice of used technology as new microservices will tend to be inspired by what
is already used in the project and has proven to work well. In cases where it is technically
necessary, e.g., using a common frontend technology for a monolithic frontend, a standard-
ized technology should be chosen by involving all teams in the discussion.

Once a project becomes more mature, favoring stability and maintainability over pure
implementation speed, we advise spending efforts on aggregating which technologies are
used and consolidating technology by introducing BP1: meaningful standardization.

5.1.2 Influence of the Culture (F2)

Culture represents a set of shared opinions and thought patterns that exist throughout a com-
pany or a project. Those similarities make coordination more straightforward, as some things
are just taken as given. On the other hand, culture is difficult to change once established.

If a project’s culture values openness to new technology, the technology landscape will
automatically become more heterogeneous. Less effort must be put into technology innova-
tion as it comes naturally, while more efforts must be put into ensuring heterogeneity doesn’t
get out of hand, e.g., by incentivizing certain technologies with BP12: service templates.

If a project’s culture values established and known technology, there is a high probability that
the microservice teams will stick to one technology stack by themselves. Less effort must be put
into technology management as uniformity comes naturally, while more efforts must be put into
ensuring technological innovation within the project, e.g., by BP5: deliberate experimentation.

5.1.3 Influence of the Software Engineers’ Skills (F1)

If engineers are relatively inexperienced with the plethora of technology required to imple-
ment microservices, it might make sense to introduce a BP4: taskforce team to have a
front-runner team that builds up the required knowledge. A fair amount of BP5: deliberate
experimentation will be necessary to find a well-suited technology stack, but also to over-
come the architectural challenges of microservices in general.

If the microservice teams are composed of experienced software engineers, a taskforce
team might be of less value. Experimentation still has its place but is less exercised in a
more targeted way on specific topics rather than applied broadly.

5.1.4 Influence of the Project Domain (F4)

While projects in non-regulated domains may be intrinsically motivated to standardize tech-
nology, projects in regulated domains need to pass audits and only use certified technology.
This serves as additional extrinsic motivation to establish standardization.

1 3

 127 Page 30 of 46

Empirical Software Engineering (2025) 30:127

In domains without regulation, we advise incentivizing the consistent application of stan-
dardized technology over enforcing it. Introduce a BP12: service template and encourage
BP13: collaboration on cross-cutting tools and libraries to simplify sticking to the pri-
mary technology stack. The teams should be empowered to deviate from the standardization,
but be aware that they add additional responsibilities to their workload. These incentives
allow the flexibility to choose better tools where it makes sense while making it an explicit
consideration by the additional effort.

In regulated domains, technologies should be managed more strictly, e.g., by a BP9:
technology sign-off process and conducting BP10: audits for the deviation detection.
Still, we advise involving the microservice teams in technology decisions rather than putting
them under strict top-down management to improve the acceptance of technology decisions.

5.1.5 Context-Independent Aspects

Once you start with the processes of introducing meaningful standardization to a project,
introduce a BP3: team for the cross-cutting concern of operation, including logging and
monitoring. This team will take the weight of taking care of the deployment platform and
operational aspects from all microservice teams. The operation team may settle on standard-
ized interfaces rather than concrete technology to ensure compatibility with the majority of
technology in the microservices and support the microservice teams in working towards a
stable deployment pipeline.

For other aspects, like architecture or security, we advise introducing BP2: inter-team
communities chaired by a lead architect or a lead security engineer. The communities
should engage in discussion and settle on a main technology stack in terms of programming
language, framework, and storage technology to express the main business logic. In addi-
tion, there might be additional technology stacks for special use cases where the primary
technology stack is not a good fit, such as machine learning or image processing.

All decisions for and against technologies should be documented in a central BP6: docu-
mentation of standardization, serving as a single source of truth on which technology is
contained in the primary technology stack. An active communication channel should be
established, e.g., via email, where changes to the technology standardization are announced
and BP8: education programs in the form of blueprints and tutorials are dispersed.

Even after a project matures and aggregates more maintenance obligations, it is crucial
not to stop innovating technology. Microservices are small units that promise to be easily
replaceable, fostering technological innovation and gradual migrations. Keeping the BP4:
taskforce team around might make sense to focus on BP5: deliberate experimentation.
However, this only works for larger projects with higher budget, since maintaining a team
solely for experimentation is expensive. An alternative approach we experienced at one
of our industry partners was allowing a fixed percentage of a developer’s time to project-
related side-topics, which may include evaluating promising technologies for specific use
cases.

5.2 Organizational Challenges as Research Opportunities

We initially started out in a previous study on integrating microservices in general, expect-
ing to come across various technical challenges. However, the results showed that solutions

1 3

Page 31 of 46 127

Empirical Software Engineering (2025) 30:127

for technical challenges exist and are well known, while companies struggle more with
organizational ones. This study devotes itself to one of such challenges - balancing the
trade-off of technological heterogeneity.

While topics like programming languages, libraries, and databases were part of the dis-
cussions, many interviewees also called out heterogeneity topics beyond pure technology
(TT14-TT17). Quality criteria of microservices’ runtime, the internal architecture and code
structure, and the coding style can also vary from microservice to microservice. The topic of
heterogeneity in microservice-based projects is more extensive than we initially anticipated.
For example, the development process models of microservice teams might be heteroge-
neous or organized in an overarching process framework (e.g., SAFe5).

This journey from focusing on purely technical topics to organizational management
topics is also reflected by experience reports from the industry, such as by Spotify.6 They
accumulated many different technologies in their applications, some for similar use cases.
To maintain an overview, they started to develop their homegrown developer portal Back-
stage that they open-sourced in 2020. It serves as an access point to their complete variety
of infrastructure tooling in a unified (user) interface, as an onboarding tool, as a centralized
place for technical documentation, and provides a service template functionality.

Our experience and industry projects, such as Backstage, are encouraging to conduct
further empirical studies on the organizational success factors of microservices and their
integration. Academic literature has only touched on such aspects until now, making this
study one of the first to fully devote itself to a purely organizational perspective on success-
fully managing microservice-based projects in practice. Such organizational insights can, in
turn, lead to new technical innovations and open-source projects like Backstage.

Throughout the interviews, we observed that most practitioners prefer a stricter stan-
dardization rather than leaving total technological freedom to the microservice teams. This
conflicts with the often-cited benefit that software projects gain from using microservices.
While this insight might not be representative of every microservice project and does not
account for a temporal shift in general practitioner perception of heterogeneity in microser-
vice projects, this is still a surprising outcome of this study. We attribute this perception
to the increasing maturity of the microservice-based architectural style that seems to have
passed the state of being a hype topic. The challenges and drawbacks of microservices have
gained more awareness, leading to a healthy consideration of whether all aspects, like the
complete independence of microservice teams, should always be implemented in real-life
projects to their full extent.

6 Limitations

We use the trustworthiness criteria proposed by Guba (1981) to discuss the limitations of
this study due to the qualitative nature of the empirically collected data. The following
subsections will discuss the credibility, transferability, dependability, and confirmability of
this study.

5 https://scaledagileframework.com/
6 h t t p s : / / e n g i n e e r i n g . a t s p o t i f y . c o m / 2 0 2 0 / 0 3 / w h a t - t h e - h e c k - i s - b a c k s t a g e - a n y w a y

1 3

 127 Page 32 of 46

https://scaledagileframework.com/
https://engineering.atspotify.com/2020/03/what-the-heck-is-backstage-anyway

Empirical Software Engineering (2025) 30:127

6.1 Limits to Credibility

The credibility criterion assesses the extent to which the findings accurately reflect the real-
ity being studied.

Firstly, there is a potential influence of interviewer behavior and tone on interviewee
responses. To mitigate this, we designed an interview guide in advance to ensure consis-
tency and impartiality in questioning (Kallio et al. 2016). Additionally, we aimed to mini-
mize the impact of individual researcher bias by having two interviewers conduct separate
sets of interviews. The interviewers have experience in both academic research and industry
practices within software engineering.

Secondly, the possibility of misunderstandings and misinterpretations during interviews
and transcription could influence the accuracy of the results. To address this concern, we
engaged in prolonged engagement with the data to mitigate careless errors Guba (1981).
Moreover, we conducted member checking for the second set of interviews, allowing inter-
viewees to review and provide feedback on the extracted insights, thereby enhancing the
validity of our interpretations Guba (1981). In total, we received three answers that all
confirmed our findings within a deadline of 3 weeks.

Thirdly, transparency in data analysis is crucial for establishing the believability of the
results. While we cannot share interview transcripts due to confidentiality agreements, we
have provided extensive supplementary materials summarizing how each interview contrib-
utes to the emergence of thematic patterns. Utilizing detailed descriptions and representa-
tive citations, we strive to convey a vivid and credible portrayal of each theme (Braun and
Clarke 2006).

Lastly, while our study did not explicitly evaluate findings within an industry context,
we recognize the importance of validating theoretical insights through practical application.
Future work will involve applying the developed theory in industry settings to gain further
insights into its nuances and contextual applicability. By bridging the gap between theory
and practice, we aim to enhance the robustness and credibility of our findings.

6.2 Limits to Transferability

The transferability criterion assesses the extent to which the findings can be generalized
beyond the specific context of the study.

Firstly, the sampling of interview participants may have introduced bias, potentially lim-
iting the representation of various contexts necessary for building a generalizable theory.
To mitigate this issue, we employed a sampling model with the goal to “[...] represent the
diversity of the phenomenon under study within the target population” (Jansen et al. 2010),
including participants with different expert roles, project sizes, and phases. Nonetheless,
flaws in the sampling model could introduce selection bias. Therefore, we sought guidance
from an expert in the field to identify hidden characteristics that may influence the facilita-
tion of microservice-based projects (Jansen et al. 2010).

Secondly, the sample may not be exhaustive, not fully capturing all details on the topic.
Conducting additional interviews could potentially yield deeper insights into the phenom-
enon under investigation. To address this concern, we tracked changes to the coding system
throughout the analysis of each interview. We ceased further interviews once saturation was

1 3

Page 33 of 46 127

Empirical Software Engineering (2025) 30:127

reached, indicating that additional interviews were unlikely to yield new relevant insights
into the theory (Jansen et al. 2010). According to Hennink and Kaiser (2022), our sample
size of 15 interviews is in the typical range of 9 to 17 interviews to reach saturation.

Thirdly, we acknowledge that the sample size is not large enough to make statistical gen-
eralizations. Accordingly, we make no use of statistical methods or quantitative claims about
the underlying population. However, by achieving theoretical saturation and employing pur-
poseful sampling, the findings provide theoretically rich insights that are transferable to
similar contexts. This approach is consistent with qualitative research standards, emphasiz-
ing the contextual relevance and depth of understanding over numerical representativeness.

Lastly, temporal factors may diminish the transferability of results over time. The findings
reflect the state of practice at the time of the interviews, which may become less relevant or
applicable as circumstances evolve. Nevertheless, we posit that our theory is relatively insu-
lated from the rapid pace of technological progress, as the primary driver of the underlying
challenge lies in socio-technical processes, which are known to be less volatile.

6.3 Limits to Dependability

The dependability criterion assesses the extent to which the research design and execution
is comprehensible and replicable.

Firstly, individual researchers may have an impact on data collection, particularly during
the interview procedure. To mitigate this influence, we developed a comprehensive inter-
view guide to standardize the structure of interviews and core questions (Kallio et al. 2016).
Furthermore, to enhance methodological rigor, we implemented investigator triangulation
(Thurmond 2001), with two interviewers conducting separate sets of interviews to minimize
individual bias.

Secondly, thematic analysis relies on the researcher’s knowledge and perspective, poten-
tially making data analysis less replicable. To address this concern, we conducted inter-
coder reliability sessions to ensure consistent interpretation of interview excerpts across
multiple researchers (O’Connor and Joffe 2020).

Thirdly, while confidentiality agreements prevent us from sharing interview transcripts as
supplementary materials, we have taken steps to ensure transparency and comprehensibil-
ity in our study. Our supplementary materials include representative quotes and summaries
highlighting each interview’s contribution to thematic patterns (Braun and Clarke 2006). By
providing these details, we aim to facilitate a deeper understanding of our research process
and enhance the trustworthiness of our findings.

6.4 Limits to Confirmability

The confirmability criterion assesses the extent to which the biases and perspectives of the
researcher shaped the results.

The interview guides served as a protocol to prevent derailing the interviews from their
focus and asking questions in a reproducible manner. However, their design might have
introduced a bias towards certain features of the phenomenon. To mitigate such a bias, we
led with open questions first to get an unaffected viewpoint on a topic. Afterward, we occa-
sionally asked for opinions on topics other interviewees brought up so we could get a better

1 3

 127 Page 34 of 46

Empirical Software Engineering (2025) 30:127

picture of certain features of the phenomenon. This approach manifests itself in Interview
Guide 2 (see Appendix A.3), where we first generally asked about the advantages and disad-
vantages of technological heterogeneity before detailing its relation to cost and innovation
speed. These two features, cost and innovation speed, arose from the first set of interviews
as potentially interesting influencing trade-off factors. Even though this interview guide
design might have influenced the data collection, we paid attention to not forcing any results
during data analysis and reporting this potential bias. In this specific case, we were not able
to find a common theme in the interviews for how innovation speed affects technological
heterogeneity and vice versa. As the analysis was inconclusive on this aspect, we also didn’t
report any relationship. For costs, we were able to find such a relationship, even though it
was a more complex one than we anticipated after the first set of interviews.

The data analysis procedure is subject to limitations as well. Firstly, thematic analysis
inherently relies on the researcher’s knowledge and perspective, which may introduce bias
in the interpretation of data. Secondly, different researchers may interpret the same data dif-
ferently, leading to potential variations in findings. Thirdly, unconscious selective reporting
may favor particular themes or viewpoints, affecting the overall integrity of the study.

To mitigate these biases, we implemented several measures. To mitigate introducing
biases, we complemented the continuous professional exchange between all co-authors and
further members of our research group with regular peer debriefings to “[...] confirming that
the findings and the interpretations are worthy, honest, and believable” (Spall 1998).

Additionally, inter-coder reliability sessions were conducted, necessitating the mainte-
nance of a detailed codebook. The codebook documents the rationale behind each theme
and code, along with criteria for their application (MacQueen et al. 1998). By formulating
these criteria and soliciting qualitative feedback from the inter-coders, we strengthened the
confirmability of our findings.

7 Conclusion

This article presents a study of technological heterogeneity (TH) in microservice-based
projects and a theory of how to effectively balance the resulting trade-offs in alignment with
project objectives.

Through interviews with industry practitioners, we developed a prescriptive multi-tier
influence research model showcasing the factors influencing governance decisions regarding
TH. We conceptualized TH as an n-dimensional spectrum, where each dimension represents
a technological aspect, ranging from uniform to diversified choices across microservices.
The delta of the current degree of TH to the optimal one, which is affected by the trade-off
effects and the environmental factors of the project, is the main driver for governance in this
regard. Further, we distilled 13 industry best practices that can guide the intent to change
the current degree of TH towards the optimal one. The core best practice is introducing
meaningful standardization as a governance tool to limit TH to a desirable degree, allowing
essential but avoiding accidental heterogeneity. Standardizations should be deliberately cre-
ated (e.g., by inter-team communities), knowledge about them should be actively dispersed
(e.g., by documentation of standardization), and their application should be incentivized
(e.g., by offering service templates) or enforced (e.g., by audits).

1 3

Page 35 of 46 127

Empirical Software Engineering (2025) 30:127

Our findings represent a pioneering effort to address the challenges of TH in microser-
vice-based projects. While some of the results confirm ”common industry knowledge“,
like using more technologies to increase operation and maintenance costs, they have never
been empirically derived in this depth, and there is value in systematically confirming such
assumptions (Tichy 2000). However, we also present new insights, like describing the gov-
ernance process of balancing TH in a prescriptive multi-tier influence research model and
compiling a set of best practices to implement such a governance. By shedding light on this
underexplored area, our research serves as a catalyst for further theoretical development
and empirical validation in academia. Practitioners can leverage our insights as actionable
guidance to inform their technology governance practices. Notably, our adoption of the
practitioner-focused pattern presentation format enhances our findings’ applicability in real-
world contexts.

While our research approach ensured robustness through data-driven analysis, it is imper-
ative to acknowledge that they remain untested hypotheses. The gained insights require
future statistical validation incorporating diverse industry settings to proof the generaliz-
ability of our findings. Future endeavors should aim to expand upon our work by examining
TH dynamics in varied organizational contexts, thus enriching the theoretical framework
and strengthening assertions regarding applicability. The hypotheses we presented in the
discussion section may serve as a starting point for future work. Field experiments and
online survey studies can add clarity to the topic by validating such hypotheses. We explic-
itly welcome other research groups building on our results to advance the field.

We generally advocate for an intensified focus on organizational topics in microservice-
based projects. Even though microservices are ”just“ an architectural style, our interviewees
gave us strong indicators that ”just“ considering it as an architectural choice isn’t enough to
lead such projects to success:

 “[...] decisions on the management-political and organizational level, change and
culture, and so on [...] are probably - actually quite certainly - the most challenging
part if you want to [adopt microservices] the right way because you end up rethinking
your whole IT [...].” - Interview G4, translated from German

 Future work might pick up the organizational best practices we found in the context of
technological heterogeneity and transfer them to other organizational challenges. For exam-
ple, teams for cross-cutting concerns or taskforce teams might be significant contributors
to solving other socio-technical challenges in microservice-based projects. Exploring and
inter-connecting organizational theories in this area has the potential further to ease the
adoption of microservice architectures in practice.

In closing, it is clear that microservice-based projects are difficult to get right. As research
continues to evolve on the topic, it is essential to remember that the people implementing
software architectures and their interactions decide the success of projects and not a single
technology.

1 3

 127 Page 36 of 46

Empirical Software Engineering (2025) 30:127

Appendix

Best Practices

BP1: Meaningful standardization
Context:
There are multiple cross-functional teams, each responsible for one or more microservices.
Problem:
(1) The diversity of technology (tech stacks, programming languages, frameworks, data stores) leads to
additional costs, and limits the effectiveness of moving people from one team to another due to high knowl-
edge barriers.
(2) The stringent enforcement of one specific technology stack limits the flexibility and introduces com-
plexity by using not suiting tools.
Solution:
Introduce meaningful standardization to welcome essential technological heterogeneity and prevent ac-
cidental one. Establish processes and mechanisms to (i) create standardization, (ii) disperse the knowledge
of their existence and how to implement them across the microservices teams, and (iii) consistently apply
them.
Sources of evidence:
T1, T2, T3, T4, T5, T6, T7, T8, T9, G1, G2, G4, G5, G6
Representative quotes:
"It makes sense to define a set of minimal standards so that [the microservice teams] don’t have to start
at zero when coordinating, so that coordination can be reduced to the minimal amount that is necessary.
It is a trade-off at the end of the day. [...] The value curve is kind of a bell-shaped curve or a parabola,
logically speaking. It has a sweet spot. Too little is not good; too much isn’t good either." - G4, translated
from German

BP2: Inter-team communities
Context:
There are multiple cross-functional teams, each responsible for one or more microservices. The project
aims to introduce meaningful standardization (P1).
Problem:
Global decisions for standardization lack the backing of the teams, are questioned, or are even partially
ignored.
Solution:
Establish inter-team communities for decision-making, like standardization. Communities revolve around
certain subjects, usually around a cross-cutting concern or a technology type. Subject-savvy and interested
members of the different microservice teams can participate in the communities and represent their team
in the community. The community (a) keeps an overview of their topic, (b) makes critical decisions, (c)
assigns the responsibility of shared capabilities or bears it itself, and (d) disperses information across teams
by their representatives.
Sources of evidence:
T1, T2, T4, T5, T6, T7, T8, T9, G2, G3, G4, G5, G6
Representative quotes:
"We like to speak of micro and macro architecture or micro and macro decisions. Micro is everything I
can decide on my own. Macro would be something like the API design guide [...], or a security concept,
or which tracing infrastructure and format to support. [...] these are macro decisions that someone has
to make. Usually a group. What we frequently do is that every service team sends an architecture-savvy
representative to an architecture board. And there exactly these decisions are made [...]." - G2, translated
from German

1 3

Page 37 of 46 127

Empirical Software Engineering (2025) 30:127

BP3: Teams for cross-cutting concerns
Context:
There are multiple cross-functional teams, each responsible for one or more microservices. The project
aims to introduce meaningful standardization (P1).
Problem:
Global decisions for standardization of cross-cutting concerns lack the backing of the teams since it puts
more load on the microservice teams to adhere to the standardizations.
Solution:
Establish a team responsible for the cross-cutting concern as an organizational unit. This team makes de-
cisions on standardization on the cross-cutting concern and supports the microservice teams adhering to
the standardization. For example, an operations team could operate and maintain certain standardized da-
tabases and provide monitoring capabilities to the microservice teams that adhere to the standardization.
Sources of evidence:
T1, T2, T3, T5, T7, T8, T9, G1, G2, G5, G6
Representative quotes:
"Most often, there is a dedicated team for the things in technology in the mainline that is responsible. For
us, it is a monitoring team, there is also a team doing the databases." - T7, translated from German

BP4: Taskforce team
Context:
The project is in the beginning stages of adopting a microservice-based architecture. There are multiple
cross-functional teams, each responsible for one or more microservices. The project aims to introduce
meaningful standardization (P1).
Problem:
Microservice teams cannot live up to the knowledge needs required for microservices and the introduced
standardizations.
Solution:
Introduce a task force team that acts as a front-running team. It builds up the required knowledge about
technologies, makes decisions on technology standardization, and supports the microservice teams to catch
up and adhere to the standardizations.
Sources of evidence:
T1, T2, T4, T6, G1
Representative quotes:
"So we do have a formal core services team. And that happened because we needed, essentially, we needed
to like really buckle down on this microservices approach and we needed to build out a lot of this stuff very
quickly. So so we ended up establishing this team. So we had somebody with like the sole responsibility for
it." - T4

BP5: Deliberate experimentation
Context:
There are multiple cross-functional teams, each responsible for one or more microservices. The project
aims to introduce meaningful standardization (P1).
Problem:
The current standardization does not satisfy all use cases efficiently.
Solution:
Deliberately plan and allocate resources for experimentation phases. Proof of concepts and prototypes can
be utilized to evaluate the fit of a new technology and whether it is worth the cost of introducing and main-
taining an additional technology. Experimentation might mean spending effort without a positive outcome.
These expenses should be weighed against the benefits an additional technology may introduce.
Sources of evidence:
T1, T3, T4, T5, T6, T7, T8, T9, G1, G2, G4

1 3

 127 Page 38 of 46

Empirical Software Engineering (2025) 30:127

BP5: Deliberate experimentation
Representative quotes:
"And it was actually a common thing to start when a new feature was to be developed to start with a little
POC and evaluate what would be the best technology for to address that. Which database is the best fit,
for example." - T9

BP6: Documentation of standardization
Context:
There are multiple cross-functional teams, each responsible for one or more microservices. The project
aims to introduce meaningful standardization (P1). A standardization has been created or updated.
Problem:
The information of standardization decisions does not flow to the microservice teams which should adhere
to the standardization.
Solution:
Document the standardization at a defined place. Documenting not only the outcome but also the consid-
erations surrounding technology decisions serves as a look-up for the microservice teams. Developers can
inspect which technology is usable without any discussion. Organizing all standardization documentation
in one location instead of dispersing it to multiple locations improves discoverability.
Sources of evidence:
T1, T2, T4, T5, T9, G2, G5
Representative quotes:
"But this was documented then in the end of the session in the Confluence [wiki] page. And there was also a
complete tech stack page that every engineer could look up and just see what were green-lighted techs that
they could use already without discussion." - T5

BP7: Regular cross-team discussions
Context:
There are multiple cross-functional teams, each responsible for one or more microservices. The project
aims to introduce meaningful standardization (P1). A standardization has been created or updated.
Problem:
Situations arise that point to a lack of knowledge transfer between microservice teams. The informa-
tion of standardization decisions does not flow to the microservice teams which should adhere to the
standardization.
Solution:
Organize a regular cross-team discussion meeting serving to convey knowledge between teams. It can be as
simple as reserving a fixed time slot every week and offering a stage for presenting progress, insights, and
established standardization that might be relevant for all teams. Teams can send representatives that will
take the knowledge into their teams.
Sources of evidence:
T3, T4, T9, G4, G6
Representative quotes:
"There are environments where the teams are allowed to introduce whatever they want to. [...] the only
enforcement is they have to speak about it. So whatever they’ve learned, they have to share it with the other
teams and they have to give a town hall session about new technology they have tested or introduced and
stuff like this. And from my perspective, even this is not an enforcement, but an incentive." - T3

BP8: Education programs
Context:
There are multiple cross-functional teams, each responsible for one or more microservices. The project
aims to introduce meaningful standardization (P1). A standardization has been created or updated.

1 3

Page 39 of 46 127

Empirical Software Engineering (2025) 30:127

BP8: Education programs
Problem:
Situations arise that point to a lack of knowledge to implement some standardization. The information on
how to adhere to some standardization decisions does not flow to the microservice teams.
Solution:
Establish an education program for the microservices teams. Education programs can support overcoming
the knowledge hurdles to do microservices and adhering to the created standardization in an efficient way.
Education programs can come in different formats, like lectures, workshops, or blueprints and tutorials on
how to adhere to a standardization.
Sources of evidence:
T1, T6, T7, G1
Representative quotes:
"Yeah, but it would definitely help if you would have some standard decisions and also maybe some tem-
plates and some blueprints. For instance, like the upgrade from .NET 3 to 6 - if we stay with that example
- it’s actually quite easy. If you know what to do, you need to replace this and that. And usually, everything
is fine afterward. But it would help a lot if you have that standard and say: Please teams take a look here.
That’s how you do it. It would not cost you more than one day. Please do it. If you have any questions, come
to us." - T1

BP9: Technology sign-off process
Context:
There are multiple cross-functional teams, each responsible for one or more microservices. The project
aims to introduce meaningful standardization (P1). A standardization has been created or updated. The
microservice teams are aware of that and have the knowledge to adhere to the standardization
Problem:
Some microservice teams do not adhere to the standardization.
Solution:
Introduce a mandatory technology sign-off process. Every time a microservice team wants to use a previ-
ously unused technology, they have to get the technology signed off. This process empowers an orga-
nizational entity to enforce the tech stack and only introduce essential and no accidental technological
heterogeneity.
Sources of evidence:
T3, T5, T7, T9
Representative quotes:
"But later on, it went all through the body of this tech council, tech committee. That means when a team
wanted to add new software or even nothing about adding new software, but just starting a new project,
there was at least a short discussion with the tech council to just see and discuss what’s necessary. What
kind of databases do they need? What kind of infrastructure support do they need? And then also discus-
sion, what kind of tech are they going to use? And reuse maybe even existing tech that we had in the
company." - T5

BP10: Audits for the detection of deviations
Context:
There are multiple cross-functional teams, each responsible for one or more microservices. The project
aims to introduce meaningful standardization (BP1). A standardization has been created or updated. The
microservice teams are aware of that and have the knowledge to adhere to the standardization
Problem:
Some microservice teams do not adhere to the standardization.
Solution:
Introduce a regular auditing process to check and enforce that microservice teams adhere to the standard-
ization. Deviations can be detected and discussed. Audits can take the shape of parts of a formal audit in
domains that are regulated anyway, e.g., the health sector, or be part of informal audits, e.g., code reviews.

1 3

 127 Page 40 of 46

Empirical Software Engineering (2025) 30:127

BP10: Audits for the detection of deviations
Sources of evidence:
T2, T5, T6, T9, G1, G6
Representative quotes:
"There were periodic audits where certain things had to be there. Not everything from the beginning, but
there were various milestones that defined that some things needed to be implemented when reaching them
in our project regarding procedures, processes, and standards" - G6, translated from German

BP11: Automation of the deviation detection
Context:
There are multiple cross-functional teams, each responsible for one or more microservices. The project
aims to introduce meaningful standardization (BP1). A standardization has been created or updated. The
microservice teams are aware of that and have the knowledge to adhere to the standardization
Problem:
Some microservice teams do not adhere to the standardization.
Solution:
Automate the detection of deviations from the standardization, e.g., as software tests in the CI pipeline.
Making the standardization measurable and bringing it to the attention of the developers enforces or incen-
tivizes adherence to the standardization, depending on whether the CI pipeline fails or just logs a warning.
If furnished with a clue on how to implement the standardization, such automatization can also serve as a
communication tool to disperse knowledge.
Sources of evidence:
T1, T2, T4, T9, G1, G2, G6
Representative quotes:
"Similar to if you use Sonar cloud for checking your code quality. [...] So having like a measurable stan-
dard. All automated for sure. That would help a lot. That you have this one dashboard where it says, okay,
these two services are running behind the standard. [...] So I would not enforce but rather kind of point out
that the standard is violated. With a clear indication on how to fix it." - T1

BP12: Service templates
Context:
There are multiple cross-functional teams, each responsible for one or more microservices. The project
aims to introduce meaningful standardization (BP1). A standardization has been created or updated. The
microservice teams are aware of that and have the knowledge to adhere to the standardization
Problem:
Some microservice teams do not adhere to the standardization.
Solution:
Establish and maintain a template for a quicker ramp-up of new microservices. Such a starting point for
new microservices incentivizes sticking to the standardization by the convenience of software reuse. Using
different technology would require efforts to develop an equivalent starting point for a new microservice.
Sources of evidence:
T1, T4
Representative quotes:
"So basically the standards were set by the two teams. But following that, it’s a bit fuzzy [...] we do have a
template for microservices, which is also more or less up to date." - T1

BP13: Collaboration on cross-cutting tools and libraries
Context:
There are multiple cross-functional teams, each responsible for one or more microservices. The project
aims to introduce meaningful standardization (BP1). A standardization has been created or updated. The
microservice teams are aware of that and have the knowledge to adhere to the standardization

1 3

Page 41 of 46 127

Empirical Software Engineering (2025) 30:127

BP13: Collaboration on cross-cutting tools and libraries
Problem:
Some microservice teams do not adhere to the standardization.
Solution:
Introduce an inner-source or open-source process to foster collaboration between teams on cross-cutting
tools and libraries. Reusing such tools and libraries incentivizes sticking to the standardization by the con-
venience of software reuse. Using different technology would require efforts to re-implement an equivalent
solution. These shared projects should target reusable general-purpose code and not domain-specific aspects
like shared models to avoid introducing coupling between microservices.
Sources of evidence:
T1, T2, T6, T7, T8, T9, G5
Representative quotes:
It’s as I mentioned previously, we have lots of libraries in place that already force you into a certain direction.
[...] And if you use the libraries we provide, it’s pretty much standardized then again. But you would have
the freedom to do something else. But it’s more convenient just to use the libraries currently, at least. - T2

Qualitative Survey - Interview Guide 1 (Microservice Integration)

Interview Guide 1 aimed to explore the challenges and existing solutions in microservice inte-
gration. Accordingly, the questions were open-ended and broad in scope. While technologi-
cal heterogeneity was not explicitly addressed, it emerged organically during the interviews.
Using probing techniques, we posed follow-up questions where appropriate. These insights
motivated a more focused follow-up study on technological heterogeneity (see Appendix
A.3). Additionally, we used these interviews as the foundation for our thematic analysis.

Phase 1: Preamble

 – Small talk
 – Introduce us and our research context
 – Information about confidentiality and data handling
 – Which language is preferred? English vs. German?
 – Audio recording ok?

Phase 2: Warm-up Questions

 – Please present yourself, your role and responsibilities at your company.
 – Since when are you using microservices?
 – What is a microservice for you?
 – Why should you use microservices? Why should you not?

Phase 3: Definition Microservice Integrationw

 – What is microservice integration to you?

Phase 4: Microservice Integration Techniques

For each topic identified in phase 3:

 – Why is this topic important?

1 3

 127 Page 42 of 46

Empirical Software Engineering (2025) 30:127

 – What are the goals in that topic?
 – How do/did you achieve these goals?
 – Which problems are/were preventing you from achieving these goals?
 – What are solutions you found to these problems?
 – What else is important for that topic?

Phase 5: Cool-down

 – What aspect was not mentioned in this interview that you would like to be part of our
research?

 – Can you recommend someone equally knowledgeable in microservices that we could
contact for our research?

Qualitative Survey - Interview Guide 2 (Technological Heterogeneity)

Interview Guide 2 aimed to deepen our understanding of balancing technological hetero-
geneity in microservice-based projects. Accordingly, the questions focused exclusively on
this topic. We also employed probing techniques to clarify misunderstandings and reveal
implicit knowledge. Following the interviews, we extended the initial code system by incre-
mentally coding this new data.

Phase 1: Preamble

 – Small talk
 – Introduce us and our research context
 – Information about confidentiality and data handling
 – Which language is preferred? English vs. German?
 – Audio recording ok?

Phase 2: Warm-up Questions

 – Please present yourself, your role, and your responsibilities at your company.

Phase 3: Technological Heterogeneity in General

 – How heterogeneous are the technologies in your microservice project(s)?
 – What are the advantages and disadvantages of technological heterogeneity in your

experience?
 – How is technological heterogeneity related to the innovation speed of the project?
 – How is technological heterogeneity related to the costs of the project?

Phase 4: Governing Technological Heterogeneity

 – How do you manage the heterogeneity of technologies in your microservice project(s)?
 – Which kinds of technologies are managed? Is there a rule of thumb on what to manage

and what not?

1 3

Page 43 of 46 127

Empirical Software Engineering (2025) 30:127

 – Who is responsible for what in the government process?
 – How is uniformity enforced or incentivized?

Phase 5: Cool-down

 – Which aspects of the topic did we not yet discuss but are especially important to you?
 – Can you recommend someone equally knowledgeable in microservices that we could

contact for our research?

Acknowledgements The present work was performed in partial fulfillment of the requirements for a cumu-
lative dissertation. We thank our colleagues for their continuous feedback and proofreading of this article.
Finally, we are very grateful for the support we received from the industry, especially from the interviewees
who donated their valuable time to support our research, such as Aron Metzig, Benjamin Klatt (viadee), Jonas
Schüll, Rasmus Roy Tillgaard, Sebastian Denel, Sebastian Goeb (WS Audiology), and Stefan Appel.

Author Contributions Georg-Daniel Schwarz: Conceptualization (equal), Data curation (lead), Formal analy-
sis (lead), Funding acquisition (supporting), Investigation (equal), Methodology (equal), Project Management
(lead), Software (lead), Validation (equal), Writing - original draft (lead), Writing - review and editing (equal);
Philip Heltweg: Conceptualization (supporting), Data curation (supporting), Formal analysis (supporting),
Investigation (equal), Methodology (equal), Project Management (supporting), Validation (equal), Writing -
review and editing (equal); Dirk Riehle: Conceptualization (equal), Funding acquisition (lead), Investigation
(supporting), Methodology (equal), Resources (lead), Supervision (lead), Writing - review and editing (equal).

Funding Open Access funding enabled and organized by Projekt DEAL. This work was supported by BMBF
(Federal Ministry of Education and Research) Software Campus 2.0 project (BePra-MSI, 01IS17045), and by
DFG (German Research Foundation) Research Grants Programme (Industry Best Practices for Microservice
Integration, RI 2147/9-1).

Data Availability Supplementary materials were are available on Zenodo: h t t p s : / / d o i . o r g / 1 0 . 5 2 8 1 / z e n o d o . 1 5
6 3 2 0 3 9 . Due to confidentiality agreements, we cannot make the interview recordings or transcripts publicly
available. However, the supplementary materials summarize how the interviews contributed to the individual
elements of our theory by summarizing their content to the specific points.

Declarations

Ethical Approval The study involved non-sensitive interview data and did not pose any risks to the partici-
pants. We did not seek approval by an ethics board because it is neither required nor standard in this kind of
study at our institution.

Informed Consent Informed verbal consent was obtained from all participants before the commencement
of the interviews. Participants were informed about the study’s aims, their right to confidentiality, and their
freedom to withdraw at any time without consequence.

Competing interests The authors have no competing interests to declare that are relevant to the content of
this article.

Clinical Trial Number Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use is not permitted

1 3

 127 Page 44 of 46

https://doi.org/10.5281/zenodo.15632039
https://doi.org/10.5281/zenodo.15632039

Empirical Software Engineering (2025) 30:127

by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Balalaie A, Heydarnoori A, Jamshidi P, Tamburri DA, Lynn T (2018) Microservices migration patterns.
Softw Pract Exp 48(11):2019–2042

Baškarada S, Nguyen V, Koronios A (2018) Architecting microservices: practical opportunities and chal-
lenges. J Comput Inf Syst

Bogner J, Zimmermann A (2016) Towards integrating microservices with adaptable enterprise architecture.
In: 2016 IEEE 20th International Enterprise Distributed Object Computing Workshop (EDOCW), pp
1–6

Braun V, Clarke V (2006) Using thematic analysis in psychology. Qual Res Psychol 3(2):77–101
Brooks FP, Bullet NS (1987) Essence and accidents of software engineering. IEEE Comput 20(4):10–19
Campbell JL, Quincy C, Osserman J, Pedersen OK (2013) Coding in-depth semistructured interviews: prob-

lems of unitization and intercoder reliability and agreement. Sociol Methods Res 42(3):294–320
Chen L (2018) Microservices: architecting for continuous delivery and DevOps. In: 2018 IEEE International

conference on software architecture (ICSA). IEEE, pp 39–397
Clarke V, Braun V, Hayfield N (2015) Thematic analysis. Qualitative psychology: a practical guide to

research methods, vol 222, pp 248
Di Francesco P, Lago P, Malavolta I (2018) Migrating towards microservice architectures: an industrial sur-

vey. In: 2018 IEEE International Conference on Software Architecture (ICSA). IEEE, pp 29–2909
Eisenhardt KM, Graebner ME (2007) Theory building from cases: opportunities and challenges. Acad Manag

J 50(1):25–32
Guba EG (1981) Criteria for assessing the trustworthiness of naturalistic inquiries. Ectj 29(2):75–91
Guion LA, Diehl DC, McDonald D (2011) Triangulation: establishing the validity of qualitative studies:

FCS6014/FY394, Rev. 8/2011. Edis 8:3–3
Harms H, Rogowski C, Iacono LL (2017) Guidelines for adopting frontend architectures and patterns in

microservices-based systems. In: Proceedings of the 2017 11th joint meeting on foundations of software
engineering, pp 902–907

Hennink M, Kaiser BN (2022) Sample sizes for saturation in qualitative research: a systematic review of
empirical tests. Soc Sci Med 292(2022):114523

Jamshidi P, Pahl C, Mendonça NC, Lewis J, Tilkov S (2018) Microservices: the journey so far and challenges
ahead. IEEE Softw 35(3):24–35

Jansen H et al (2010) The logic of qualitative survey research and its position in the field of social research
methods. In: Forum qualitative sozialforschung/forum: qualitative social research, vol 11

Kallio H, Pietilä A-M, Johnson M, Kangasniemi M (2016) Systematic methodological review: developing a
framework for a qualitative semi-structured interview guide. J Adv Nurs 72(12):2954–2965

Krylovskiy A, Jahn M, Patti E (2015) Designing a smart city internet of things platform with microservice
architecture. In: 2015 3rd international conference on future internet of things and cloud. IEEE, pp
25–30

Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics
159–174

MacQueen KM, McLellan E, Kay K, Milstein B (1998) Codebook development for team-based qualitative
analysis. Cam J 10(2):31–36

Márquez G, Astudillo H (2018) Actual use of architectural patterns in microservices-based open source proj-
ects. In: 2018 25th Asia-Pacific Software Engineering Conference (APSEC). IEEE, pp 31–40

Motulsky SL (2021) Is member checking the gold standard of quality in qualitative research? Qual Psychol
8(3):389

Myers MD, Newman M (2007) The qualitative interview in IS research: examining the craft. Inf Organ
17(1):2–26

Newman S (2021) Building microservices. O’Reilly Media"
O’Connor C, Joffe H (2020) Intercoder reliability in qualitative research: debates and practical guidelines. Int

J Qual Methods 19(2020):1609406919899220
Palvia P, Midha V, Pinjani P (2006) Research models in information systems. Commun Assoc Inf Syst

17(1):47

1 3

Page 45 of 46 127

http://creativecommons.org/licenses/by/4.0/

Empirical Software Engineering (2025) 30:127

Rademacher F, Sachweh S, Zündorf A (2019) Aspect-oriented modeling of technology heterogeneity in
microservice architecture. In: 2019 IEEE International conference on software architecture (ICSA).
IEEE, pp 21–30

Rademacher F, Sorgalla J, Wizenty P, Sachweh S, Zündorf A (2020) Graphical and textual model-driven
microservice development. Microservices: science and engineering, pp 147–179

Riehle D, Züllighoven H (1996) Understanding and using patterns in software development. Tapos 2(1):3–13
Schwarz G-D, Bauer A, Riehle D, Harutyunyan N (2025) A taxonomy of microservice integration tech-

niques. Inf Softw Technol 2025:107723
Spall S (1998) Peer debriefing in qualitative research: emerging operational models. Qual Inq 4(2):280–292
Strauss A, Corbin J (1998) Basics of qualitative research techniques
Taibi D, Lenarduzzi V, Pahl C (2018) Architectural patterns for microservices: a systematic mapping study.

In: Proceedings of the 8th international conference on cloud computing and services science, CLOSER
2018, Funchal, Madeira, Portugal, March 19-21, 2018, Muñoz VM, Ferguson D, Helfert M, Pahl C
(eds). SciTePress, pp 221–232

Thurmond VA (2001) The point of triangulation. J Nurs Scholarsh 33(3):253–258
Tichy WF (2000) Hints for reviewing empirical work in software engineering. Empir Softw Eng 5(4):309–312
Weerasinghe S, Perera I (2022) Taxonomical classification and systematic review on microservices. Int J Eng

Trends Technol 70(3):222–233
Widjaja T, Gregory RW (2012) Design Principles for heterogeneity decisions in enterprise architecture

management

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations..

1 3

 127 Page 46 of 46

	Balancing technology heterogeneity in microservice architectures
	Abstract
	1 Introduction
	2 Related Work
	3 Research Approach
	3.1 Expert Interviews
	3.1.1 Interviewee Sampling
	3.1.2 Interview Preparation
	3.1.3 Data Collection
	3.1.4 Choice of Analysis Method

	3.2 Thematic Analysis
	4 Results
	4.1 Degree of Technological Heterogeneity (Current, Optimal, Delta)
	4.1.1 The Scale of Heterogeneity
	4.1.2 One Dimension per Technology Type

	4.2 Trade-off Effects
	4.2.1 Benefits of Both Sides
	4.2.2 Costs of Introducing Technology

	4.3 Environmental Factors
	4.4 Intent to Change
	4.5 Governance Best Practices
	4.5.1 Creation of Standardization
	4.5.2 Dispersion of Standardization
	4.5.3 Application of Standardizations

	5 Discussion
	5.1 A Guide for Practitioners
	5.1.1 Influence of the Project Phase (F3)
	5.1.2 Influence of the Culture (F2)
	5.1.3 Influence of the Software Engineers’ Skills (F1)
	5.1.4 Influence of the Project Domain (F4)
	5.1.5 Context-Independent Aspects

	5.2 Organizational Challenges as Research Opportunities
	6 Limitations
	6.1 Limits to Credibility
	6.2 Limits to Transferability
	6.3 Limits to Dependability
	6.4 Limits to Confirmability

	7 Conclusion
	Appendix
	Best Practices
	Qualitative Survey - Interview Guide 1 (Microservice Integration)
	Phase 1: Preamble
	Phase 2: Warm-up Questions
	Phase 3: Definition Microservice Integration
	Phase 4: Microservice Integration Techniques
	Phase 5: Cool-down

	Qualitative Survey - Interview Guide 2 (Technological Heterogeneity)

