
AA bill of materials (BOM) is a list of components 
(“materials”) that make up some artifact. A 
software BOM (SBOM) is a BOM where all the 
components are software components. It is im-

portant to have an SBOM for a software project or product that 
is as complete and correct as possible, for two main reasons.

› Critical data structure: Complete and correct SBOM 
data are critical for a host of engineering functions. 
The three most important functions that require an 
SBOM are
• Open source governance: To decide which compo-

nents are acceptable to a project or product, you 
first need to know whether they are included 

and then what licenses and 
other conditions they come 
with.

• License compliance: To deliver 
your project to clients or 
your product to customers, 
you need to comply with the 
licenses of any open source 
code included in the soft-
ware. The SBOM tells you 
what those are.

• Security and vulnerability management: To manage 
operational risk, you need to understand what 
components are doing their job in the given 
software, whether there are known vulnerabili-
ties, and whether new vulnerabilities have been 
discovered.

	› Non-functional requirement: A complete and correct 
SBOM has become a purchasing requirement of 
many customers.

Originally, large customers in a software supply chain 
would require from their suppliers that they provide 
SBOMs together with any software they were supplying. 
In the case of custom software projects, large customers 
would even request to receive signoff authority on the use 
of open source components before they were incorporated 
into the software being built.

The Software Bill of 
Materials
Dirk Riehle , Friedrich-Alexander-Universität Erlangen-Nürnberg

Cybersecurity threats and software supply chain 

attacks are at an all-time high. Customers and 

agencies keep tightening the requirements 

for their software. An important recent 

development is the practical use of software  

bills of materials. 

Digital Object Identifier 10.1109/MC.2025.3530276 
Date of current version: 27 March 2025

EDITOR DIRK RIEHLE 
Friedrich Alexander-University of Erlangen Nürnberg;

dirk.riehle@fau.deOPEN SOURCE

C O M P U T E R   	 P U B L I S H E D  B Y  T H E  I E E E  C O M P U T E R  S O C I E T Y    A P R I L  2 0 2 5 � 115
0018-9162 ©2025 IEEE. All rights reserved, including rights for text and  
data mining, and training of artificial intelligence and similar technologies.

https://orcid.org/0000-0002-8139-5600


116	 C O M P U T E R   � W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE

In 2020, the European Union (EU) 
announced the Cyber Resilience Act 
(CRA).a This regulation complements 
the previous NIS-2 legislation to im-
prove product security across the EU. 
The CRA entered into force in 2024. 
Vendors of products that include 
software are required to provide an 
SBOM to customers as well as to pro-
actively track and respond to any vul-
nerabilities that become known about 
their products.

In 2021, the U.S. American govern-
ment issued an executive order requir-
ing, among other things, that any U.S. 
federal purchaser of software be pro-
vided an SBOM for the software being 
purchased.b While previous motiva-
tions for an SBOM were mostly about 
license compliance, the U.S. govern-
ment cares more about cybersecurity 
and the risks from vulnerabilities in 
software. It is safe to assume that other 
governments will follow suit.

For any given software, the SBOM 
needs to list the original code of the 
supplier, presumably with their pro-
prietary license, as well as any third-
party components. A third-party com-
ponent is any code, including open 
source code, not owned by you. Such 
third-party components come in two 
main forms.

1.	 Standalone components 
are the traditional libraries 
and components you are 
including in your project or 
product.

ahttps://digital-strategy.ec.europa.eu/en/policies/
cyber-resilience-act.
bhttps://www.nist.gov/itl/executive-order-14028 
-improving-nations-cybersecurity

2.	 Code snippets are chunks 
of source code that have been 
copied and pasted into your 
code or into the third-party 
code you are using.

The two prominent (and competing) 
specifications for representing SBOMs 
are the SPDX and the CycloneDX spec-
ifications. These specifications allow 
the presentation of an SBOM in a lin-
ear format (list) of records with each 
record representing a component and 
some of its metadata.

There are different types of SBOM, 
created for different purposes. The 
most common SBOM is the one given 
to customers as a part of selling a prod-
uct. Other types of SBOMs add tool-
ing information to document how the 
software is being built or include ver-
ification information to comply with 
regulatory requirements.

To create an SBOM, you need to 
identify and gather all third-party 
component s you r code i s u si ng, 
whether a standalone component or a 
code snippet. For any such component, 
you need to gather the necessary meta-
data for each component.

It is impossible to create a complete 
and correct SBOM for a nontrivial 
piece of software. Too much copy and 
paste without tracking lineage in both 
open and closed source software has 
ruined this opportunity.

THE DEPENDENCY GRAPH
The process of creating an SBOM is 
called software composition analysis 
(SCA). An SCA first creates the so-called 
dependency graph of your software and 
then derives the SBOM from it.

A dependency is a software com-
ponent that some other component 
depends on. A component depends on 
another component if the component 
can’t perform its function without the 
depended-on component. In the com-
mon case, this is a code dependency, 
like being able to call the functions of 
the depended-on component.

A dependency graph is a graph of 
software components as the nodes 
connected by depends-on (depen-
dency) relationships as the edges 
(links). In any modern software, most 
of these components will be third-
party components, including open 
source components, which are com-
ponents owned and licensed to you by 
someone else.

There are many different types of 
components that can become nodes 
in a dependency graph, depending on 
how broadly or narrowly the depen-
dency graph is to be used.

	› In the original narrow sense, the 
components in a dependency 
graph are all code compo-
nents. There are two types of 
components.
•	Traditional standalone com-

ponents or libraries: These are 
components that have a clear 
boundary with their context 
(they come as their own pack-
age, ideally with a well-de-
fined interface).

•	Code snippets: Code snippets 
are pieces of code that have 
been copied and pasted into 
your code by your developers 
or into open source depen-
dencies by the open source 
developers. Legally speak-
ing, such code snippets are 
components separate from 
the embedding component 
because they usually have a 
different copyright holder 
and a different license.

	› In a more recent broader sense, 
with the goal of completely 
documenting everything 
that goes into the building of 

FROM THE EDITOR

Welcome back! This month’s “Open Source” column continues discussing open 
source use in and by organizations. We turn to a fundamental data structure that 
anyone developing or using project or products built from open source needs: 
the software bill of materials, that is, an inventory of components in software. 
This data structure has become so important that governments have made it a 
requirement of professional software.—Dirk Riehle

https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act
https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity


	 A P R I L  2 0 2 5 � 117

software, components can also 
be tools that build the software, 
resources that provide the neces-
sary information, etc.

A dependency graph is a directed 
graph; incoming links to a component 
originate from other components that 
depend on this component, and outgo-
ing links from a component go to the 
other components that this compo-
nent depends on. As a matter of good 
software architecture, the graph is ide-
ally also an acyclic graph.

Dependencies have levels. The level 
number is the number of steps re-
moved from the root of the graph. This 
leads to the following definitions:

	› The root component of a depen-
dency graph has the level zero 
and is usually your own original 
code. There may be one or more 
root components.

	› The first-level dependencies are 
the immediate dependencies of 
the root component. They are 
noteworthy because they are 
present in the minds of your de-
velopers and they are explicitly 
specified in your build system 
instructions. They are also often 
called the direct dependencies.

	› Second- and higher-level depen-
dencies are the dependencies of 

your first-level dependencies. 
They are also called indirect 
dependencies. They are notewor-
thy because they are not present 
in the minds of your developers 
and they are not very visible in 
their day-to-day work. Yet they 
constitute the largest part of the 
code that your project or product 
is built from.

As a rule of thumb, the size rela-
tionship between your original code, 
your direct dependencies, and your 
indirect dependencies is one to nine 
to 90 in parts. In other words, 90% of 
your vulnerabilities stem from code 
you are not thinking much about. The 
indirect dependencies are the prover-
bial iceberg under the waterline.

SBOMs are created from a depen-
dency graph. The nodes of a depen-
dency graph correspond to the com-
ponent entries in the SBOM. While the 
dependency graph remains a graph 
structure, the SBOM drops the rela-
tionships and is (mostly) a flat list of 
components. For this reason, the de-
pendency graph and SBOM are not the 

same. Figure 1 shows a dependency 
graph, including our term definitions.

SCA
SCA is the analysis of your project or 
product’s source code to identify the 
component structure of the software, 
also known as its dependency graph. 
As discussed, components may be 
standalone components, or they may 

be code snippets. The code of a compo-
nent may be owned by you or by a third 
party, then called third-party code. 
Open source code is the most promi-
nent example of third-party code.

The main motivation for SCA, orig-
inally, was to ensure license compli-
ance. Any third-party code is legally 
separate code that comes with its own 
licenses. You need to comply with 
these licenses when you are delivering 
your projects to clients and delivering 
your products to customers.

Legally separate does not necessar-
ily mean technically separate. Most 
notably, source code snippets that 
have been copied into your source 
code or into your dependencies are 

FIGURE 1. Illustration of a dependency graph.

Root Components
(Your Original Code)

First-Level Dependencies
(Also Called Direct Dependencies)

Second-Level Dependencies
(Also Called Indirect Dependencies)

N th-Level Dependencies

Code Components
Static Code Relationships (Sometimes Also,
Confusingly, Called Dependency Relationships)

Embedded (Copied and Pasted) Code
(Legally, They are Their Own Components)

The dependency
Graph is (ideally) a

directed acyclic graph.

Copied code and pasted
code are their own code

components.

The two prominent (and competing) specifications 
for representing SBOMs are the SPDX and the 

CycloneDX specifications.



118	 C O M P U T E R   � W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE

legally separate code components even 
though they are embedded in your 
code or third-party code. You still need 
to identify these snippets, even in your 
dependencies, if you want to deliver li-
cense-compliant software.

SCA is typically performed using 
specialized tools. These tools read 
through the whole source code base 
of the software and try to identify any 
third-party code. An SCA tool needs 
access to the full source code, so in ad-

dition to providing your original code, 
you also have to either download the 
dependencies yourself or direct the 
tool on how to do so.

Examples of open source SCA proj-
ects are FOSSology,c a complete solu-
tion, and ScanCode,d a scanning tool 
to be embedded into a larger custom 
toolchain. An example of a free but 
comprehensive service is SCA Tool.e In 
addition, there are many commercial 
tools on the market.

For an SCA tool, the software con-
sists of a hierarchical folder struc-
ture with files and code snippets in 
files. Source code outside this folder 
structure is not considered. An SCA 
tool does not and should not make as-
sumptions about the folder structure 
mapping to the dependency graph in a 
particular way. As the result of an SCA, 
you will be presented with the folder, 
file, and snippet structure rather than 
the dependency graph. An export of 
this information in SBOM form will 
provide a flat list (rather than a graph).

SCA is not a fully automatic pro-
cess. Existing SCA tools will analyze 
the source code and present their find-
ings to their users for signoff. The key 
findings presented to users are

chttps://github.com/fossology/fossology.
dhttps://github.com/aboutcode-org/scancode-toolkit.
ehttps://scatool.com.

	› Component identification: For a 
given software component, an 
SCA tool will suggest a specific 
origin component, ideally using 
a unique component identifier 
like a package URL (PURL).

For a given code snippet, an SCA 
tool will also suggest the origin compo-
nent and to this add the location of the 
source code within the component that 
the snippet may have been copied from.

	› Legal information: Originally 
designed for license compliance, 
SCA tools will try to determine 
the component’s legal infor-
mation: which licenses, which 
copyright holders, and any other 
notices that a user needs to 
know about.

	› Vulnerabilities: More recently, 
SCA tools started adding known 
information on vulnerabilities, 
though this is often considered a 
follow-on step in a toolchain and 
not part of SCA.

In addition to source code analysis, 
binary analysis tools let you analyze 
the software composition of binary 
files. Binary files can be found any-
where; they might be hiding in a source 
code folder or be part of a container 
image. Like source code, they need to 
be found, identified, and analyzed.

WORKING WITH SCA TOOLS
SCA is a tool-based process that can-
not be fully automated. An SCA tool 
expects or downloads a hierarchical 
structure of all relevant artifacts. Typi-
cally, this is a folder hierarchy of source 
code files pulled from version control, 
but it can also be container images 
with nondescript binary files included.

Different SCA tools naturally pro-
vide different functionalities. At its 

core, however, there are three differ-
ent types of source code analysis re-
sults that an SCA tool might provide to 
its users (not all tools do).

	› The dependency graph: A core 
output is the actual dependency 
graph (not just the SBOM). This 
includes correctly identifying 
both components and their link-
age (forming the components 
into a graph).

Modern package managers have 
made it easy to determine a software’s 
dependency graph, but many older 
software systems written in languages 
without established package manag-
ers resist any automation of creating 
the dependency graph. Package man-
agers help SCA tools identify a com-
ponent. The metadata provided by 
package managers, for example, com-
ponent licenses and owners, is more 
often incorrect than not.

	› Meta-data from source code analysis: 
Another core output of an SCA 
tool is the analysis of the source 
code. Most commonly, SCA tools 
look for legal information to help 
users ensure license compliance.

Identifying legal information is 
commonly performed in a simple and 
straightforward way by using regular 
expression matching against defined 
terms and databases like license text 
databases. Code quality analysis and 
identifying unknown vulnerabili-
ties are also useful analysis functions 
available in some tools.

	› Snippet matching of your and third-
party source code. The final core 
output of some SCA tools is the 
identification of code snippets 
that may have been copied from 
the web into your code or any 
third-party code, including open 
source components.

Free-to-use open source SCA tools 
usually don’t offer a snippet matching 

An SCA first creates the so-called dependency 
graph of your software and then derives the  

SBOM from it.

https://github.com/fossology/fossology
https://github.com/aboutcode-org/scancode-toolkit
https://scatool.com/


	 A P R I L  2 0 2 5 � 119

feature because to perform this func-
tion, the tool needs to compare any code 
snippet against the whole wide world 
of third-party code. This requires the 
creation and continuous updating of a 
large database of such third-party code, 
which can become rather expensive.

A tool like SCA Tool works through 
the artifact hierarchy and collects its 
findings for review and signoff by its 
users. It is not advisable for users to just 
accept what an SCA tool is suggesting. 
More often than not, the findings will 
be wrong. To this end, SCA tools provide 
users with a workflow in which they can 
review each finding for correctness.

There are many challenges to a hu-
man review.

	› Erroneous data: An SCA tool may 
pull in erroneous data, for ex-
ample, from package managers. 
Users need to review and correct 
these data.

	› Laborious process: The devel-
opers of an SCA tool typically 
don’t want to be on the hook for 
overlooked third-party code. 
Hence an SCA tool is set to be 
highly sensitive, often suggest-
ing third-party code, in particu-
lar copied and pasted snippets, 
where there is none. This leads 
the tool to declare a large num-
ber of findings, many of which, 
if not most of them, will be false 
positives. Working through all 
these findings is a significant 
time sink for SCA tool users.

	› Error-prone process: The review 
process is highly error prone 
because it is mind-numbingly 
boring. Reviewers have to work 
through a large set of findings, 
many of which are similar and 
repetitive yet may vary in minor 
but important details. As hu-
mans work, attention may wane, 
and a desire to move forward 
will get its way, leading to sloppy 
work and, ultimately, errors in 
the analysis and review process.

	› Expensive review: The review is 
often delegated to the original 

developers, who would rather be 
writing new code and shipping 
features than reviewing old 
code and cleaning up legal debt. 
Using your developers to review 
SCA tool findings is rather ex-
pensive labor and often better to 
be delegated to third parties.

Creating a dependency graph and 
deriving the SBOM for the first time, 
therefore, is often a laborious, ex-
pensive, and error-fraught process. 
Ideally, changes to your project and 
product lead only to an incremental 
adjustment of the dependency graph 
and SBOM data.

BASIC SBOM 
REQUIREMENTS
An SBOM captures which code com-
ponents are included in the software. 
There are two original uses.

	› The first use of the SBOM 
information is to ensure that 
only code components that both 
the developer and any recipient 
would find acceptable were in-
cluded; most notably, developers 
generally prefer to keep copyl-
eft-licensed components out of 
their products.

	› The second use of this information 
is to create proper legal notices for 
the third-party code in the soft-
ware. A developer, when distrib-
uting the software, has to provide 
these legal notices about the 
included open source components 
to comply with their licenses.

Customers in a supply chain often 
make the provision of an SBOM a pur-
chasing requirement, as discussed be-
fore. Governments have followed suit, 
mostly driven by the need to make 
software more secure.

A report by the U.S. Department of 
Commerce details the basic require-
ments for an SBOM.f Any SBOM should 

f https://w w w.ntia.doc.gov/report/2021/minimum 
-elements-software-bill-materials-sbom.

name its author and the time it was cre-
ated. Each component (material) in an 
SBOM should provide the component’s 
name, its version number, and the sup-
plier of the component. Interestingly, 
the report also states that the compo-
nent should list its relationship to other 
components, which I would have con-
sidered helpful but not critical.

The report sees SBOMs as hierarchi-
cal structures. At the root is the SBOM 
for the software being described. The 
components in the SBOM can then 
have their own SBOM, potentially 
creating a hierarchical structure. You 
cannot, however, map the dependency 
graph into a hierarchy, at least not 
without creating significant redun-
dancy. I argue that the components in 
an SBOM should simply be captured 
as a flat list; if preserving the depen-
dency graph is important, each com-
ponent can reference the components 
it depends on.

Also, an SBOM should be machine 
readable for automated processing. 
The report lists SPDX, CycloneDX, and 
SWID tags as established format speci-
fications for capturing SBOM informa-
tion. The report notes that the industry 
so far has failed at providing unique 
identifiers for components and that 
the supplier and component names 
should therefore be human readable, 
for human interpretation, but not nec-
essarily machine interpretable.

The grassroots PURL effort is offer-
ing help to uniquely identify compo-
nents.g The supplier of the component 
and its name (and version number, 
etc.) are encoded into one heteroge-
neous name value, the PURL. It con-
sists of seven components structured 
using the following syntax:

scheme:type/namespace/name@

version?qualifiers#subpath

While not directly a traditional 
URL, a PURL uniquely nevertheless 
identifies a location. The location then 
becomes the supplier of the component. 

ghttps://github.com/package-url/purl-spec.

https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom
https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom
https://github.com/package-url/purl-spec


120	 C O M P U T E R   � W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE

Therefore, identical copies of the same 
code base in different locations are 
treated as different components.

An SBOM that fulfills these basic 
requirements can already be delivered 
with the software to its users to fulfill 
a purchasing requirement. That said, 
there are many more types and uses of 
SBOMs.

TYPES AND USES OF SBOMs
The original and still primary use of 
an SBOM is to list what components 
are included in the software when 
provided to a customer. As explained, 
there are two main uses.

1.	 Governance and compliance: Large 
companies in a supply chain 
wanted and still want to know 
what components they have to 
deal with, often in advance of a 
delivery. The primary reasons are 
open source governance (en-
suring that only desired compo-
nents are included) and license 
compliance (making sure that the 
licenses can be complied with).

2.	 Security: More recently, fueled 
by worries about cybersecurity, 
governments, including the 
United States and the EU, have 
put forth requirements that 
any product is to come with an 
SBOM. This way, users can iden-
tify any security issues with the 
product as vulnerabilities of the 
included components become 
known. SBOMs have become a 
purchasing requirement.

This is not the only type of SBOM; 
there are several more. The most prom-
inent classification of SBOM types is 
provided in a 2023 white paper by the 
U.S. Cybersecurity & Infrastructure 
Security Agency (CISA).h CISA identi-
fies six different types of SBOM, which 
can be broken down into two sets of 
three depending on how the SBOM 
is created.

hhttps://www.cisa.gov/sites/default/files/2023-04/
sbom-types-document-508c.pdf.

	› The first set is SBOMs created 
from the supplier’s development 
process.
1.	 Design: A Design SBOM is cre-

ated from planning documents 
like prospective product archi-
tectures. As a consequence, a 
Design SBOM may not be an 
accurate reflection of what will 
be shipped eventually. It may 
be helpful to buyers in a supply 
chain to prepare for what’s to 
come their way.

2.	 Source: A Source SBOM pro-
vides a static picture of the 
supplier’s source code and its 
dependencies, as found in the 
repositories. It can be helpful 
to identify vulnerabilities but 
does not provide a complete 
picture as it omits any build 
or runtime dependencies.

3.	 Build: A Build SBOM is created 
from the build process of the 
supplier as it compiles source 
code and assembles the final 
package for delivery to cus-
tomers. Aimed at operations, it 
does not include components 
needed for building and test-
ing. It may still miss dynamic 
dependencies, though.

	›  The second set is SBOMs created 
by the buyer (or others) through 
analysis. 
1.	 Analyzed: An Analyzed SBOM 

is created from SCA of the 
static delivered software. This 
is almost always a binary anal-
ysis of the artifact. As such, 
an Analyzed SBOM will miss 
much, but it may discover 
components that the suppliers 
may have overlooked.

2.	 Deployed: A Deployed SBOM 
is created by analyzing the 
deployed software. After 
deployment, additional 
components may have been 
loaded or may have become 
visible that were not identi-
fiable before. Like Analyzed, 
Deployed SBOMs comple-
ment the supplier’s SBOMs.

3.	 Runtime: A Runtime SBOM is 
created from observing the 
running software (often re-
quiring instrumentation). Of 
the SBOMs created through 
analysis, a Runtime SBOM 
provides the most compre-
hensive picture, but it will 
miss components that have 
not been activated and are 
not visible yet.

The original type of SBOM men-
tioned in the beginning corresponds 
to the Build SBOM created by the sup-
plier. Other SBOM types have other 
uses; for example, the developer may 
want to track and document details of 
testing and staging their products for 
various reasons—for example, debug-
ging, auditability, or certification.

There is a logic of progression in 
the two classes of SBOMs. A Build 
SBOM is by and large more compre-
hensive and more accurate than a 
Source SBOM than a Design SBOM, 
and a Runtime SBOM is by and large 
more comprehensive and more accu-
rate than a Deployed SBOM than an 
Analyzed SBOM.

Both classes complement each 
other; SBOMs created by the supplier 
may miss some dynamically loaded 
components, knowingly or unknow-
ingly, and SBOMs created by user anal-
ysis may miss some or many of the com-
ponents that the system has not yet run 
into or that were obscured otherwise. 

Taken together, a Build SBOM 
and a Runtime SBOM can pro-
vide a comprehensive picture, 

one that is needed for safe and secure 
operations. of software by organiza-
tions of any size.  

DIRK RIEHLE is the professor 
for open-source software at 
Friedrich-Alexander-Universität 
Erlangen-Nürnberg, 91058 Erlangen, 
Germany. Contact him at dirk@riehle.org.

https://www.cisa.gov/sites/default/files/2023-04/sbom-types-document-508c.pdf
https://www.cisa.gov/sites/default/files/2023-04/sbom-types-document-508c.pdf
mailto:dirk@riehle.org

	115_58mc04-opensource-3530276

