
Software: Practice and Experience

RESEARCH ARTICLE OPEN ACCESS

An Empirical Study on the Effects of Jayvee, a
Domain-Specific Language for Data Engineering, on
Understanding Data Pipeline Architectures
Philip Heltweg | Georg-Daniel Schwarz | Dirk Riehle | Felix Quast

Professorship for Open-Source Software, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

Correspondence: Philip Heltweg (philip@heltweg.org)

Received: 22 July 2024 | Revised: 11 November 2024 | Accepted: 6 January 2025

Funding: This research has been partially funded by the German Federal Ministry of Education and Research (BMBF) through grant 01IS17045 Software
Campus 2.0 (Friedrich-Alexander-Universität Erlangen-Nürnberg) as part of the Software Campus project ‘JValue-OCDE-Case1’.

Keywords: data engineering | domain-specific language | empirical study | evaluation | open data | programming language

ABSTRACT
A large part of data science projects is spent on data engineering. Especially in open data contexts, data quality issues are prevalent
and are often tackled by non-professional programmers. We introduce and evaluate Jayvee, a domain-specific language for data
engineering aimed at reducing barriers to building data pipelines. We show that a structured DSL can have positive effects on
speed, ease of use, and quality for data engineering by non-professional developers. For this, we present an empirical quantitative
study, in which we compare the performance of students as proxies for non-professional programmers using Jayvee with Python
and Pandas. We search for reasons for the empirical findings using a follow-up interview study on how using a DSL changes how
non-professional programmers build data pipelines. Participants solve a subset of tasks faster, more easily, and with higher quality
when using Jayvee compared to Python. Interviewees describe tradeoffs regarding the DSL’s more limited features, stricter code
structure, and explicit descriptions. Jayvee is found to be more approachable, which leads to a more guided development flow.
New data engineering languages should provide good tooling and documentation, plan how to visualize intermediate data and
consider new development workflows involving tools like ChatGPT to find adoption.

1 | Introduction

Data is the foundation for many innovative apps and, increas-
ingly, AI applications. To be usable, data must be available in a
format that fits the application and is of high quality. Data engi-
neering, the activity of making data accessible, reliable, and use-
ful for later use, is a large part of any data science project.

This additional work is not only a challenge to the usefulness
of large collections of closed data, for example, in internal data
warehouses [1], but especially for open data—a source of large

--

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

© 2025 The Author(s). Software: Practice and Experience published by John Wiley & Sons Ltd.

amounts of theoretically usable data with an existing ecosystem
of data publishers, intermediaries, and users [2].

In addition to technical challenges, the expertise of human
subject-matter experts is often required to make complex data
sets available for further use [3]. However, general-purpose pro-
gramming languages (GPLs) with libraries focused on data engi-
neering are complicated and have a steep learning curve for
non-professional programmers. Additionally, they are non-trivial
to set up and operate, especially when dealing with large amounts
of data.

Software: Practice and Experience, 2025; 0:1–20 1 of 20
https://doi.org/10.1002/spe.3409

https://doi.org/10.1002/spe.3409
https://orcid.org/0000-0002-4236-2689
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/spe.3409

Instead, various visual programming tools have been suggested as
alternatives with a lower technical barrier to entry. While easier
to use than GPLs, these tools often use proprietary formats that
cannot make use of existing text-based solutions, like line-based
diffing of different versions of a model. As a result, they are diffi-
cult to apply in larger projects and maintain long-term.

In summary, current solutions are either optimized for profes-
sional software engineers who implement data pipelines with
complex GPLs or for subject-matter experts who work with lim-
ited visual programming tools.

A potential middle-ground between GPLs and visual program-
ming tools is domain-specific languages (DSL). A text-based DSL
for building data pipelines could reduce complexity and allow
subject-matter experts to apply their existing experience, while
still allowing the reuse of existing software engineering infras-
tructure like integrated development environments.

An important distinction for text-based DSLs can be made
between internal DSLs that extend an existing host language and
external DSLs that are separate languages that require their own
tooling but provide the most flexibility [4]. Examples of internal
DSLs can include domain-specific frameworks such as Rails for
Ruby, while an example of a well-known external DSL is SQL. In
the context of this study, we use the term DSL to refer to external
DSLs that do not rely on a host language.

The overarching goal of our research is to explore whether an
external DSL can achieve a sweet spot for data engineering by
subject-matter experts and if so, which implementation decisions
are the best. This study makes the first step in this overarch-
ing theme to explore how using a DSL affects data engineering,
mainly by collecting qualitative data from users. For this, we ini-
tially worked intentionally broad, with a focus on qualitative data
from users to build an initial theory of how using a DSL affects
data engineering. Based on the insights from this exploratory
work, we can generate hypotheses to iteratively improve our
understanding of what makes DSLs work best for data engineer-
ing. In future work, we will test the impact of specific features
with controlled experiments.

In this article, as a first step, we explore if a DSL can be a viable
alternative to a GPL, and what effects the use of a DSL has on the
development process and the quality of the final results. Using a
mixed methods research design, consisting of descriptive surveys
followed by a qualitative interview study, we answer the follow-
ing research questions:

Research Question 1: Is using a DSL for data engineering a viable
alternative to a GPL with a data engineering library?

Research Question 2: What is the user’s perception of diffi-
culty and quality of results using a DSL compared to a GPL with
libraries?

Research Question 3: What are the effects of using a DSL for data
engineering compared to a GPL with libraries?

With our research, we make the following contributions:

• We showcase the feasibility of using a DSL for data engineer-
ing with non-professional programmers.

• We evaluate to what extent non-professional programmers
can use a DSL for data engineering.

• We describe the main effects of using a DSL over a GPL with
libraries for data engineering.

• We highlight important challenges for developing new lan-
guages for data engineering that should be considered in
future implementation efforts.

2 | Related Work

An adjacent research field to data engineering with open data is
research into scientific workflows and associated workflow sys-
tems that orchestrate independent scientific tools into data anal-
ysis workflows [5]. Scientific workflows have specific require-
ments, such as high reproducibility or infrastructure indepen-
dence. While Jayvee, the language we introduce and evaluate in
this study, could be used as a tool in a scientific workflow, we
evaluate the effects of using a DSL for data engineering in a more
general setting of improving data sets of any complexity, often
from open data sources, for downstream use and do not cover
later steps in the data science process such as data analysis.

One of the many tools used to define scientific workflows is the
Common Workflow Language (CWL) [6]. The CWL allows scien-
tists to define portable workflows of command-line-based tools
based on container technologies for data analysis. However, the
CWL explicitly mentions workflows that interact with stateful
web services or need scheduling as being out of scope, require-
ments that are common to access open data from data portals or
update data when sources change (such as transport schedules
in mobility data). We, therefore, consider Jayvee and the evalua-
tion of its effects as complementary work with a slightly different
focus on open data sources. The empirical insights on the effects
of using a DSL for data engineering will be applicable to other
workflow specification languages as well.

During data engineering on open data, practitioners mostly rely
on adequate but not well-adapted tools from software engineer-
ing [7]. However, several software artifacts that aim to support
data engineering have been suggested and empirically evaluated.

Liu et al. evaluate Governor, a tool to provide DBMS capabili-
ties to open data portals [8]. Their goal is to support end users
without technical skills (such as journalists) with search, data
understanding, and integration of open data. Users could work
efficiently with the tool, but were missing more data transforma-
tion functions. We consider our work complementary because a
DSL could provide more complex data engineering functionality
while still lowering technical barriers to data engineering.

Data identification, data understanding, and relationship discov-
ery are identified as important problems in data engineering by
Bogatu et al., who present and evaluate Voyager, a tool to support
data scientists in these tasks, with results showing considerable
time reductions [9]. In contrast to Jayvee, Voyager uses algorith-
mic insights into the underlying data and does not aim to enable
manual work by human experts.

2 of 20 Software: Practice and Experience, 2025

General-purpose languages (GPLs), like Java or C++, enable pro-
grammers to develop applications in any domain. In contrast,
DSLs are less generally applicable but more expressive in the lim-
ited domain they cover. Benefits include increased productivity,
lower maintenance expenses, and enabling a larger pool of con-
tributors compared to GPLs [10]. Widely adopted DSLs are, for
example, HTML for the domain of hypertext web pages, LaTeX
for the domain of typesetting, or SQL for the domain of database
queries.

Kosar et al. conducted a systematic mapping study in 2016 to
report on the state of the research field of domain-specific lan-
guages [11]. While most studies focus on the domain analysis,
design, and implementation of DSLs, studies on validation and
maintenance are rare. do Nascimento et al. performed a system-
atic mapping study in 2012 and found that only approximately a
third of the investigated studies include evaluation and validation
research [12] such as ours.

This study is an empirical evaluation of a DSL in the data engi-
neering domain, going beyond the general evaluation of a DSL
against its requirements. Kolovos et al. list important require-
ments for DSLs, like simplicity and quality, which we focus on
in this study [13].

There is a stream of existing evaluations of DSLs in multiple
domains. For example, Meliá et al. compare text-based versus
graphical notations in the domain of solving software mainte-
nance tasks [14]. In their context, the textual notation won in
terms of efficiency and preference of the participating students.
Instead, we evaluate a textual DSL against a textual GPL. Kosar
et al. compare a DSL with an application library in an exper-
iment with 36 programmers in the domain of graphical user
interface construction [15]. Their findings reveal that XAML
(the DSL) performs significantly better than C# forms (the GPL)
regarding program understanding in all cognitive dimensions.
Johanson and Hasselbring evaluate a DSL for ecosystem simu-
lation specifications as a candidate for a non-technical domain
[16]. They report increased correctness and reduced time spent
per task.

In the domain of model-driven engineering, dedicated model
transformation languages (MTLs) are studied that allow the gen-
eration of multiple artifacts, such as source code or different
views from one model. Höppner et al. conducted an empiri-
cal study with semi-structured interviews among 56 experienced
researchers and practitioners in the field of model transforma-
tions on factors influencing the properties of MTLs [17]. Their
results show that one of the largest barriers to the adoption of
MTLs is the quality of tooling, an experience that is mirrored by
our data as well. Our study adds additional empirical data on
the effects of external DSLs from a different domain (data engi-
neering instead of model transformation) and population (novice
developers instead of experienced practitioners).

Other domains in which DSLs have recently been evaluated
include traffic simulation and type inference rules. In both cases,
the DSL was compared with an appropriate GPL with libraries
using a controlled experiment, with results showing improved
efficiency when working with a DSL. In their work, Hoffmann
et al. evaluate the DSL Athos compared to JSpirit, a library

for Java [18] for work by subject-matter experts. Klanten et al.
describe a controlled experiment comparing the readability of
type inference rules in a DSL with Java [19] The authors also
describe that empirical studies are rare in the field of program-
ming language design. Similarly to these studies, we contribute
additional data in the domain of data engineering to reduce the
lack of empirical findings in the field.

Alongside evaluations of single DSLs, some meta-studies include
evaluations of multiple DSLs. Kosar et al. compare a family of
three controlled experiments in three domains: feature diagrams,
graph descriptions, and graphical user interfaces [20], also with
student participants. In terms of comprehension correctness and
comprehension efficiency, the DSL performed significantly better
than the GPL in all three settings. A later replication study con-
firmed these results, while allowing the use of an IDE to make
the experiment setting more realistic [21]. This study strength-
ens the findings of these overarching ones by providing another
DSL evaluation in the domain of data engineering, which, to the
best of our knowledge, has not been consulted yet for such a
comparison. The data engineering domain might be especially
interesting, as the borders between non-programmers engaging
in data engineering activities and software developers are fluent.
This introduces special challenges like the need to collaborate on
a shared artifact with vastly different viewpoints and experience
levels with software development.

3 | Jayvee Examples

Our research goal is to test whether an external DSL is bet-
ter than using a GPL with libraries for data engineering. To
this end, we chose to implement a DSL that does not extend
a host language to be able to test our hypotheses and collect
qualitative data.

Because it is domain-specific, programs in the DSL can be struc-
tured according to the pipes and filters architecture [22, 23].
These programs can be represented as directed graphs, making
them a good basis for visual programming tools. Their structure
aligns naturally with the visualization of pipelines by boxes and
arrows and the mental model that non-professional programmers
use to reason about data pipelines.

We implemented a domain-specific language called Jayvee to
model data pipelines, structured with pipes and filters as
first-class programming constructs. The project is available as
open source under the AGPL-3.0-only license on GitHub1. The
language itself is implemented as an external DSL, based on
a context-free grammar using the Langium2grammar language.
Langium provides TypeScript representations of the semantic
model of Jayvee and a parser to instantiate an abstract syntax tree
(AST) from Jayvee models. Because Jayvee can not re-use tooling
of a host language, we have additionally implemented a language
server using the language server protocol and a VSCode extension
based on it. Jayvee’s execution semantics are defined by a ref-
erence interpreter implementation based on the generated AST
interfaces.

Jayvee aligns as closely as possible with the mental model of data
pipelines as a directed acyclical graph of connected processing

3 of 20

steps, similar to the well-known pipes and filters architectural
pattern used for data processing.

Thus, Jayvee defines the following core concepts, each marked
with a keyword in the language:

Blocks (keyword block): Blocks are the building blocks of
Jayvee, and each represents a processing step on the data. In the
pipes-and-filters pattern, those blocks are the filters. We chose the
term “block” because we felt the term filter would not represent
the breadth of the intended computational work. Each block can
be referenced from other language elements by a user-provided
name. The behavior of a block is specified by the block’s type,
which refers to a built-in element after theoftype keyword. The
body of the block, wrapped in curly braces, allows users to further
configure the block’s behavior by assigning values to properties,
depending on the block type. For example, theCarDataCSVEx-
tractor in Listing 1 defines an extractor block for HTTP data
that downloads a file from a given URL. All available block types
are listed in Jayvee’s documentation3.

Pipes (syntax: ->): Pipes are connectors between blocks and indi-
cate a sequential data flow from the first to the second block, both
referenced by name. Instead of defining pipes on only pairs of
blocks, users can also define chains of pipes that link a sequence
of blocks with an arbitrary length.

Pipelines (keyword pipeline): Pipelines are the central
abstraction element, bracketing blocks and pipes, each contain-
ing a sequence of pipes between blocks in its body (indicated
by curly braces). Such a sequence of pipes describes the data
flow from source blocks (without an input) through downstream
transformation blocks (with inputs and outputs) until it exits the
pipeline in a sink block (without an output). Pipelines can con-
tain block definitions, but blocks can also be defined outside a
pipeline.

pipeline CarDataPipeline {
CarDataCSVExtractor

-> CarDataInterpreter
-> CarDataSQLiteLoader;

block CarDataCSVExtractor oftype CSVExtractor
url: "https://example.org/data.csv";
enclosing: ’"’;

}
block CarDataInterpreter oftype TableInterpreter {

header: true;
columns: [

"name" oftype text,
∕∕ ... Further value type assignments

];
}
block CarDataSQLiteLoader oftype SQLiteLoader {

table: "Cars";
file: "./cars.db";

}
}

LISTING 1: Example pipeline structure definition in Jayvee

Listing 1 gives an example of a minimal pipeline. The presented
pipeline extracts a CSV file about cars from an HTTP source,

assigns value types to its columns, and loads it into an SQLite
database. By syntactically separating the definition of the pipeline
structure (in Listing 1, lines 2–4) from the details of property
assignments in blocks, Jayvee provides a high-level overview of
every step that is executed in a pipeline.

In comparison to Python with libraries such as Pandas, the explic-
itly modeled blocks and pipes lead to models with a consistently
enforced structure and a clear order of steps.

Consider one of the ways that users could choose to download a
GTFS file and extract data about stops from it in Python, shown
in Listing 2.
import pandas as pd
import urllib.request
from zipfile import ZipFile

urllib.request.urlretrieve
("https://example.org/GTFS.zip", "data.zip")
ZipFile("data.zip").extract("stops.txt")

df = pd.read_csv("stops.txt")
// ... Further processing

LISTING 2: Downloading and accessing stops in a GTFS data set
using Python

A roughly equivalent Jayvee pipeline is shown in Listing 3. Note
how an overview of the pipeline content and order is provided by
lines 2–4, before a reader looks at further details of the blocks.

pipeline StopsPipeline {
GTFSFeedExtractor
-> StopsFilePicker
-> StopsCSVInterpreter
∕∕ ... Further processing

block GTFSFeedExtractor oftype GTFSExtractor {
url: "https://example.org/GTFS.zip";

}
block StopsFilePicker oftype FilePicker {
path: "/stops.txt";

}
block StopsCSVInterpreter oftype CSVFileInterpreter {
enclosing: ’"’;

}
}

LISTING 3: Downloading and accessing stops in a GTFS data set
using Jayvee

Additional concepts realized in Jayvee include user-defined value
types to filter and validate data and data transformations based
on a limited expression language. Please refer to the Jayvee doc-
umentation4for a detailed overview.

4 | Research Design

We chose a mixed methods approach [24] to answer our research
questions on whether using a DSL for data engineering is a viable
alternative to a GPL with a data engineering library (RQ1), how
the user’s perception of difficulty and quality of the results differs
between them (RQ2) and what effects the use of a DSL for data
engineering has compared to a GPL (RQ3). We planned to first

4 of 20 Software: Practice and Experience, 2025

FIGURE 1 | Overview of the research design.

quantitatively test hypotheses and then follow up with qualitative
interviews to suggest causal connections.

This research design is well-suited to the exploratory nature of
this work, providing an initial insight into the effects of using
a domain-specific language that can be extended with follow-up
experiments. By employing different research methods, the weak-
nesses of individual methods can be mitigated, and a more com-
plete picture of the impact of DSLs on data engineering work can
be attained.

We consider students taking this course a good proxy for open
data practitioners and therefore chose to base the initial empir-
ical study of Jayvee on them [25]. Similar to the students, open
data practitioners often have basic experience in programming
but come from a wide range of backgrounds, from hobbyists, over
statisticians to subject-matter experts [3].

This study was completed as part of a university course on
advanced methods of data engineering, mainly taken by master’s
students who study data engineering, AI, or computer science,
over two semesters. The course included five data engineering
tasks based on real open data sets, using Jayvee and Python.

Initially, we gathered quantitative data after each task, using a
descriptive survey to answer RQ1 and RQ2. Based on the sur-
vey insights, we extended and verified the results with interviews
after the course had concluded and participants had finished all
tasks. This incremental design allowed us to have very focused
interviews, answering causality questions that arose from the sur-
veys, and describing the effects of using a DSL over a GPL with
libraries to answer RQ3. We employ data and investigator triangu-
lation by gathering quantitative and qualitative data and analyz-
ing it with multiple researchers, as well as presenting our results

in peer debriefing sessions to make our results more robust [26,
27]. An overview of the research design is shown in Figure 1.

At the start of each semester, we measured every student’s general
programming experience and previous experience with Python
and Jayvee using a required online questionnaire with previously
validated questions according to [28].

Jayvee was introduced with one lecture, and students were pro-
vided with the language documentation. During the semester,
students solved five graded exercises based on real data sets
from the German national access point for transport data,
the Mobilithek5. The exercises revolved around building ETL
pipelines that extract data from an online source, potentially
transform it, and load it into a local file sink. The tasks became
more difficult over time, introducing students gradually to the
domain of data engineering.

The largest amount of open data is provided in tabular data for-
mats, such as CSV or XLS [29]. Available datasets are often small,
with the vast majority being under 10 MB in size [30]. Chal-
lenges when improving these datasets include the inability to
contact data publishers to correct mistakes and regular releases of
updated datasets like transport schedules, making one-time data
engineering directly changing downloaded datasets less useful.
Instead, data users must implement their own error-correcting
code and ideally be able to rerun it on updated data sources reg-
ularly [3]. Accordingly, the designed exercises were based on real
open data sets and targeted the niche of one-time batch process-
ing of tabular data, aligned with the current focus of the DSL.
While this use case does not capture the complete domain of
data engineering, it is representative of a large percentage of chal-
lenges in open data contexts.

5 of 20

TABLE 1 | Task summaries.

No Task summary

1 Extract a CSV dataset from an HTTP source and assign fitting data types to each column. Save the data to a SQLite database.
2 Extract a CSV dataset from an HTTP source. Transform data shape. Validate data, as defined by categories, integer ranges,

and regex patterns. Remove all rows that contain invalid values. Choose fitting data types and save the data to SQLite.
3 Extract a CSV dataset from an HTTP source. Fix invalid format due to included metadata. Handle uncommon encoding to

preserve German umlaut characters. Transform data shape by dropping multiple, not adjacent columns. Validate data,
handling a special value type of numeric data with leading zeros. Remove any rows containing invalid data. Choose fitting

data types and save the data to SQLite.
4 Extract a ZIP file from an HTTP source. Pick one CSV file from the multiple files in the source. Transform the data shape by

renaming and dropping columns. Transform data values from Celsius to Fahrenheit. Choose fitting data types and save the
data to SQLite.

5 Extract a GTFS file (an open format for transit data in one ZIP file with multiple CSV files) from an HTTP source. Pick one
file from the archive. Transform the data shape by dropping columns. Filter the data to only keep rows related to one ID.

Validate data values according to integer ranges and keep German umlaut characters intact. Choose fitting data types and
save the data to SQLite.

A summary of the tasks is provided in Table 1. The exact exercise
descriptions can be found in the accompanying data release.

Students were randomly assigned to two groups of equal size
and alternated the language they had to solve each exercise in
between Python 3.11 (with pandas 1.5.3) and Jayvee versions
0.0.15, 0.0.16, 0.1.0, and 0.2.0. While the used version of Jayvee
changed several times, only a few syntax changes were made, so
the usability of the language stayed consistent for the students.

After each exercise, we gathered qualitative and quantitative data
using a descriptive online survey developed according to Kitchen-
ham and Pfleeger [31] (“Descriptive Surveys” in Figure 1). The
surveys were clearly communicated as optional, with no effect
on grades, and included an explicit opt-in to allow the use for
publication purposes. The survey software was configured to
anonymize all responses, which was also visible to participants.

The questionnaire contained quantitative questions about time
spent (“How many hours did you spend to solve the exercise?”,
numeric), impressions of difficulty (“How difficult was it to solve
the exercise using your programming language?”, 5-point Likert
scale) and quality of the data pipeline (“How would you rate
the quality of the resulting data pipeline?”, 5-point Likert scale).
Additionally, we gathered qualitative data in preparation for the
follow-up interview study by asking about problems (“What prob-
lems with the programming language did you encounter during this
exercise?”, free text) and suggestions for improvements (“What
language features or libraries would have made solving the exercise
easier?”, free text). The full survey for exercise 1 can be found in
the data release. All other surveys followed the same pattern.

Based on statistical analysis of quantitative survey data, we
designed a qualitative survey with semi-structured interviews
according to Jansen [32] (step “Semi-structured Interviews” in
Figure 1) to better understand the effects of using a DSL instead
of a GPL with libraries and perceptions of difficulty and qual-
ity of results. We employed convenience sampling, interviewing
all students who volunteered for an interview after the semester
concluded and grades were already announced. Students were

informed about the interview context, process, and questions
with a letter to participants beforehand.

The interviews were semi-structured [33] with the main topics
being ease of use, quality of results, and challenges as experienced
depending on the participant’s use of Jayvee or Python. Every
interview was concluded with an open-topic question to give par-
ticipants space to include any insight they considered important.
Interviews were performed by two of the authors independently,
based on a shared interview guide. After each interview, the audio
was transcribed using local software and manually refined to
ensure the text was correct. The full letter to participants and the
interview guide, including all questions, can be found in the data
release.

In a final step, all qualitative data (free text fields from the online
surveys and interview transcripts) was analyzed using inductive
thematic analysis according to Braun and Clarke [34] (“Qual-
itative Data Analysis” in Figure 1). First, we familiarized our-
selves with the data by reading the primary material actively
and noting the first coding ideas. Then, we generated the ini-
tial codes by annotating data segments with preliminary names.
After open coding, we searched for themes by considering how
codes can be combined in different ways to depict a cohesive
feature of the data. After the first iteration, we reviewed the
themes to clearly distinguish between them and refactor ambigu-
ous ones. Finally, we defined and named the final themes based
on their content. The software MaxQDA6 supported our coding
and theme-building process to ensure the traceability of themes
and codes back to their origin.

To ensure quality, we regularly requested feedback about ele-
ments of the study from other researchers, as summarized in
Table 2. We mainly utilized peer debriefings [27] with authors
and other researchers who were familiar with the methods used
or the domain of data engineering. Furthermore, we presented
intermediate results at an internal PhD summit to two research
groups consisting of researchers mainly working in the field of
software engineering.

6 of 20 Software: Practice and Experience, 2025

TABLE 2 | Feedback methods used during the study.

Method Participants Topic

#1 Peer debriefing 2 researchers Post-exercise survey
#2 Peer debriefing 3 researchers Interview guide
#3 Presentation 2 research groups Intermediate results
#4 Peer debriefing 3 researchers Open coding of interviews
#5 Peer debriefing 2 researchers Themes from interviews

FIGURE 2 | Results regarding student’s previous experience from the course entry survey.

TABLE 3 | Sample size, median and Mann–Whitney U and p-value for previous population experience for 𝐻𝐸𝑥𝑝

𝐴
.

Experience 𝒏1, 𝒏2 𝑴𝒅𝒏1, 𝑴𝒅𝒏2 𝑼 𝒑 (two-sided)

Programming 110, 113 7, 7 6224.0 0.986
Python 110, 113 4, 4 6198.0 0.971
Jayvee 110, 113 1, 1 6547.5 0.223
Jayvee vs. Python 223, 223 4, 1 48398.0 1.406e-74*

*𝑝 ≤ 0.05.

5 | Results

5.1 | Descriptive Surveys

5.1.1 | Population Description

We gathered quantitative data about previous experience and par-
ticipants’ impressions of time needed, ease of use, and quality of
results while solving five exercises alternating between Python
with libraries and Jayvee using online surveys as described in
Section 4.

We chose students from a course on data engineering because
we consider them good proxies for practitioners working with
open data. The population consisted of 223 students, mainly in
master’s studies in computer science, data science, and artificial
intelligence, of which 208 completed the course. Their responses
to the course entry survey are shown in Figure 2. In addition to
the histogram, the kernel-density plots show the distributions of
experience in the different groups. Kernel-density plots were cho-
sen as visualization to make it easier to see non-normality, as
recommended by [35]. Median programming experience was 7
(of 10), median comparison to classmates 3, and median experi-
ence in Python and Jayvee at 4 and 1 (all of 5), respectively.

5.1.2 | Previous Experience

We evaluated whether there were statistically significant differ-
ences in previous experience between groups. For the statistical
analysis, we used pingouin 0.5.4 [36].

We tested the response distributions for normality using the
Shapiro-Wilk test [37] and verified that all were non-normal
at 𝛼 = 0.05. Accordingly, we chose the non-parametric
Mann–Whitney U test because it is appropriate for the ordi-
nal data of the response options [38, 39]. We decided on the
standard significance level of 𝛼 = 0.05.

To ensure previous experience is no confounding factor regard-
ing performance on the tasks, we tested that no statistically
significant difference exists between groups regarding previous
experience in programming, Python, or Jayvee. We also com-
pared previous experience in Jayvee with previous experience in
Python across all students. Table 3 summarizes the results. To
detect any difference, we chose a two-sided test with the alternate
hypothesis:

𝐻
𝐸𝑥𝑝

𝐴
: There exists a significant difference between the previous

experience.

7 of 20

Based on the data, there is no statistically significant difference
between groups regarding previous programming, Python, or
Jayvee experience. Both student groups were significantly more
experienced in Python than in Jayvee. From the visualizations in
Figure 2, it is clear that students have much more previous expe-
rience with Python than Jayvee (as is expected because Jayvee is
introduced as a new language).

5.1.3 | Impressions of Speed, Difficulty, and Quality

After every exercise, we gathered student impressions on the
speed, difficulty, and quality of the resulting pipeline, as
described in Section 4. Individual response rates for each of the
five surveys were 95 responses (42.6%), 61 (27.35%), 25 (11.21%),
35 (15.7%), and 33 (14.8%).

We report an overview of the responses for every dimension of
speed, difficulty, and quality and test for statistically significant
differences individually for each exercise at a significance level of

𝛼 = 0.05. We removed 15 outlier responses to time according to
the standard 1.5 times IQR method.

The Mann–Whitney U test [38] was used because the data is
largely non-normal and ordinal. With the smaller sample size for
individual exercises, the reduced power of non-parametric tests is
a concern. As we are interested in finding out if the use of Jayvee
has positive effects on speed, difficulty, and quality compared to
Python, we chose one-sided tests to increase the chance of detect-
ing statistically significant effects.

Regarding speed, the alternative hypothesis is:

𝐻
𝑆𝑝𝑒𝑒𝑑

𝐴
: The time needed to solve the exercise is significantly lower

using Jayvee compared to using Python.

Responses are shown in Figure 3, as with the course entry survey,
we used kernel-density plots as recommended by [35] to show
the distribution of time needed to complete the exercises. More
detailed data for each exercise are shown in Table 4.

FIGURE 3 | Distribution of time spent per exercise, depending on the language used (lower is better). White bars represent 𝑄1 and 𝑄3, the black
bar denotes 𝑄2.

TABLE 4 | Sample size, median and Mann–Whitney U and p-value for time spent on exercises for 𝐻𝑆𝑝𝑒𝑒𝑑

𝐴
.

Exercise 𝒏𝒋𝒗, 𝒏𝒑𝒚 𝑴𝒅𝒏𝒋𝒗, 𝑴𝒅𝒏𝒑𝒚 𝑼 𝒑 (less)

Ex1 45, 47 2.0, 2.0 1159.5 0.794
Ex2 28, 24 2.0, 3.0 243.0 0.042*
Ex3 17, 8 3.0, 3.0 72.0 0.606
Ex4 18, 15 2.0, 2.5 113.0 0.202
Ex5 16, 16 2.0, 1.0 162.5 0.915

*𝑝 ≤ 0.05.

8 of 20 Software: Practice and Experience, 2025

Regarding time, students were significantly faster completing
exercise 2 with Jayvee than with Python. These results could indi-
cate that a DSL can make routine data engineering tasks, as often
found in open data sources, easier as the exercise mainly requires
basic data validation and transformations. However, while not
statistically significant, it seems noteworthy from Figure 3 that
the median time needed for exercise 5 (handling GTFS files and
filtering by id) was higher in Jayvee than in Python. From inter-
views, we understand that while dealing with ZIP files is easier in
Jayvee than Python, filtering data by an ID is not well-supported
as of now.

Students’ impressions of difficulty and quality of result were
answered on 5-point Likert scales and are plotted as diverging
stacked bar charts [40, 41]. To calculate the median, we mapped
them to numbers from 1 (Very easy/Very low) to 5 (Very hard/Very
high).

Responses to the perceived difficulty of the exercises are plotted
in Figure 4, and details are shown in Table 5. For difficulty, the
alternative hypothesis is:

𝐻
𝐷𝑖𝑓𝑓

𝐴
: The difficulty of solving the exercise is significantly lower

using Jayvee compared to using Python.

Exercise 3 is a notable outlier because only a few students
who used Python responded. In contrast, more students who
used Jayvee answered and reported a high perceived difficulty
in Jayvee. In addition, the free text feedback highlighted miss-
ing features in Jayvee for the deleting of multiple, not adja-
cent columns that made the exercise on changing data structure
hard. We noted this feedback and included it in our follow-up
interviews.

We found that students had significantly less difficulty solving
exercise 4 using Jayvee than Python. From later interviews, it
became clear that students struggled with the non-standard for-
mat of the CSV data for exercise 4, where multiple measurements
for one device are concatenated in one row. When using Pandas
to load the CSV into a dataframe, a multi-index is automatically
created, which is complicated to remove. These problems show
that, while often helpful, automation can introduce challenges,
and a careful balance between hidden logic and explicit model-
ing has to be found. The interviews confirmed that this trade-off

FIGURE 4 | Impressions of the difficulty of completing the exercise, depending on the language used (lower is better).

TABLE 5 | Sample size, median and Mann–Whitney U and p-value for the difficulty of exercises for 𝐻𝐷𝑖𝑓𝑓

𝐴
.

Exercise 𝒏𝒋𝒗, 𝒏𝒑𝒚 𝑴𝒅𝒏𝒋𝒗, 𝑴𝒅𝒏𝒑𝒚 𝑼 𝒑 (less)

Ex1 47, 48 2.0, 2.0 1086.5 0.372
Ex2 33, 28 2.0, 3.0 397.5 0.158
Ex3 17, 8 3.0, 3.0 93.0 0.943
Ex4 19, 16 2.0, 3.0 102.0 0.040*
Ex5 16, 17 2.5, 3.0 141.0 0.584

*𝑝 ≤ 0.05.

9 of 20

played a major role in the exercise’s perceived ease when solved
with Jayvee.

Similarly, responses about the quality of the resulting pipeline are
shown in Figure 5, and details can be found in Table 6. The alter-
native hypothesis for quality is:

𝐻
𝑄𝑢𝑎𝑙

𝐴
: The quality of results is significantly higher when using

Jayvee compared to using Python.

We found statistically significant differences between Jayvee and
Python with libraries regarding impressions of the quality of the
resulting data pipeline for exercise 1. It is visible from Figure 5
that this difference primarily is caused by some students consid-
ering the quality of the Python as low. Here, the large amount
of hidden logic that comes from using Pandas might have led to
the impression of less control over the data pipeline logic, as dis-
cussed in later interviews.

In summary, the data shows that no significant difference
exists regarding previous experience with programming, Python,
or Jayvee between the two groups that completed the data

engineering tasks. Between languages, participants had signifi-
cantly more experience with Python than Jayvee.

Nevertheless, individual exercises were completed with statisti-
cally significant improvements regarding reported speed, diffi-
culty, or quality of result for Jayvee. This indicates that students
were able to learn Jayvee to an adequate level quickly and use it
successfully to complete data engineering tasks on real open data
sets. Significant improvements could be found for challenges that
align well with the currently implemented feature set of Jayvee.

These results show that using a DSL like Jayvee is a viable alter-
native to a GPL with libraries for data engineering tasks (answer-
ing RQ 1) as long as the feature set of the DSL is expansive
enough. We noticed a spike in perceived difficulty during exercise
3 and planned the follow-up interview study to investigate causal
relationships.

5.2 | Interview Study

We conducted exit interviews with volunteers to explore possible
explanations for the quantitative survey results and extend them
with a description of the effects of using a DSL over a GPL with

FIGURE 5 | Impressions of the quality of the resulting pipeline, depending on the language used (higher is better).

TABLE 6 | Sample size, median and Mann–Whitney U and p-value for quality of exercise results for 𝐻𝑄𝑢𝑎𝑙

𝐴
.

Exercise 𝒏𝒋𝒗, 𝒏𝒑𝒚 𝑴𝒅𝒏𝒋𝒗, 𝑴𝒅𝒏𝒑𝒚 𝑼 𝒑 (greater)

Ex1 47, 48 4.0, 3.0 1377.0 0.021*
Ex2 33, 28 3.0, 3.0 515.0 0.200
Ex3 17, 8 3.0, 4.0 47.5 0.911
Ex4 19, 16 4.0, 4.0 122.5 0.873
Ex5 16, 17 4.0, 4.0 107.5 0.884

*𝑝 ≤ 0.05.

10 of 20 Software: Practice and Experience, 2025

libraries to create data pipelines. The transcribed interviews and
free-text answers from post-exercise surveys were analyzed using
thematic analysis according to Braun and Clarke [34] as described
in Section 4. Because the participants’ impressions could be influ-
enced by their previous experience, we conducted a course exit
survey, asking for self-assessments of their experience in pro-
gramming, Python, and Jayvee again after completing the data
engineering course. The results are shown in Table 7 to provide
additional context to participants’ quotes.

The resulting themes from the interviews were grouped into three
higher-level themes, as summarized with the thematic map in
Figure 6:

• Participants’ impressions of speed, difficulty, and quality of
their exercises in Jayvee and Python. This topic most closely

TABLE 7 | Experience of interview participants after completing the
data engineering course.

Participant
Programming

(of 10)
Python

(of 5)
Jayvee
(of 5)

S0 8 4 5
S2 7 4 3
S3 6 3 2
S5 9 5 4
S7 7 3 3
S8 8 3 3
S10 9 4 4
S11 7 2 4

relates to Jayvee itself and expands on the results of the quan-
titative data to answer RQ1 and RQ2.

• Effects of using a DSL over a GPL with libraries consists of
themes relating to the general effects of using a DSL instead
of a GPL on challenges, workflows, and artifacts like source
code created by participants, directly related to RQ3.

• Considerations for a new data engineering language include
themes that do not directly compare using a DSL with a GPL.
Instead, it summarizes lessons learned when developing a
new language in the domain of data engineering.

5.2.1 | Speed

Comparisons of implementation speed between Python and
Jayvee were rarely made, with Python mostly being preferred if
they did. Participants noted that Jayvee is fast to use for problems
that fit its domain well, but can be complicated for more com-
plex data sets or tasks outside its feature set. This aligns with the
results of the post-task surveys that showed a statistically signif-
icant difference between the time needed to complete a simple
data pipeline setup in Jayvee, but indicated that an exercise with
challenges outside the feature set of Jayvee was slower to solve.

Execution performance was not considered a problem, even
though Jayvee is considerably less optimized than Python. The
missing concerns about execution speed were remarkable on
their own. However, the data engineering tasks focused on our
use case of batch processing smaller datasets, as often found in
open data contexts. We interpret this as a sign that execution
performance is less relevant to users’ perceptions once an accept-
able baseline is met in this specific context only. We assume that

FIGURE 6 | Thematic map from thematic analysis of students’ interviews and survey responses.

11 of 20

in domains with larger datasets, the differences in optimization
between Jayvee and Python would introduce challenges.

5.2.2 | Difficulty

Generally, students considered Jayvee easy to use and fast and
easy to learn. Contributing to this experience was especially the
limited scope of the DSL, which means there are fewer options to
learn. As S2 puts it: “But for me, it was a bit confusing first in pan-
das because there are so many options. So I think if you do it the
first-time, it’s easier in Jayvee.” A similar view is expressed by S11:
“[. . .] you compare Python, which has a lot of functionality, with
Jayvee with limited functionality. The problem is the more you
customize, the more complicated it gets.” Additionally, students
pointed out that previous experience in data engineering made it
easy to get started with Jayvee, meaning previous domain knowl-
edge can be leveraged to lower the barrier of entry to get started
with implementation.

Specific to the exercises, it became clear from the surveys that
exercise 3 was unusually difficult to solve in Jayvee, and we took
note to follow up in the interviews. Students explained that the
difficulty was due to missing features for working with uncon-
nected columns in a datasheet, this issue is discussed in more
detail in Section 5.2.4.

Regarding the lower difficulty of solving exercise 4 in Jayvee, it
became clear that loading data into dataframes with Python/Pan-
das can lead to complications stemming from hidden assump-
tions (described in more detail in Section 5.2.8). Additionally,
working with ZIP files was identified as easier in Jayvee than in
Python, showing the potential of a DSL to support a limited num-
ber of highly relevant file types in the domain it covers well and
to enable their use.

5.2.3 | Quality

As for any software artifact, the quality of data pipelines has
multiple dimensions. Overall, students evaluated the quality of
data pipelines written in Jayvee positively, but mainly focused on
understandability. Students found data pipelines in Jayvee easier
to read than Python, especially for non-programmers. S0 points
out: “Even if someone who does not know anything about pro-
gramming languages would read this data pipeline, they would
understand [. . .]. They would automatically understand what’s
going on.”

The main reason that was identified was that pipelines written
in Jayvee allow readers to get a good overview. The pipes and fil-
ters structure enforces creating an explicit hierarchy or sequence
of what steps are executed in what order: “What made the qual-
ity good is that you have a good overview of what exact task is
happening after which, like there is kind of a hierarchy. It starts
with the first block, then the second block, and they have specific
names and so on, so you have a way [. . .] better overview than
Python because everything has a hierarchy.”, (S3).

Students also described how this enforced structure pro-
vided guidelines and reminders on what to consider while

implementing their data pipelines, leading to a higher-quality
final result. This is especially notable in light of exercise 1 show-
ing significant improvements in perceived quality because Jayvee
enforces the explicit assignment of value types for the extracted
data, while Python with Pandas encourages users to rely solely on
automated assignments that might change if the underlying data
changes.

Further effects of the changed development workflow are also
discussed in more detail in Section 5.2.7.

5.2.4 | Limited Feature Coverage

Limited feature coverage can be caused by both missing features
that have yet to be implemented and features that might not have
a place in a DSL at all. A DSL can be much easier to use for the
limited use cases it covers but suffers from being difficult to use
outside of them, as S11 mentions: “[. . .] the main advantage of
Jayvee is if you have an easy use case, you can write a pipeline
down really fast. I think if it gets complex, then you have to look
to find your own workaround.”

Regarding not yet implemented features, students experienced
this issue with exercise 3, which required changing the data struc-
ture by deleting multiple, not adjacent columns—while Jayvee
only supports deleting single or adjacent columns as of now.
Accordingly, we received negative feedback about the missing
features, and exercise 3 was perceived as considerably harder
than the others (see Figure 4).

Aside from not yet implemented features, students with back-
grounds as software developers pointed out that it is unclear how
to handle cross-cutting concerns for data pipelines like monitor-
ing or testing in Jayvee. A Python script might send a Slack mes-
sage for monitoring or logging an intermediate result to Kafka,
and it was unclear how to approach these challenges in Jayvee.
These requirements do exist for the operation of data pipelines
as software artifacts, but they are not part of the domain of data
engineering itself. For any DSL, it is a question of whether these
cross-cutting concerns should be part of the language design
itself and, if so, to what extent. One potential solution to the
cross-cutting concerns and extendability of a DSL would be to
enable the execution of GPL code, an option that we heavily dis-
cussed internally and assumed would feature prominently in the
interviews. Surprisingly, this suggestion was only made by one of
the interview participants.

5.2.5 | Increased Approachability

The limited feature set of a DSL strongly affects its approacha-
bility in the two dimensions of programming experience domain
knowledge.

Regarding needed programming experience, participants
reported a strong divide between Jayvee’s smaller and all-in-one
feature set and the mature library ecosystem of Python. Having
all functionality as part of the language allows for one central,
compact source of information in the form of online documen-
tation, which was generally preferred: “it’s better as you have

12 of 20 Software: Practice and Experience, 2025

one central source of information and you don’t have that much
where you don’t find what you need.”, (S11).

At the same time, many possible libraries and implementation
approaches can exist in a GPL like Python that lead to fragmen-
tation in communities and sources of information that require
more experience to navigate. Especially for Python, libraries are
complex and have to be learned like a separate language. Students
mentioned they knew how to use, for example, Pandas instead
of how to program in Python itself and having trouble under-
standing code from other libraries. Researching fitting libraries
was described as time intensive and requires expert knowledge
of Python and its libraries, for example by S11: “[. . .] my main
criticism about Python, is you have to know which library you
use. If you don’t, then you have a lot of work to do. [. . .] you can
write very good and very compact code and a few lines and get
much, but you have to know what you’re doing.”

In the same quote, the positive side of the effect of programming
experience is mentioned: Experienced programmers can leverage
their knowledge into using a GPL with libraries well and write
short and performant code that solves a problem elegantly. In
this sense, a DSL has a lower skill floor, that is, can be used by
novice programmers with less previous programming knowledge
to solve a problem, but also a lower skill ceiling for professional
programmers.

Domain knowledge greatly influences the approachability of a
DSL compared to a GPL. Domain experts can reuse their exist-
ing knowledge to understand DSL code, and students drew the
comparison of Jayvee code to data pipelines multiple times.

Another comparison was made to spreadsheet software like Excel
or Google Sheets, for example, by S7: “[. . .] when I use Jayvee, I
can think [of] the data pipeline, like I am using Excel. Yes, I am
using Excel and then I can think like that and use this to cre-
ate a pipeline [. . .] but when I use Python, I must think I am a
developer or I am a data engineer.” When asked why they had
this impression, students pointed to the cell selection syntax that
is modeled after spreadsheet software (e.g., ‘A1-A3’ to select the
first row and first to the third column, instead of index-based
access in Python with Pandas) and to the fact that Jayvee splits
working on data shape (using 2D string data structures called
‘Sheets’) from assigning value types instead of combining both
in dataframes.

This similarity to spreadsheet software is relevant because some
students reported that their previous experience with data engi-
neering was not from programming but massaging data in,
for example, Excel. For other domains with mainly smaller,
sheet-based datasets (like many open data domains), this could
allow subject-matter experts to translate their existing experience
with spreadsheet software into familiarity with Jayvee, similar to
the students.

Moreover, working with Jayvee also had a positive effect on
related skills, like data pipeline architectures, and the knowledge
could also be transferred to Python. S2 explains: “It’s now more
clear how to structure a data pipeline. [. . .] And I think after pro-
gramming in Jayvee, I saw in switching to Python, I saw more the
structure of the Python code.”. Similarly, S5 adapted their Python

code after getting exposed to the pipes and filters approach of
Jayvee: “I actually explored your block and pipe concept [. . .] I
tried to write my project on this concept. So I tried to write this
block and pipe in Python as a class.”.

5.2.6 | Different Code Structure

The effects of using a DSL over a GPL with libraries on code
structure are mainly caused by the strong structure of small,
connected, and named blocks of logic that Jayvee enforces. This
structure is compared to Python code, written in good style with
named functions as described by S11: “In Python, I also tried to
modularize my code. [. . .] What you do in Jayvee with pipes is,
in general, what I would say is a good method to modularize
your code. What I also would expect in another programming
language.” Because this style is essentially enforced by the DSL,
implementation in Jayvee is described as less flexible but more
structured than Python.

With inexperienced programmers or scripts that should ‘just run,’
data pipelines in more flexible languages can be difficult to main-
tain as S11 goes on: “I think we often see ugly Python code that
just runs, but that’s not very good maintainable in the end. It’s not
very abstract written. It just should run.” Of course, the tradeoff
for enforced structure is that implementation can take longer if
all that is needed is a one-off script.

In addition to the difference in structure, students also experi-
enced an effect of how dense Python code can be compared to
Jayvee blocks. One line of code, for example, opening a remote
CSV file using read_csv in Pandas, can lead to the execution
of complex logic that has the potential for many different types
of errors (in this example, from network issues opening a remote
file to parsing errors because of ill-formatted CSV). Because of
this density, students described Python code as difficult to debug,
as it was unclear where an error occurred and which of the many
options to adapt.

In contrast, Jayvee’s pipes and filters architecture creates smaller
units of code (in blocks) that belong together. This positively
affected debugging, making it easier to locate the source of an
error. In addition, by enforcing the colocation of related code, it
was easier to understand the whole context of a section of a data
pipeline. S3 describes the difference to Python: “It’s grouped [in
Jayvee]. In Python, you could write in the first line, have your
dataset variable, and then in line 15 finally work with it to delete
rows and so on [. . .]”.

5.2.7 | Guided Development Workflow

The different development workflow of students when creat-
ing data pipelines followed from their approach to improving a
dataset: They worked from the source data by narrowing (e.g., by
removing columns and rows or restricting value types) and did
not consider working backward from a goal state they wanted
to achieve. In fact, Jayvee includes a block that selects columns
from a dataset based on an allowlist approach that was described
as confusing because students did not understand how to delete
columns with it.

13 of 20

Descriptions of the implementation process in Python were uni-
form: Students optionally started by outlining their approach
with comments and wrote imperative code to achieve their goal
first, then refactored their script as needed. The implementation
process in Jayvee was described less uniformly, though most stu-
dents defined blocks first and connected them to a pipeline in a
final step.

However, students highlighted that the structure that the pipes
and filters architecture enforces helped them by providing a
guideline of what to do and an order to do it in. S10 describes the
process as: “But here [in Jayvee] you have to extract data, then
you have to call the interpreted file [. . .]. There were protocols
you have to follow first, then you can transform the data.”.

In addition to providing guidelines for the structure of the
data pipelines, students also experienced the individual blocks
as reminders of which steps needed to be implemented in
their pipeline, as summarized by S0: “the very streamlined
approach of Jayvee that leads you through the steps basi-
cally [. . .] it allows you to always think of, maybe I should
do some validation here. Maybe I should put some con-
straints on the data.”. These reminders changed the develop-
ment workflow because they forced developers to think about,
for example, assigning value types explicitly to columns of data
that might be automatically assigned by type inference in libraries
like Pandas.

5.2.8 | Magic Requires Trust

Hidden logic that was described as “magic” in Python/Pandas
versus the explicit definitions in Jayvee introduced a tradeoff
between magic and trust towards the data pipelines and their
results. S2 expresses the feeling as: “If it [Jayvee] compiled, I got
most of the things I programmed. If it compiled I got the data I
wanted [. . .] but compared to Python there were no big issues
if it compiled. I think it was less like magic. In Python you use a
function, it’s magic in the background. And in Jayvee, it was more
like, I know what happened.”. The tradeoff described by the par-
ticipants was that more automated functionality (or ‘magic’) also
means less trust in the correctness of the output data.

The reasons for this effect are that magic can (and does) go
wrong but does not produce an error during the execution of the
pipeline but only results in an unexpected result. In addition to
the time needed to implement a data pipeline, participants reg-
ularly needed to verify that the output was what they expected
until they were satisfied. An additional effect is that it is diffi-
cult to fix if the ‘magic’ goes wrong. This can occur, for example,
with unusually formatted CSV data that leads to Pandas creating
a multi-index when creating a dataframe. When this happens, it
is much harder to work around the automation than to just not
use any automation at all, especially with a library as complicated
as Pandas.

The downside of more explicit definitions was identified as more
verbose code and slower implementation speed. With the pipes
and filters architecture, if the individual steps are too small,
they will reduce how fast a pipeline can be created. A potential
solution would be compositions of often used functionality, as

suggested by S8: “Sometimes for the stuff you would expect peo-
ple to do very often, an aggregate would have been easier.”

5.2.9 | Easier Reuse / Collaboration

Lastly, participants described how using a DSL affected the reuse
of and collaboration on pipeline code, with the pipes and filters
architecture identified as supporting collaboration and reuse of
code. S8 describes this as: “You could reuse the existing pipelines
really well because you had most often needed the same steps for
input and output. So if I want to ingest some stuff, I can reuse
some blocks [. . .]”. Of course, reusing code in blocks is similar
to extracting parts of an imperative data pipeline into functions
and reusing those in Python. However, the flexibility of Python
as a GPL with many libraries was described as a challenge to
reuse and collaborate because collaborators might use different
implementations or libraries that do not work with each other.
Additionally, knowledge barriers exist if other developers use dif-
ferent libraries from the ones the participant has experience with.

The use of user-defined value types instead of if-statements for
data validation had an additional, positive effect on reuse, as S10
explains: “If you want to follow the constraint in Python, we have
to introduce if statements, but here [in Jayvee] you have to cre-
ate your own data type and you can reuse it. So that was a plus
point for Jayvee [. . .]”. Using appropriate value types, defined by
subject-matter experts, to document and validate data can be a
strength of a domain-specific language. An important considera-
tion is the ease of use to create, use, and share these value types
so that they are preferred over filtering values with if statements.

5.2.10 | Developer Experience

Regarding considerations for a new data engineering language,
participants commented on the developer experience of Jayvee
as a new language. While a few participants pointed out that the
IDE support could be improved by better autocompletion, over-
all feedback regarding the provided extension for VSCode was
sparse or, in some cases, even positive. Providing good IDE sup-
port out of the box by implementing a new language using a tool
like Langium proved to be a strength of Jayvee. However, students
pointed out that they would have liked file templates and scaffold-
ing for what is considered a good code style in Jayvee to improve
the IDE experience further.

Challenges with tooling experienced by participants include ver-
sion confusion between documentation, interpreter, and VSCode
extension, as well as difficulty debugging Jayvee code. With a
fast-changing new language, it is of high importance to estab-
lish clear error messages for version mismatches or an automated
way to update to new versions early. During the exercises, we
made one new release of Jayvee that introduced confusion, as S2
describes: “it showed the error on Visual Studio, but it worked
if I ran it on the command line”. Other participants had similar
issues with mismatched versions between the different tools.

A large challenge experienced when implementing data pipelines
in Jayvee was difficulty debugging. Participants asked for clearer
error messages and requested a debugging tool. While Jayvee

14 of 20 Software: Practice and Experience, 2025

does provide basic console debugging outputs using a command
line flag, initially students did not find out about this optional
parameter. We recommend enabling debug output by default
(and providing an opt-out if not needed) and carefully consider-
ing their error messages. Regarding error messages, an additional
concern is that the smaller community of a new language makes
searching for explanations of error messages more complicated.

5.2.11 | Importance of Documentation

Fewer community resources raise the importance of documenta-
tion. We provided documentation in the form of a website that
documents core concepts and details such as block descriptions.
While the documentation was generally appreciated by students,
we learned that including it with the IDE support would have
improved the experience. S0 points out: “one minus point com-
pared to Python is that Python has all this documentation inte-
grated into the IDEs. So I just hover over some library and I get
some information on it in the IDE and don’t have to navigate
somewhere.”. Their sentiment was generally shared by partici-
pants, who reported not liking to read the documentation itself
and preferring smaller, targeted documentation to their use case
directly in the IDE.

In addition to the way the documentation is provided, content
and structure are the most important qualities. Regarding struc-
ture, related content should be interlinked instead of just present-
ing a list of language concepts (like blocks). For content, aside
from the basic syntax definition, good documentation mainly
needs examples and has to ensure those examples are complete.
S2 describes their problems with incomplete examples in Python
documentation “[. . .] then the example stopped at some point
and it took a lot of time for me to get from the point that the
example stopped to my own implementation [. . .]”, pointing out
that having to work with incomplete examples can be slow and
frustrating. Other content requests included tutorials for com-
mon use cases and more documentation for error messages.

5.2.12 | Use of Chatgpt

The increased use of AI tools like ChatGPT to assist with pro-
gramming shows how new technology can introduce new lan-
guage requirements. Some students reported using ChatGPT for
research (“How can I develop this? Then ChatGPT will tell you.”,
S7), to generate starting solutions (“So ChatGPT also recom-
mends some solution.”, S5) or even as a debugging tool (“[. . .] we
are not getting that clear errors from that. And I tried to search
[. . .] on ChatGPT as a tool”, S10).

Because Jayvee is a new language, ChatGPT does not provide
any usable answers for questions about it—in large contrast to
mature languages like Python, which are well-supported. While
the use of ChatGPT might not be an important consideration in
a classroom or academic context, developers of new languages
should consider how they can support development with code
generation or LLM-based AI tools in the future.

5.2.13 | Relevance of Code and Data

Lastly, a topic of consideration unique to data engineering is the
relevance of data in addition to source code while implementing

a data pipeline. In the context of data pipelines, code is only rele-
vant in combination with the data it manipulates. Students strug-
gled to work with Jayvee because it did not support looking at
the intermediate data between each step of a data pipeline. Sug-
gested solutions include aprint statement or supporting the use
of Jayvee in Notebooks, a common environment to develop data
pipelines in Python.

In this regard, the automated type inference for columns in Pan-
das dataframes was also pointed out as helpful because it pro-
vides hints about the underlying data. New languages in the
data engineering domain should consider this requirement and
make it as easy as possible to visualize the data flowing through
a data pipeline while implementing it, ideally with data sum-
maries or automated type inference instead of showing the raw
data only.

6 | Discussion

To the best of our knowledge, the empirical insights presented in
this work are among the first to explore how working with a DSL
based on pipes and filter concepts effects data engineering. We
therefore captured the diversity of effects of using a DSL, instead
of deeply exploring one specific aspect or feature. As a result, we
consider the insights presented here important, but as a start of a
succession of multiple studies that investigate individual effects
in more detail.

The chosen population of master students related to computer
science, AI, and data science is a good proxy for members of open
data communities who have some previous exposure to program-
ming but are not professional software engineers. As a result,
we assume that the results obtained will generalize well to the
work of practitioners in open data contexts who do not have a
background in software engineering. Still, an important research
opportunity exists in gathering more empirical data about how
open data practitioners work with data and especially how their
success is affected by different tools.

However, more in-depth work is needed to learn what effect indi-
vidual DSL features, like the pipes and filter architecture chosen
by Jayvee, have on the work with the DSL and if they are the
best choice. To strengthen the generalizability of the findings,
more narrow comparisons of individual implementation deci-
sions with comparable features in GPLs are needed.

Nonetheless, the results indicate that it is possible to quickly learn
a new DSL for data engineering and use it to build data pipelines
with little previous experience. The main reason for this effect is
the reduced complexity and scope of a focused DSL in compar-
ison to a GPL with libraries. Tasks outside the DSL’s feature set
can become challenging or even impossible to solve. For this rea-
son, it will be important to carefully plan the scope of the DSL
to cover its domain without introducing too much complexity
again.

In the open data context, batch processing small files with tabular
data covers a large part of existing data sources [29, 30]. However,
to be able to improve all data sources, further types of data and

15 of 20

modes of operation will need to be introduced. Improving human
performance in building high-quality data pipelines is one impor-
tant part of building tools. For smaller data sets, execution per-
formance is less relevant. With a DSL as structured as Jayvee,
implementers have to write more readable code which leads to
higher-quality results, especially for novice programmers. Expert
software engineers might still want to work with a GPL with
libraries to be more flexible, but a DSL can enable subject-matter
experts to contribute as well.

A theme that emerged from interviews was the general chal-
lenges when introducing a new language for data engineering,
such as the need for a good debugger or the importance of doc-
umentation. The feedback shows that designing and implement-
ing a new language is not only an academic challenge, but must
be supported by a surrounding ecosystem if there should be any
hope of serious adoption.

This mirrors the experience from other external DSLs, such as
model transformation languages, as discussed in Section 2. The
quality of the ecosystem and tooling that surrounds a language
is essential to its use by practitioners, with editors, debuggers,
and validation or analysis tools described as essentials [17]. In
our data, we also find problems with missing debuggers. How-
ever, editors are rarely mentioned as an issue and sometimes even
highlighted positively. The reason is probably that most partici-
pants used the VSCode plugin we provided, the development of
which was fairly straightforward because it relies on the autogen-
erated support for the language server protocol (LSP) provided by
Langium.

Nonetheless, it remains an open question whether implement-
ing an external DSL is the best approach to take. By building an
internal DSL based on a popular host language, such as Python,
the existing tooling of the host language could be reused. Mod-
ern GPLs have improved considerably compared to older versions
and lower the productivity gap between DSLs and GPLs even for
domain-specific tasks, as investigated by Höppner et al. [42] for
Java in the domain of model transformations. In their study, the
domain-specific requirement of tracing was the major influence
on whether a DSL reduced complexity. For data engineering, it
would be important to investigate if similar processes exist that
can introduce a large overhead to implement with GPLs but could
be automatically handled by a DSL.

New ways of programming, such as using AI support from tools
like ChatGPT, are rapidly changing the way novice programmers
work. The way LLMs and other AI tools can interact with a lan-
guage should be actively planned. Structured DSLs might have an
advantage over GPLs in this regard because they are more limited
and therefore easier to reason about.

Finally, with collaborative data engineering already being a
growing practice [7, 43], reducing entry barriers for partic-
ipants who are not software engineers can be a stepping
stone toward a higher amount of collaboration in open data
engineering.

7 | Limitations

As a mixed-methods study, multiple viewpoints are relevant
to set the results into context. We discuss the limitations and
mitigations we took for the quantitative data gathered in descrip-
tive surveys according to the well-known framework of threats
to validity as discussed in Wohlin et al. [39]. For the qualitative
results from the interview study, we use the trustworthiness crite-
ria described by Guba of credibility, transferability, dependability,
and confirmability [44].

However, while we present potential limitations from both view-
points, employing data and method triangulation by using a
mixed-method research design strengthens the results by allow-
ing one method to reduce the weaknesses of the other.

7.1 | Threats to Validity

We evaluate potential threads to validity regarding the quantita-
tive results of the descriptive surveys according to the classifica-
tion presented in Wohlin et al. [39].

Threats to conclusion validity are challenges to drawing the cor-
rect conclusions about relationships between the treatment and
results. The measures we have taken for our analysis reflect
the subjective experience of the participants and are not objec-
tive, automated measurements and must be interpreted in that
context. To reflect this, we have taken care to label references
to the measures as participants’ impressions instead of objec-
tive truths. Combined with the additional context provided by
the interview study, we consider these insights still appropriate
for the exploratory nature of this study; however, more rigorous
follow-up studies in more controlled settings are needed to con-
firm our measurements.

An additional threat lies in the potential heterogeneity of the par-
ticipants as students, especially since they come from different
master’s degrees. However, the variance in degrees provides a
more realistic setting and allows us to discuss the effect of using
a DSL with insights from various backgrounds. To reduce the
impact of this threat, we’ve compared the previous experience of
participants with a course entry survey (shown in Figure 2) and
found no statistically significant difference between groups.

Because the authors of this study are also involved in creating
the DSL that was investigated as treatment, bias and searching
for positive results is a clear threat to conclusion validity. To mit-
igate this, we defined the complete research design as well as
hypotheses ahead of data collection and used standard research
designs and statistical tests. We committed to and reported the
full, partially negative results of all hypothesis tests. Nonetheless,
subconscious bias remains a threat to conclusion validity. There-
fore, we have published an accompanying data release and invite
replication by independent researchers.

Internal validity describes the extent to which a design can miti-
gate outside influences on the outcome that are unknown to the
researcher, such as bias, apart from the treatment. Because partic-
ipants did solve the exercises in their own programming environ-
ments, outside influences aside from the programming language

16 of 20 Software: Practice and Experience, 2025

are a concern. We chose this approach because of the exploratory
nature of the research and to increase the generalizability of the
results by allowing participants to use the tools they would for a
real task. As a consequence, additional research in a more strict
setting, like controlled experiments, would be needed to increase
the rigor of the results.

The selection of volunteers out of a class of students might influ-
ence the results because volunteers are generally more motivated
to solve new tasks than the general population. Additionally, stu-
dents might be biased toward responses in favor of Jayvee if they
suspected a positive influence on their grades. We mitigated this
threat by using anonymized surveys while clearly communicat-
ing to the students that we would not analyze the data before
grades were published.

Construct validity is concerned with how well the research con-
struct represents the underlying concept or theory under evalu-
ation. Mono-method bias might be a concern for the descriptive
survey results because only one measurement was taken for each
construct. In the larger context of the complete study, this con-
cern is mitigated by the additional context provided by qualitative
feedback from the mixed-method design.

A social threat to construct validity presents itself in the fact that
it was reasonably easy to guess the hypotheses under test because
participants were aware of the questions regarding speed, dif-
ficulty, and quality after answering the first survey and knew
that other students were using a different language to solve the
exercises. However, with the anonymous and optional surveys,
there was no pressure on participants to conform or skew their
answers to either side.

External validity describes the ability to generalize the results of
a design to different settings, such as from data among students
to industry. Using students as participants is a threat to exter-
nal validity and limits how much the insights can be generalized.
This threat is mitigated by the fact that the student population for
this study was from the masters level and, therefore, more experi-
enced. When using students as an approximation, it is important
to clearly understand which population is being represented [25].
We chose students because they are non-professional program-
mers with limited experience in creating data pipelines, so they
are similar to subject-matter experts working with data in indus-
try. We consider them good proxies for this population, and we
expect the results to generalize well to this limited population. In
contrast, we caution against generalizing the results to other con-
texts, such as professional software engineers or subject-matter
experts without any previous exposure to programming.

7.2 | Trustworthiness Criteria

We discuss the qualitative results from the interview study
according to the trustworthiness criteria described by Guba [44]
of credibility, transferability, dependability, and confirmability.

Our sampling strategy presents a limitation to credibility, as
both the online surveys after exercises and the interviews were
opt-in and voluntary, potentially leading to a bias of participants
who enjoyed working with Jayvee or faced comparatively few

challenges. To counteract this, two of the authors spent whole
semesters in prolonged engagement while teaching the students
and directly experienced their questions about the exercises. We
mitigated the risk of attracting students who wanted to please us
to improve their grades by making the exercise surveys anony-
mous and executing the interviews after the students received
their grades. Furthermore, we used data and method triangu-
lation by gathering quantitative data about student experiences
with the data engineering tasks first and then following up with
qualitative data from interviews to confirm and extend the find-
ings. We limited the influence of our presence and behavior on
the interviewees by sticking to a predefined interview guide and
keeping a neutral tone. We applied thematic analysis as a sys-
tematic data analysis approach and mitigated potential confirma-
tion bias by conducting a peer debriefing session with researchers
from another university.

Transferability, the degree to which the results can be transferred
to other contexts, is limited by only evaluating the use of one
specific DSL. We acknowledge that more studies are needed to
confirm more general insights. Thus, we limited statements about
results to Jayvee or placed appropriate disclaimers when we made
inferences about DSLs in general.

The use of students as participants means the study is not
directly transferable to professional contexts. However, we con-
sider the suitability of students as a proxy for open data practi-
tioners to be high because most open data practitioners are also
non-professional programmers with some previous experience in
data engineering.

The exercises were deliberately chosen to represent basic data
engineering tasks in both languages: data extraction from the
web as single files or via compressed zip archives; data cleaning
by removing invalid values and filtering columns; transforming
values; and loading the data into a sink. Generalizations beyond
this scope for more complex data engineering tasks like combin-
ing data of different sources cannot be drawn without further
research. We also provided thick descriptions of the identified
themes, coupled with direct quotes from the interviews, so that
future transfers to other contexts are supported.

Regarding dependability, our goal was to report as much of the
research process and data as possible, so the research context
is clear. We have to limit access to some data, like the original
interviews, due to confidentiality agreements. We have made the
complete data and code that were used in the writing of this
paper available during the review process, and cited extensively
from the interviews to support our conclusions in the qualitative
data analysis. In addition, we sought to increase dependability
with regular external feedback for individual parts of the research
and the presentation of all intermediate results and the research
design to wider audiences (see Table 2).

We established the confirmability of the findings through regular
peer debriefings and discussions among the authors, in addition
to data- and method triangulation. We mitigated the risk of selec-
tive observations during the interviews by using an internally
reviewed interview guide. Nevertheless, because the authors have
also implemented Jayvee, we have to acknowledge our own bias.
We consulted external feedback in a peer debriefing session with

17 of 20

reviewers from another university to reduce the risk of a biased
viewpoint for analysis. We welcome independent future work to
verify our findings.

8 | Conclusions and Future Work

To summarize, we introduced and empirically evaluated a
domain-specific language for the creation of data pipelines by
comparing it with a general-purpose programming language with
libraries. To answer if the use of a DSL has potential during data
engineering, we asked Is using a DSL for data engineering a viable
alternative to a GPL with a data engineering library? and What
is the user’s perception of difficulty and quality of results using a
DSL compared to a GPL with libraries? During the period of two
semesters, two cohorts of students built typical data pipelines for
real-world tabular open data. Data gathered in after-task surveys
shows that, even though participants have statistically signifi-
cantly less experience in Jayvee than in Python, Jayvee provides
some significant differences in greater speed, lower difficulty, and
higher quality of the resulting pipeline in specific exercises. We
therefore conclude that a DSL with a pipes and filter structure can
be a viable alternative to a GPL with libraries for data engineering
for novice programmers.

Extending the quantitative results, we describe causal relation-
ships to answer What are the effects of using a DSL for data engi-
neering compared to a GPL with libraries?, by extracting com-
mon topics from participants’ interview transcripts using the-
matic analysis.

We find the more strictly enforced source code structure of a
DSL to be a major effect. On the one hand, perceived pipeline
quality is higher when implemented with a DSL, especially for
novice programmers who might otherwise struggle to struc-
ture their GPL code appropriately. Additionally, a consistent
structure acts as a helpful guideline during implementation.
Specific design choices, such as using blocks and validating
data using user-defined value types instead of if statements,
enable code reuse and better collaboration. On the other hand,
reduced flexibility means pipelines can take longer to imple-
ment because one-off script-style implementations are no longer
possible. Functionality outside the feature scope of the DSL or
cross-cutting concerns such as monitoring are difficult to imple-
ment without a GPL. Using a DSL for data engineering is there-
fore advisable when implementing a data pipeline that is sup-
posed to be of high quality and operated long-term. For one-off
data cleaning tasks or requirements outside the scope of the DSL,
a GPL should be preferred.

In this context, the decision between an internal and external
DSL has to be made. While building an external DSL provides
the largest amount of control and potential to perfectly capture
the domain, it is also a large programming effort. Tool availability
(such as editors and debuggers) as well as tool quality are chal-
lenges to external DSLs that impact internal DSLs less because
they can reuse existing tooling of the host language. Writing good
documentation is required for both internal and external DSLs,
and should include complete examples and be available inside
the editor. Developers of DSLs must keep this in mind and plan
their workload accordingly. However, in our experience, modern

language development tools such as Langium make it possible to
provide good editor support using the language server protocol
with relatively low overhead and make implementing external
DSLs possible even with small teams. Due to the nature of the
LSP as an open protocol, the first plugins for Jayvee for other edi-
tors, such as neovim are already being developed. We conclude
from this that tooling is an essential area that should be consid-
ered and planned for when implementing a new DSL. Whenever
possible, developers should rely on open protocols and provide
their own plugins for popular IDEs.

The recent rise in AI tools to support development has impor-
tant effects on the use of DSLs for data engineering as well.
Especially non-professional programmers use new technology
like ChatGPT to support them during development, and future
languages must take these changed requirements into account.
Other important workflows in the domain of data engineering
that language developers should keep in mind include Notebook
programming, which enables users to tinker with a pipeline while
being able to see source code and data at the same time.

When implemented with a DSL, the output of data pipelines is
trusted as being correct more than for GPLs. Potential reasons
for this are the more consistent structure, together with less hid-
den logic (less ‘magic’) and more explicit definitions. Combined,
these lead to an increased understanding of what happens dur-
ing pipeline execution; however, detailed insight would require
additional data.

An opportunity for DSLs in data engineering is their ability
to allow users to use knowledge outside of software develop-
ment. This makes the DSL more approachable, especially for
non-professional programmers, by requiring less previous experi-
ence to evaluate libraries or learn language concepts. In the case
of data engineering, previous experience with sheet software is
both very common and relevant. By using domain concepts like
cell selection syntax that follows the syntax of sheet software like
Excel, entry barriers for non-professional programmers could be
reduced. While we have found evidence for this effect in the inter-
views, further work is required to find out the extent of this effect.

Additional research, such as more empirical studies with open
data practitioners and other non-professional programmers, is
required to better generalize the findings presented in this study.
While we consider students a close proxy for hobbyist partici-
pants in data engineering for open data, it is important to verify
this assumption and extend the insights to professionals in open
data contexts.

In future work, we plan to evaluate individual features of a
DSL for data engineering in detail in controlled experiments.
More rigorous, quantitative evaluations of individual features
will strengthen the insights from this initial, qualitative valida-
tion of the effect of DSLs in data engineering. By investigating
individual features, future implementation of DSLs can support
data engineering efforts more effectively.

Author Contributions

The authors take full responsibility for this article.

18 of 20 Software: Practice and Experience, 2025

Acknowledgments

This research has been partially funded by the German Federal Min-
istry of Education and Research (BMBF) through grant 01IS17045 Soft-
ware Campus 2.0 (Friedrich-Alexander-Universität Erlangen-Nürnberg)
as part of the Software Campus project ‘JValue-OCDE-Case1.’ Responsi-
bility for the content of this publication lies with the authors.

The authors thank the anonymous reviewers for their comprehensive
feedback that improved the quality of the manuscript. Open Access fund-
ing enabled and organized by Projekt DEAL.

Disclosure

The authors have nothing to report.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

The data that support the findings of this study are openly available in
Zenodo at 10.5281/zenodo.14730736. The original interview transcripts
are not available publicly due to privacy restrictions, but have been made
available to peer reviewers. They are available on request from the corre-
sponding author.

Endnotes
1 https://github.com/jvalue/jayvee.
2 https://langium.org/.
3 https://jvalue.github.io/jayvee/docs/category/block-types.
4 https://jvalue.github.io/jayvee/.
5 https://mobilithek.info/.

References

1. I. G. Terrizzano, P. M. Schwarz, M. Roth, and J. E. Colino, Data Wran-
gling: The Challenging Journey From the Wild to the Lake (Asilomar. peo-
ple.cs.uchicago.edu: In, 2015).

2. A. Zuiderwijk, M. Janssen, and C. Davis, “Innovation With Open Data:
Essential Elements of Open Data Ecosystems,” Information Polity 19, no.
1,2 (2014): 17–33, https://doi.org/10.3233/IP-140329.

3. P. Heltweg and D. Riehle, “A Systematic Analysis of Problems in Open
Collaborative Data Engineering,” ✽ACM✽Transactions on Social Com-
puting 6, no. 3-4 (2023): 1–30, https://doi.org/10.1145/3629040.

4. M. Fowler and R. Parsons, Domain-Specific Languages (Addison-
Wesley Educational, 2010).

5. U. Leser, M. Hilbrich, C. Draxl, et al., “The Collaborative Research Cen-
ter FONDA,” Datenbank-Spektrum: Zeitschrift fur Datenbanktechnologie:
Organ der Fachgruppe Datenbanken der Gesellschaft fur Informatik e.V 21,
no. 3 (2021): 255–260, https://doi.org/10.1007/s13222-021-00397-5.

6. M. R. Crusoe, S. Abeln, A. Iosup, et al., “Methods Included: Stan-
dardizing Computational Reuse and Portability With the Common Work-
flow Language,” Communications of the ACM 65, no. 6 (2022): 54–63,
https://doi.org/10.1145/3486897.

7. J. Choi, Y. Tausczik, Characteristics of Collaboration in the Emerging
Practice of Open Data Analysis (ACM, 2017).

8. C. Liu, A. Usta, J. Zhao, S. Salihoglu, “Governor: Turning Open Gov-
ernment Data Portals Into Interactive Databases,” in No. Article 415 in
CHI’23 (Association for Computing Machinery, 2023): 1–16.

9. A. Bogatu, N. W. Paton, M. Douthwaite, and A. Freitas, Voyager: Data
Discovery and Integration for Onboarding in Data Science (OpenProceed-
ings.org, 2022).

10. M. Mernik, J. Heering, and A. M. Sloane, “When and How to Develop
Domain-Specific Languages,” ACM Computing Surveys (CSUR) 37, no. 4
(2005): 316–344.

11. T. Kosar, S. Bohra, and M. Mernik, “Domain-Specific Languages:
A Systematic Mapping Study,” Information and Software Technology 71
(2016): 77–91.

12. L. M. Do Nascimento, D. L. Viana, P. A. Neto, D. A. Martins,
V. C. Garcia, and S. R. Meira, “A Systematic Mapping Study on
Domain-Specific Languages,” in The Seventh International Conference on
Software Engineering Advances (ICSEA 2012) (Xpert Publishing Services,
2012), 179–187.

13. D. S. Kolovos, R. F. Paige, T. Kelly, and F. A. Polack, “Requirements
for Domain-Specific Languages,” in Proc. of the 1st ECOOP Workshop on
Domain-Specific Programming Development (DSPD) (2006).

14. S. Meliá, C. Cachero, J. M. Hermida, and E. Aparicio, “Comparison
of a Textual Versus a Graphical Notation for the Maintainability of MDE
Domain Models: An Empirical Pilot Study,” Software Quality Journal 24
(2016): 709–735.

15. T. Kosar, N. Oliveira, M. Mernik, et al., “Comparing General-Purpose
and Domain-Specific Languages: An Empirical Study,” Computer Science
and Information Systems 7, no. 2 (2010): 247–264.

16. A. N. Johanson and W. Hasselbring, “Effectiveness and Efficiency of
a Domain-Specific Language for High-Performance Marine Ecosystem
Simulation: A Controlled Experiment,” Empirical Software Engineering
22 (2017): 2206–2236.

17. S. Höppner, Y. Haas, M. Tichy, and K. Juhnke, “Advantages and Disad-
vantages of (Dedicated) Model Transformation Languages: A Qualitative
Interview Study,” Empirical Software Engineering 27, no. 6 (2022): 1–71,
https://doi.org/10.1007/s10664-022-10194-7.

18. B. Hoffmann, N. Urquhart, K. Chalmers, and M. Guckert, “An Empir-
ical Evaluation of a Novel Domain-Specific Language - Modelling Vehicle
Routing Problems With Athos,” Empirical Software Engineering 27, no. 7
(2022): 180, https://doi.org/10.1007/s10664-022-10210-w.

19. K. Klanten, S. Hanenberg, S. Gries, and V. Gruhn, “Readability
of Domain-Specific Languages: A Controlled Experiment Comparing
(Declarative) Inference Rules With (Imperative) Java Source Code in Pro-
gramming Language Design,” in Proceedings of the 19th International
Conference on Software Technologies (SCITEPRESS–Science and Tech-
nology Publications, 2024).

20. T. Kosar, M. Mernik, and J. C. Carver, “Program Comprehension
of Domain-Specific and General-Purpose Languages: Comparison Using
a Family of Experiments,” Empirical Software Engineering 17 (2012):
276–304.

21. T. Kosar, S. Gaberc, J. C. Carver, and M. Mernik, “Program Com-
prehension of Domain-Specific and General-Purpose Languages: Repli-
cation of a Family of Experiments Using Integrated Development Envi-
ronments,” Empirical Software Engineering 23, no. 5 (2018): 2734–2763,
https://doi.org/10.1007/s10664-017-9593-2.

22. D. Garlan and M. Shaw, “An Introduction to Software Architecture,”
in Advanceson Software Engineering and Knowledge Engineering, vol. 2
(World Scientific, 1993), 1–39.

23. M. Shaw and D. Garlan, “Formulations and Formalisms in Software
Architecture,” in Computer Science Today: Recent Trends and Develop-
ments, ed. V. J. Leeuwen (Springer Berlin Heidelberg, 1995), 307–323.

24. R. B. Johnson, A. J. Onwuegbuzie, and L. A. Turner, “To-
ward a Definition of Mixed Methods Research,” Journal of Mixed
Methods Research 1, no. 2 (2007): 112–133, https://doi.org/10.1177/
1558689806298224.

25. D. Falessi, N. Juristo, C. Wohlin, et al., “Empirical Software Engineer-
ing Experts on the Use of Students and Professionals in Experiments,”
Empirical Software Engineering 23, no. 1 (2018): 452–489, https://doi.org/
10.1007/s10664-017-9523-3.

19 of 20

https://doi.org/10.5281/zenodo.14730736
https://github.com/jvalue/jayvee
https://langium.org/
https://jvalue.github.io/jayvee/docs/category/block-types
https://jvalue.github.io/jayvee/
https://mobilithek.info/
https://doi.org/10.3233/IP-140329
https://doi.org/10.3233/IP-140329
https://doi.org/10.1145/3629040
https://doi.org/10.1145/3629040
https://doi.org/10.1007/s13222-021-00397-5
https://doi.org/10.1007/s13222-021-00397-5
https://doi.org/10.1145/3486897
https://doi.org/10.1145/3486897
https://doi.org/10.1007/s10664-022-10194-7
https://doi.org/10.1007/s10664-022-10194-7
https://doi.org/10.1007/s10664-022-10210-w
https://doi.org/10.1007/s10664-022-10210-w
https://doi.org/10.1007/s10664-017-9593-2
https://doi.org/10.1007/s10664-017-9593-2
https://doi.org/10.1177/1558689806298224
https://doi.org/10.1177/1558689806298224
https://doi.org/10.1177/1558689806298224
https://doi.org/10.1007/s10664-017-9523-3
https://doi.org/10.1007/s10664-017-9523-3
https://doi.org/10.1007/s10664-017-9523-3

26. V. A. Thurmond, “The Point of Triangulation,” Journal of Nursing
Scholarship: An Official Publication of Sigma Theta Tau International
Honor Society of Nursing / Sigma Theta Tau 33, no. 3 (2001): 253–258,
https://doi.org/10.1111/j.1547-5069.2001.00253.x.

27. S. Spall, “Peer Debriefing in Qualitative Research: Emerging Oper-
ational Models,” Qualitative Inquiry: QI 4, no. 2 (1998): 280–292,
https://doi.org/10.1177/107780049800400208.

28. J. Feigenspan, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg,
“Measuring Programming Experience,” in 2012 20th IEEE International
Conference on Program Comprehension (ICPC) (IEEE, 2012), 73–82.

29. J. Umbrich, S. Neumaier, and A. Polleres, “Quality Assessment and
Evolution of Open Data Portals,” in 2015 3rd International Conference on
Future Internet of Things and Cloud (FiCloud) (IEEE, 2015), 404–411.

30. J. Mitlohner, S. Neumaier, J. Umbrich, and A. Polleres,
“Characteristics of Open Data CSV Files,” in 2016 2nd International
Conference on Open and Big Data (OBD) (IEEE, 2016).

31. B. A. Kitchenham and S. L. Pfleeger, “Personal Opinion Surveys,” in
Guide to Advanced Empirical Software EngineeringLondon, eds. F. Shull,
J. Singer, and D. I. K. Sjøberg (Springer, 2008), 63–92.

32. H. Jansen, “The Logic of Qualitative Survey Research and Its Posi-
tion in the Field of Social Research Methods,” Forum Qualitative Sozial-
forschung / Forum: Qualitative Social Research 11, no. 2, Art. 11 (2010),
https://doi.org/10.17169/fqs-11.2.1450.

33. H. Kallio, A. M. Pietilä, M. Johnson, and M. Kangasniemi, “System-
atic Methodological Review: Developing a Framework for a Qualitative
Semi-Structured Interview Guide,” Journal of Advanced Nursing 72, no.
12 (2016): 2954–2965, https://doi.org/10.1111/jan.13031.

34. V. Braun and V. Clarke, Thematic Analysis (American Psychological
Association, 2012), 57–71.

35. B. Kitchenham, L. Madeyski, D. Budgen, et al., “Robust Statis-
tical Methods for Empirical Software Engineering,” Empirical Soft-
ware Engineering 22, no. 2 (2017): 579–630, https://doi.org/10.1007/
s10664-016-9437-5.

36. R. Vallat, “Pingouin: Statistics in Python,” Journal of Open Source Soft-
ware 3, no. 31 (2018): 1026, https://doi.org/10.21105/joss.01026.

37. S. S. Shapiro and M. B. Wilk, “An Analysis of Variance Test for Nor-
mality (Complete Samples),” Biometrika 52, no. 3/4 (1965): 591–611,
https://doi.org/10.2307/2333709.

38. H. B. Mann and D. R. Whitney, “On a Test of Whether One of Two
Random Variables Is Stochastically Larger Than the Other,” Annals of
Mathematical Statistics 18, no. 1 (1947): 50–60.

39. C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering (Springer Science
+ Business Media, 2012).

40. N. B. Robbins and R. M. Heiberger, “Plotting Likert and Other Rating
Scales,” in Proceedings of the 2011 Joint Statistical Meeting, vol. 1 (Ameri-
can Statistical Association, 2011).

41. R. Heiberger and N. Robbins, “Design of Diverging Stacked bar Charts
for Likert Scales and Other Applications,” Journal of Statistical Software
57 (2014): 1–32, https://doi.org/10.18637/jss.v057.i05.

42. S. Höppner, T. Kehrer, and M. Tichy, “Contrasting Dedicated Model
Transformation Languages Versus General Purpose Languages: A His-
torical Perspective on ATL Versus Java Based on Complexity and Size,”
Software and Systems Modeling 21, no. 2 (2022): 805–837, https://doi.org/
10.1007/s10270-021-00937-3.

43. A. X. Zhang, M. Muller, and D. Wang, “How Do Data Science Work-
ers Collaborate? Roles, Workflows, and Tools,” Proceedings of the ACM
on Human-Computer Interaction 4, no. CSCW1 (2020): 1–23, https://doi.
org/10.1145/3392826.

44. E. G. Guba, “Criteria for Assessing the Trustworthiness of Natu-
ralistic Inquiries,” ECTJ 29, no. 2 (1981): 75, https://doi.org/10.1007/
BF02766777.

20 of 20 Software: Practice and Experience, 2025

https://doi.org/10.1111/j.1547-5069.2001.00253.x
https://doi.org/10.1111/j.1547-5069.2001.00253.x
https://doi.org/10.1177/107780049800400208
https://doi.org/10.1177/107780049800400208
https://doi.org/10.17169/fqs-11.2.1450
https://doi.org/10.17169/fqs-11.2.1450
https://doi.org/10.1111/jan.13031
https://doi.org/10.1111/jan.13031
https://doi.org/10.1007/s10664-016-9437-5
https://doi.org/10.1007/s10664-016-9437-5
https://doi.org/10.1007/s10664-016-9437-5
https://doi.org/10.21105/joss.01026
https://doi.org/10.21105/joss.01026
https://doi.org/10.2307/2333709
https://doi.org/10.2307/2333709
https://doi.org/10.18637/jss.v057.i05
https://doi.org/10.18637/jss.v057.i05
https://doi.org/10.1007/s10270-021-00937-3
https://doi.org/10.1007/s10270-021-00937-3
https://doi.org/10.1007/s10270-021-00937-3
https://doi.org/10.1145/3392826
https://doi.org/10.1145/3392826
https://doi.org/10.1145/3392826
https://doi.org/10.1007/BF02766777
https://doi.org/10.1007/BF02766777
https://doi.org/10.1007/BF02766777

	An Empirical Study on the Effects of Jayvee, a Domain-Specific Language for Data Engineering, on Understanding Data Pipeline Architectures
	ABSTRACT
	1 | Introduction
	2 | Related Work
	3 | Jayvee Examples
	4 | Research Design
	5 | Results
	5.1 | Descriptive Surveys
	5.1.1 | Population Description
	5.1.2 | Previous Experience
	5.1.3 | Impressions of Speed, Difficulty, and Quality

	5.2 | Interview Study
	5.2.1 | Speed
	5.2.2 | Difficulty
	5.2.3 | Quality
	5.2.4 | Limited Feature Coverage
	5.2.5 | Increased Approachability
	5.2.6 | Different Code Structure
	5.2.7 | Guided Development Workflow
	5.2.8 | Magic Requires Trust
	5.2.9 | Easier Reuse / Collaboration
	5.2.10 | Developer Experience
	5.2.11 | Importance of Documentation
	5.2.12 | Use of Chatgpt
	5.2.13 | Relevance of Code and Data

	6 | Discussion
	7 | Limitations
	7.1 | Threats to Validity
	7.2 | Trustworthiness Criteria

	8 | Conclusions and Future Work
	Author Contributions
	Acknowledgments
	Disclosure
	Conflicts of Interest
	Data Availability Statement
	Endnotes
	References

