
A Systematic Review of Common Beginner
Programming Mistakes in Data Engineering

Max Neuwinger
Professorship for Open-Source Software

Friedrich-Alexander University Erlangen-Nürnberg
Erlangen, Germany

max.neuwinger@fau.de

Dirk Riehle
Professorship for Open-Source Software

Friedrich-Alexander University Erlangen-Nürnberg
Erlangen, Germany
dirk@riehle.org

Abstract—The design of effective programming languages,
libraries, frameworks, tools, and platforms for data engineering
strongly depends on their ease and correctness of use. Anyone
who ignores that it is humans who use these tools risks building
tools that are useless, or worse, harmful. To ensure our data
engineering tools are based on solid foundations, we performed
a systematic review of common programming mistakes in data
engineering. We focus on programming beginners (students) by
analyzing both the limited literature specific to data engineering
mistakes and general programming mistakes in languages com-
monly used in data engineering (Python, SQL, Java). Through
analysis of 21 publications spanning from 2003 to 2024, we
synthesized these complementary sources into a comprehensive
classification that captures both general programming challenges
and domain-specific data engineering mistakes. This classification
provides an empirical foundation for future tool development and
educational strategies. We believe our systematic categorization
will help researchers, practitioners, and educators better under-
stand and address the challenges faced by novice data engineers.

Index Terms—Data Engineering, Programming Errors, Novice
Programmers, Systematic Review

I. INTRODUCTION

The rapid growth of data science and artificial intelligence
applications has created strong demand for skilled data engi-
neers. According to the U.S. Bureau of Labor Statistics, data
scientist positions are projected to grow by 35% from 2022 to
2032 [1], while the World Economic Forum expects similar
growth of 30-35% in demand for data analysts, scientists, and
engineers by 2027 [2].

As the field grows, more beginners and students are entering
the profession, leading to wider ranges of skill levels among
practitioners. The essential role of data engineering in the data
science pipeline makes this variation in expertise particularly
important. Data scientists reportedly spend up to 80% of their
time resolving data issues upstream of modeling activities
[3], showing how programming mistakes can significantly
affect data integrity, analysis accuracy, and decision-making
processes.

The challenges are especially clear in educational settings,
where research shows that students struggle with abstract
programming concepts and algorithm design [4]. This mix of
growing demand, varying skill levels, and learning challenges
highlights the need for better tools and educational practices.

Our research addresses this need by systematically identifying
common beginner programming mistakes in data engineering,
aiming to develop more effective educational methods.

This work was motivated by our research into domain-
specific languages (DSL) for data engineering (the Jayvee1

DSL of the JValue2 research project). To ground our design
decisions in empirical evidence and educational insights, we
conducted a systematic review of existing literature on com-
mon programming mistakes in data engineering, as presented
in this article. This review informs both our tool development
process and the formulation of educational recommendations,
which we are currently validating and will continue to evaluate
through controlled experiments assessing the effectiveness of
specific tool features.

Through this research and the development of the JValue
project, we argue for the importance of basing both tool and
educational design decisions on solid empirical evidence rather
than intuition alone. This approach promises to enhance the
effectiveness of data engineering tools, learning environments,
and consequently, the quality and reliability of data-driven
insights across various fields.

To this end, we asked the following research question:
What are the most common programming mistakes made

by beginners in data engineering projects, and what are their
consequences?

Our contributions are as follows:
1) The presentation of a systematic review (following

Kitchenham et al. [5]) to identify and filter pertinent
literature,

2) The quality-assured thematic analysis of the identified-
as-relevant literature, and

3) A resulting classification of common programming mis-
takes by beginners of data engineering, with implications
for tool design and educational strategies.

By identifying and analyzing these mistakes, we provide
insights that inform the design of data engineering languages,
tools, libraries, and frameworks, as well as educational in-
terventions. We thereby expect to boost the proficiency of
novice data engineers. Our analysis includes both general

1See https://github.com/jvalue/jayvee
2See https://jvalue.com

programming mistakes and domain-specific challenges unique
to data engineering tasks.

This article is structured as follows. In Section 2 we first
review related work. In Section 3 we present the research
approach we took and in Section 4 we present the results
of the research. In Section 5 we conclude the article and in
Section 6 we discuss the limitations of the work presented.

II. RELATED WORK

To the best of our knowledge, our work is the first sys-
tematic review of common beginner programming mistakes in
data engineering.

Prior systematic reviews have examined different aspects
of programming education. Qian & Lehman [6] reviewed stu-
dents’ misconceptions and difficulties in introductory program-
ming, finding that students struggle with syntactic, conceptual,
and strategic knowledge, often due to factors like unfamiliarity
with syntax and lack of prior knowledge. Medeiros et al.
[7] analyzed teaching and learning challenges in introductory
programming, highlighting that problem-solving and mathe-
matical ability were the most cited necessary skills, while
syntax learning and lack of appropriate teaching methods were
common challenges. More recently, Memarian & Doleck [8]
focused on data science education specifically, examining ped-
agogical tools and practices through the lens of technological
and pedagogical knowledge quality.

While these previous reviews have broadly covered pro-
gramming education [6], teaching methodologies [7], or data
science pedagogy [8], our systematic review addresses a
crucial gap by examining both general and data engineering
specific programming mistakes, providing a comprehensive
view of the challenges faced by beginners in this domain.

III. RESEARCH APPROACH

We performed a systematic literature review (SLR) to an-
swer our research question. Our research focuses on student
populations as representative of programming beginners, as
evidenced by our analyzed literature. The vast majority of em-
pirical studies in this space examine students in introductory
programming contexts, with many of these studies explicitly
equating students with novice programmers [9]–[24].

We conducted our systematic review following established
guidelines for systematic literature reviews [25]–[27], while
structuring our reporting according to the SEGRESS guide-
lines [5]. For the analysis of the identified literature, we
employed Braun & Clarke’s [28] thematic analysis method
to derive a theory from the data. The resulting theory takes
the form of a classification of programming mistakes made by
beginners.

Figure 1 illustrates the iterative research process. The pro-
cess begins with performing a keyword search, which results
in an initial set of papers. From this list of potential papers,
we apply a relevance filter, checking titles and abstracts
against relevance criteria. This produces a subset of potentially
relevant papers.

Next, we applied a quality filter, evaluating the full text
against quality criteria, resulting in a subset of qualified
papers. These qualified papers then undergo thematic analysis.
Throughout the process, we perform backward and forward
snowballing to identify additional relevant articles [29].

Fig. 1. Visualization of data extraction and synthesis

A. Literature Search
Our search approach utilized two major electronic

databases: IEEE Xplore and Scopus. We developed two search
strings to capture both data engineering-specific and general
programming errors that could be relevant to data engineering:

1) (”data engineering” OR ”data science”) AND (”mistake”
OR ”fault” OR ”error” OR ”misconception” OR ”bug”)
AND (”beginner” OR ”novice” OR ”student”)

2) ”programming” AND (”mistake” OR ”error”) AND
(”beginner” OR ”novice” OR ”student”) AND ”data”

The first search string, focusing specifically on data en-
gineering and data science mistakes, yielded 98 results in
Scopus and 107 in IEEE Xplore. The second search string,
which captured broader programming mistakes in data-related
contexts, returned 458 results in Scopus and 269 in IEEE
Xplore.

B. Initial Selection Criteria
Before applying our detailed relevance and quality filters,

we established the following practical criteria for study selec-
tion:

• Language: We limited our review to English-language
publications due to the researchers’ language capabili-
ties and to ensure consistent interpretation of technical
terminology.

• Accessibility: All relevant papers were accessible through
institutional subscriptions or were openly available, re-
quiring no direct author contact.

• Publication Type: We included only peer-reviewed publi-
cations and full conference papers to ensure a baseline of
scientific rigor, excluding non-peer-reviewed publications
and brief conference abstracts.

C. Inclusion and Exclusion Criteria

We adopted a two-phase approach to assess the relevance
and quality of the identified studies.

1) Relevance Filter: The relevance filter was applied to
ensure that the selected studies aligned with the core focus
of our research. The criteria for this phase were as follows:
Inclusion Criteria:

• Topic Relevance: Studies were included if they met one
of the following criteria:

– Focused directly on programming mistakes in data
science or data engineering contexts

– Provided comprehensive analysis of novice program-
ming mistakes in languages commonly used in data
engineering (Python, R, SQL, Java)

– Offered insights into fundamental programming con-
cepts and error patterns that impact data manipula-
tion, analysis, and processing tasks

• Target Audience: Research should address novice pro-
grammers.

• Research Type: Empirical studies, case studies, theoret-
ical papers, reviews, and meta-analyses contributing to
understanding or defining best practices in error preven-
tion or management in programming were included.

• Educational Context: Papers discussing lessons learned
from teaching data engineering classes were considered
relevant, if they offered insights into the programming
mistakes.

2) Quality Filter: Studies that passed the relevance filter
were then subjected to a rigorous quality assessment. The
criteria for this phase were as follows:

Inclusion Criteria:
• Methodological Rigor: Studies must demonstrate clear

research design and systematic data collection methods.
For quantitative studies, this included appropriate sample
sizes and statistical analyses. For qualitative studies, this
meant well-documented methodological approaches such
as grounded theory, thematic analysis, or case study pro-
tocols with clear data collection and analysis procedures.

• Publication Quality: Peer-reviewed publications in jour-
nals or conference proceedings in the field of data engi-
neering or computer science were included.

• Comprehensive Analysis: Studies providing in-depth
analysis of programming mistakes, including causes, con-
sequences, and potential solutions, along with detailed
discussions of findings, practical implications, and future
research directions were favored.

Exclusion Criteria:

• Lack of Empirical Data: Studies relying solely on anecdo-
tal evidence or opinion pieces without empirical support
were excluded.

• Methodological Weaknesses: Research with unclear de-
signs, inadequate sample sizes, or insufficient detail on
data analysis methods was excluded. Studies that did not
address validity and reliability issues were also omitted.

To provide a nuanced evaluation of each paper’s relevance
and quality, a scoring system was implemented. Each criterion
was marked as ”yes” (2 points), ”partial” (1 point), or ”no”
(0 points). The final score for each paper was calculated
as the square root of the sum of squared values for each
criterion. This two-phase approach ensured a comprehensive
and rigorous selection process, aiming to provide a holistic
view of programming mistakes in data engineering.

D. Data Extraction and Analysis

Selected papers were accessed through various online aca-
demic platforms using university credentials. The qualitative
data analysis tool QDAcity3 was used for detailed data anal-
ysis.

We employed Braun & Clarke’s [28] thematic analysis ap-
proach to systematically identify, analyze, and report patterns
(themes) within the data. This method involves six phases:

1) Familiarization with the data: We thoroughly read and
re-read the selected papers, making initial notes on
potential codes and themes.

2) Generating initial codes: We systematically coded inter-
esting features across the entire dataset, collating data
relevant to each code.

3) Searching for themes: We collated codes into potential
themes, gathering all data relevant to each potential
theme.

4) Reviewing themes: We checked if the themes work in
relation to the coded extracts and the entire dataset,
generating a thematic ’map’ of the analysis.

5) Defining and naming themes: We conducted ongoing
analysis to refine the specifics of each theme, generating
clear definitions and names for each theme.

6) Producing the report: We selected compelling extract
examples, conducted final analysis of selected extracts,
related the analysis back to the research question and
literature, and produced a scholarly report of the analy-
sis.

The analysis involved iterative coding of the papers to
identify and categorize different types of programming mis-
takes. This dynamic process allowed for continuous refinement
and redefinition of categories as new patterns emerged from
the data. We employed an inductive approach in our coding
process [30]. This method allowed themes to emerge organ-
ically from the data itself, without preconceived notions or
existing frameworks. As we progressed through the analysis,
we consistently revisited and refined our categorizations to

3See https://qdacity.com

ensure they accurately reflected the patterns observed in the
collected data.

To ensure the reliability and validity of our analysis, we
employed several strategies:

• Constant comparison: We continuously compared new
data with existing codes and themes, refining our analysis
throughout the process [30].

• Negative case analysis: We actively searched for and
discussed cases that did not fit within the emerging
patterns to ensure a comprehensive analysis [31].

Throughout the analysis process, both authors held regular
review meetings to discuss emerging themes, validate coding
decisions, and ensure consistent interpretation of the data.

Our use of thematic analysis aligns with best practices in
qualitative research in software engineering [25], [30], allow-
ing for a rigorous and systematic exploration of the literature.
The resulting themes form the basis of our classification of
programming mistakes, providing a structured framework for
understanding and addressing common challenges faced by
novice data engineers.

Fig. 2. Codes and codings over time, showing theoretical saturation [32]

Figure 2 illustrates the progression of our coding process
over time. The graph shows the cumulative number of unique
codes (solid line) and total codings (dotted line) as we ana-
lyzed each paper. The declining and eventual lack of growth
of codes over time indicates theoretical saturation, suggesting
that we reached a point where additional data analysis was not
yielding new insights or categories. This saturation provides
confidence in the comprehensiveness of our thematic analysis
and the resulting classification of programming mistakes.

IV. RESULTS

This literature review analyzed 21 publications spanning
from 2003 to 2024, comprising 6 journal articles, 14 con-
ference proceedings papers, and 1 symposium article (see A).
Given the limited literature specifically addressing program-
ming mistakes in data engineering, our review encompasses
both domain-specific studies and broader research on begin-
ner programming mistakes that are relevant to data science
contexts.

The temporal distribution of these publications, shown in
Figure 3, reveals the evolution of research interest in this area.

Fig. 3. Distribution of Publications by Year

The broader literature covers a diverse range of program-
ming languages illustrated in figure 4:

Fig. 4. Distribution of Studies by Programming Language

Our analysis shows Java as the predominant programming
language in the studied papers, followed by Python. This
aligns with recent industry research by 365 Data Science [33]
which found that SQL, Python, and Java remain the most
crucial programming languages in data engineering, with SQL
appearing in 79.4% of job postings, Python in 73.7%, and Java
in 22.6% of listings. Java’s strong presence in our academic
literature likely reflects its historical importance in building
scalable data processing systems and its widespread use in
enterprise data engineering tools like Apache Hadoop and
Apache Spark.

The research methodologies employed in these studies re-
veal a diverse range of approaches, with 13 quantitative studies
and 8 mixed-methods studies. The quantitative studies can be
further divided into three main subcategories:

• Post-hoc data analysis: 6 studies analyzed programming
logs to identify error patterns and frequencies [9]–[11],
[16], [20], [34].

• Large-scale analysis: 3 studies conducted extensive error
analyses in controlled environments [12], [14], [35].

• Targeted analysis of specific programming tasks: 4 studies
focused on detailed evaluations of specific assignments or
programming patterns [15], [17], [22], [36].

These quantitative studies primarily utilized numerical data
and statistical methods to identify trends and draw conclusions.
The remaining 8 mixed-methods studies [13], [18], [19], [21],
[23], [24], [37], [38] combined quantitative techniques with
qualitative methods such as thematic analysis, interviews, and
think-aloud protocols. This methodological diversity enabled
us to identify both general programming mistakes that persist
across contexts and those specific to data engineering tasks.

The following sections provide a detailed analysis of the
common mistakes made by beginners in data engineering,
as summarized in Table I. These sections are organized
according to the main themes identified in our research.
Each section explains a specific mistake type within these
categories, providing definitions, examples, and discussions to
offer a comprehensive understanding of the challenges faced
by novice data engineers. A detailed mapping between each
identified mistake type and the supporting literature can be
found in Appendix A.

A. Domain-Specific Mistakes (1)
The Domain-Specific Mistakes are about programming mis-

takes specific to data engineering and data science.
(1.1) Dataset Misunderstandings

Definition: Mistakes arising from misunderstanding the
structure, schema, or specific attributes of the dataset.
Examples:
- Incorrect Attribute Selection: In one study [37], a common
mistake was selecting the wrong dataset attribute. Students
often used the attribute ’PDAT’ instead of ’P NUMVRC’,
misinterpreting ’PDAT’ to indicate the number of varicella
doses received rather than adequate provider data.
- Incorrect Value Usage: Another frequent mistake involved
using incorrect dataset values. For example, in the same study
[37], students used ’male’ and ’female’ instead of numerical
codes (1 and 2) when filtering rows by gender.

(1.2) Faulty Data Analysis Logic
Definition: Mistakes in implementing data analysis algorithms
or logical data processing.
Examples:
- Incorrect Use of DataFrame Functions: In one instance
[37], students incorrectly used the where() function from
pandas to select rows, which ”does not filter out the rows
where the condition is not satisfied, as where() is used for
replacing values where the condition is False to some specific
value (specified in the call through a parameter named other).
Consequently, in the subsequent lines of code, len(df) returns
the length of the full DataFrame rather than the number of
rows where the condition is satisfied.”
- Incorrect DataFrame Operations: Another example involved
”dividing a DataFrame slice by another slice rather than
dividing their lengths to compute a given ratio.” [37]

(1.3) Incorrect Data Handling
Definition: Errors in manipulating or accessing data, leading
to incorrect data processing.

Examples:
- Incorrect Conditions: An example from [37] involved using
df[’P_NUMVRC’]!=0 instead of df[’P_NUMVRC’]>0
to select rows indicating children who received at least
one varicella dose. This condition fails because it does not
correctly account for missing values, which are counted in
addition to the number of rows where ’P NUMVRC’ is
greater than 0.
- Not Accounting for NaN Values: Another common mistake
was replacing all missing values with 0, which led to incorrect
calculations. For instance, when computing the correlation
between the ’P NUMVRC’ and ’HAD CPOX’ columns, a
student replaced all missing values in both columns with 0,
leading to incorrect computation of the correlation as missing
values from the ’P NUMVRC’ column were incorrectly
counted towards children receiving zero doses. [37]
- Misunderstanding Function Outputs: Students also made
mistakes in using the groupby() function incorrectly, where
they misunderstood the output format of the object returned
by groupby and performed incorrect operations in subsequent
lines of code. [37]

(1.4) Misunderstanding Data Types
Definition: Incorrect handling or interpretation of different data
types.
Examples:
- Format Errors: Students often made errors related to data
formats, such as trying to substitute categorical data into
a histogram, which is not appropriate. An example error
message observed was: ”Error in mutate-impl(.data, dots) :
Evaluation error: non-numeric argument to binary operator”.
[34]

B. Strategic Errors (2)
(2.1) Suboptimal Coding

Definition: Inefficient use of coding constructs, leading to
suboptimal performance, especially with large datasets. This
includes not using appropriate vectorized functions for data
manipulation.
Examples:
- Inefficient Loop Usage: A prevalent issue identified in
multiple papers ([37], [19]) is the use of for-loops to iterate
over DataFrame rows, instead of using vectorized operations.
For instance, students used for-loops to count rows satisfying
a condition, which is significantly slower than applying a
Boolean mask.
- Complex Solutions: Some students submitted unnecessarily
complex solutions for problems that could be solved with
simpler, more efficient code. This was observed in [19],
where students wrote complex, multi-line solutions instead of
concise, optimal code.

TABLE I: Summary of Common Beginner Programming Mistakes in
Data Engineering.

Top-level Code Mistake Type Definition Occurrences
Domain-Specific

Mistakes (1)
(1.1) Dataset

Misunderstandings
Mistakes arising from misunderstanding the

dataset, its schema, or associated data guides.
1

(1.2) Faulty Data Analysis
Logic

Mistakes in implementing data analysis
algorithms.

2

(1.3) Incorrect Data Handling Mistakes in manipulating data. 2
(1.4) Misunderstanding Data

Types
Incorrect handling of different data types. 2

Strategic Errors (2) (2.1) Suboptimal Coding Inefficient use of coding constructs. 3
(2.2) Wrong Algorithm Choosing the incorrect algorithm for the task. 5

Misinterpretation
Errors (3)

(3.1) Incorrect Programming
Assumptions

Making wrong assumptions about how
programming constructs work.

10

(3.2) Task Misunderstanding Misinterpreting the problem statement or
requirements.

3

Environment and
Language

Misconceptions (4)

(4.1) Incorrect Language
Understanding

Misunderstandings about the overall
functionality, rules, and behaviors of the
programming language, as well as the

development environment in which novices
work.

18

(4.2) Library Misuse Incorrect use of libraries or failure to import
necessary libraries.

4

(4.3) Path and I/O Errors Incorrectly specifying file paths or managing
file I/O.

4

Logical Errors (5) (5.1) Incorrect Loop
Conditions

Errors in loop conditions, leading to infinite
loops or off-by-one errors.

2

(5.2) Faulty Conditional Logic Errors in if-else statements that cause incorrect
branching.

3

(5.3) Off-by-One /
Out-of-Bounds Errors

Misplacing indices in loops or arrays. 6

Semantic Errors (6) (6.1) Incorrect Function Usage Using functions incorrectly. 12

(6.2) Type Mismatches Assigning or passing incorrect data types to
variables or functions.

15

(6.3) Variable Scope Issues Using variables outside their defined scope. 5
Syntax Errors (7) (7.1) Incorrect Loop & if-else

Syntax
Errors in the syntax of loops or if else

statements.
5

(7.2) Incorrect Operators Using operators incorrectly. 12
(7.3) Invalid Keywords Usage Misusing language keywords. 3

(7.4) Missing Semicolons Omitting semicolons where required. 7
(7.5) Unbalanced Delimiters Unbalanced brackets, parentheses, or braces. 11
(7.6) Variable not declared or

initialized
Using variables that are not declared or

initialized.
9

Sloppiness Errors (8) (8.1) Typographical Errors Simple typos in code. 7
Memory Management

Mistakes (9)
(9.1) Memory Language

Misconceptions
Misunderstanding memory management in

programming languages.
3

(9.2) Memory Leaks Failing to deallocate memory. 2

(2.2) Wrong Approach
Definition: Using an inappropriate or fundamentally flawed
algorithm to solve a problem, which often leads to incorrect
results or inefficient solutions.
Examples:

- Incorrect Ratio Computation: An example from [37] involved
a student computing a ratio by dividing one DataFrame slice
by another, rather than dividing their lengths. This fundamental
misunderstanding of the problem led to incorrect results.
- Incorrect Maximum Value Calculation: In another example

from [17], a student’s algorithm failed to correctly handle
edge cases in determining the maximum value in an array,
leading to incorrect outputs when all values were negative.

C. Misinterpretation Errors (3)

(3.1) Incorrect Programming Assumptions
Definition: Misconceptions about how specific programming
constructs or functions work.
Examples:
- Bitwise Operators Misuse: In [37], students incorrectly used
the bitwise AND operator on DataFrame objects, which is
not valid. The correct approach involves combining Boolean
masks with appropriate precedence rules.
- Incorrect Function Assumptions: Another example from
[19] involved students misunderstanding how functions like
getchar() and scanf() handle input buffers, leading to
persistent errors in their programs.

(3.2) Task Misunderstanding
Definition: Misinterpreting the problem statement, leading to
incorrect implementation.
Examples:
- Ratio Calculation Errors: In [37], students misunderstood
the problem requirements, calculating ratios incorrectly by
including all vaccinated children instead of only those who
did not contract chickenpox.
- Incorrect Output Format: Papers [37], [15], [19], [38], [17]
noted that students often misunderstood the required output
format, leading to errors like returning rounded ratios instead
of exact values or incorrect dictionary key ordering.

D. Environment and Language Misconceptions (4)

(4.1) Incorrect Language Understanding
Definition: Making incorrect assumptions about how the used
programming language works, leading to fundamental errors.
This is a major issue mentioned across many studies and
examples.
Examples:
- Misunderstanding Control Flow: A common error is control
flow reaching the end of a non-void method without returning
a value. For example, in [9], a method was defined as follows:

public int foo(int x) {
if (x < 0) return 0;
x += 1;

}

This leads to a compilation error because the method does not
return a value in all code paths.
- Incorrect Method Invocation: In [9], students often attempted
to invoke non-static methods as if they were static.
- Parameter Types in Method Calls: Including parameter types
when invoking a method is another error noted in [9].
- Misunderstanding Scope Rules: In Python, misunderstanding

scope rules can lead to errors like referencing a variable before
assignment.

(4.2) Library Misuse
Definition: Incorrect use of libraries, such as failing to import
them correctly or misunderstanding their usage.
Examples:
- Missing Imports: As seen in [37], students often forgot to
import necessary libraries, which led to runtime errors. An
example error is failing to import ‘pandas‘ but still attempting
to use ‘pd.DataFrame‘.
- Improper Use of Libraries: Another example is not defining
commonly used variables or aliases (like ‘df‘ for DataFrame),
causing confusion and errors in subsequent code cells.

(4.3) Path and I/O Errors
Definition: Errors related to incorrectly specifying file paths
or managing input/output operations.
Examples:
- Hardcoded Paths: Students often hardcoded absolute paths
that were inaccessible on other machines, such as:

import pandas as pd
df = pd.read_csv(’/path/to/data.csv’)

- Misunderstanding Input Operations: Spohrer and Soloway
[39] found that novices often misunderstood how input opera-
tions handle whitespace. For instance, some students failed to
understand that whitespace in the input data is a character that
can be read, not just a separator that is automatically ignored.
This high-frequency bug was caused by a misunderstanding
of how the READLN statement works in the context of
characters. Some novices thought that READLN ignores all
whitespace when parsing an input line and assigning values to
a sequence of variables, possibly because that’s how READLN
works on a sequence of numeric inputs.

E. Logical Errors (5)
Logical errors are mistakes in the code’s logic that lead

to incorrect behavior. Common examples include incorrect
loop conditions, which can result in infinite loops or off-by-
one errors, and faulty conditional logic in if-else statements,
leading to incorrect branching. Notably, off-by-one or out-of-
bounds errors, where indices in loops or arrays are misplaced,
occur frequently and can cause significant issues by accessing
elements outside their intended range.

F. Semantic Errors (6)
Semantic errors in data engineering arise from the misuse

of functions, operators, or data types, leading to incorrect
program behavior. A significant issue in this category is the
incorrect usage of functions, particularly regarding the number
of arguments and their types. This mistake is especially
prevalent among novices and can lead to numerous errors.
Type mismatches, which involve assigning or passing incorrect
data types to variables or functions, are almost universally
encountered in the literature and represent a major source
of misunderstanding for beginners learning a programming

language. Additionally, variable scope issues, where variables
are used outside their defined scope, can result in unexpected
behavior.

G. Syntax Errors (7)

Syntax errors in data engineering are mistakes that vi-
olate the grammatical rules of the programming language,
preventing code from compiling or running. These errors
are ubiquitous and occur frequently, but are typically quick
and easy to fix. They include issues such as missing semi-
colons, incorrect operators (e.g., confusing assignment with
comparison), errors in loop and if-else syntax, invalid keyword
usage, and undeclared or uninitialized variables. Among these,
unbalanced delimiters - such as mismatched parentheses, curly
braces, or square brackets - stand out as the most significant
and common error. Despite their prevalence, the relative ease
of identifying and correcting syntax errors makes them less
problematic in the long run compared to logical or semantic
errors. However, their frequency can still significantly impact
productivity and learning curves for novice data engineers,
highlighting the importance of robust syntax checking tools
and clear error messages in development environments.

H. Sloppiness/Typographical Errors (8)

Sloppiness or typographical errors are mistakes that occur
due to carelessness or simple typing errors in the code. These
errors can afflict programmers of all skill levels, from novices
to experts. While often easy to fix once detected, they can
create a cascade of problems if left unnoticed. Typos in
variable names, function calls, or numerical values can lead
to unexpected behavior, logical errors, or even syntax errors.
The insidious nature of these mistakes lies in their potential to
introduce subtle bugs that may not be immediately apparent,
potentially causing significant issues in data processing or
analysis down the line. However, with proper attention to detail
and the use of code review practices or linting tools, these
errors can usually be caught and corrected quickly, minimizing
their impact on the overall data engineering process.

I. Memory Management Errors (9)

Memory management errors occur when programmers mis-
handle memory allocation and deallocation, which, though
less frequently discussed, can have significant impacts. Two
common mistakes include memory language misconceptions
and memory leaks.

Memory misconceptions arise when students assume that
declared objects are automatically allocated memory without
instantiation [38] or attempt to access memory via unallocated
pointers [19]. These misunderstandings can lead to hard-to-
detect bugs.

Memory leaks occur when students fail to deallocate al-
located memory, leading to resource wastage and potential
system slowdowns [19]. This mistake can have serious perfor-
mance consequences, especially in long-running applications.

V. DISCUSSION

The findings of this study reveal a complex landscape of
programming mistakes encountered by novices. While some
mistakes are common across various programming domains,
others are particularly unique to data engineering tasks.

A. Discussion of programming mistakes

General programming mistakes, such as syntax mistakes
involving missing semicolons or unbalanced delimiters (IV-G),
are omnipresent among novice programmers regardless of
their specific field. Similarly, logical errors related to con-
ditional statements, loops, or off-by-one errors are frequent
occurrences (IV-E). These types of mistakes, while common,
often represent opportunities for targeted instruction and early
intervention in educational settings, where students could
benefit from exercises and real-time feedback that reinforce
proper syntax and logical reasoning skills.

More significant and persistent challenges emerge in areas
specific to data engineering. A primary concern is the misun-
derstanding or mishandling of datasets (IV-A). This issue often
arises due to a lack of familiarity with data structures, insuffi-
cient domain knowledge, or inadequate understanding of data
manipulation techniques. In educational contexts, addressing
these issues through curriculum adjustments, such as including
more hands-on training with diverse datasets and focused
instruction on data processing techniques, could help students
build a deeper understanding. By incorporating problem-based
learning or interactive simulations into teaching, educators can
provide practical exposure that reduces the likelihood of these
errors.

Another critical area of difficulty lies in algorithm selection
and implementation. Novices frequently struggle to identify
the most suitable algorithms for specific data engineering tasks
and may face challenges in correctly implementing these algo-
rithms (IV-B). This issue is often compounded by inefficient
coding practices, such as failing to utilize vectorized functions
in favor of less efficient manual loops (IV-B). Educators
could address these gaps by designing curricula that focus on
algorithmic thinking and computational efficiency, using real-
world examples to show the impact of suboptimal practices.
Educational tools that visualize the performance differences
between different coding strategies can also help students
better understand these concepts.

Data type handling and file path management present par-
ticularly relevant challenges in the data engineering context.
Given the diverse nature of data sources and formats, students
must develop a strong understanding of data types (IV-A) and
file handling (IV-D). Educational interventions that provide
students with a variety of data-handling scenarios could help
mitigate these issues. For example, structured labs or assign-
ments that focus on reading, writing, and managing data from
different sources can reinforce these critical skills, preparing
students to handle real-world data challenges.

Many mistakes also simply stem from a basic lack of
understanding of the programming language and environment.
This deficit manifests in various ways, from misunderstanding

basic programming constructs to incorrectly assuming how
specific functions operate. In educational settings, these issues
could be addressed by incorporating detailed instruction on
language-specific quirks and encouraging exploratory learning,
where students test their assumptions in sandbox environ-
ments. Educators should also emphasize the importance of
libraries and memory management, which are critical for
efficient data processing, through hands-on labs and debugging
exercises.

Interestingly, this study highlights that novices frequently
struggle with interpreting problem statements correctly (IV-C).
This finding underscores the importance of developing not
only technical skills but also analytical and comprehension
abilities. Educators could address this challenge by incorpo-
rating assignments that require students to break down and
restate complex problems, thus ensuring a solid understanding
of the task at hand. This approach could help students learn
how to approach data engineering tasks methodically, reducing
the risk of misinterpretation.

B. Implications for educators and industry

These findings have several practical implications for both
tool development and educational practices in data engineer-
ing. Integrated Development Environments (IDEs) can be
enhanced with features that specifically target common novice
errors in data engineering. For example, advanced debugging
tools, real-time feedback on data manipulation, and sugges-
tions for efficient coding practices could potentially reduce the
occurrence of these mistakes. Similarly, educational platforms
could integrate these features to give students immediate
feedback during coding exercises, reinforcing correct practices
while they learn.

In the industry, companies should consider incorporating
these findings into their onboarding programs for new data
engineers. This could include workshops on common pitfalls
and best practices in data engineering, ensuring that novices
are well-prepared to handle the challenges they will face. Like-
wise, educational institutions should incorporate this knowl-
edge into their curricula, aligning their teaching with real-
world challenges to better prepare students for professional
environments. Establishing strong mentorship programs, en-
couraging peer code reviews, and utilizing interactive learning
platforms can help novices in both academia and industry
environments learn from experienced data engineers, reducing
the frequency of common mistakes.

By addressing these common mistakes through targeted ed-
ucational interventions, tool features, and supportive industry
practices, we can significantly enhance the proficiency and
effectiveness of novice data engineers. This, in turn, will lead
to more reliable and accurate data processing, ultimately con-
tributing to better data-driven decision-making across various
fields.

VI. LIMITATIONS

We discuss the limitations of our work using Guba &
Lincoln’s [40] quality criteria for qualitative research. The four

quality criteria for qualitative research (credibility, transfer-
ability, dependability, and confirmability) mirror the traditional
four quality criteria for quantitative research (internal validity,
external validity, reliability, and objectivity).

A. Credibility

The credibility of findings in qualitative research (internal
validity in quantitative research) rests on the connection (ide-
ally isomorphism) between the studied phenomena and the
empirical data gathered about the phenomena. Data quality
assurances like prolonged engagement and persistent observa-
tion support credibility and are fulfilled in our work through
the accuracy of our search queries and selection filters: We
captured all work (to the extent that search engines could
find it) and hence identified all relevant data we needed for
our analysis, similarly to how prolonged engagement and
persistent observation would have afforded it to an investigator
of a primary study (rather than a secondary study like ours).

A strength of a systematic review is the built-in triangulation
afforded by the different data sources (articles) utilized. Each
article provides both investigator triangulation (different peo-
ple’s work) and data triangulation (different underlying data
sets for the findings) to stabilize the findings. Even if any
article’s particular findings were off target, the rest would reign
them in. The theoretical saturation our data analysis achieved
shows that our work, based on this broad and deep primary
data, would not have found much to add if we had continued,
and thereby shows completion of our analysis.

B. Transferability

The transferability of findings in qualitative research (exter-
nal validity in quantitative research) is about changing contexts
and still being able to apply the findings. Transferability is less
important for us; we believe the goal of improving data engi-
neering is wholly sufficient for our work. Still, the main quality
criterion of a valid context transfer, called thick description,
is built-in into the empirical data (the articles) our research is
built on. The breadth and depth of data and interpretation in
our primary materials is ensured by the quality of the research
publications we identified and built the systematic review
from. The combination of having exhausted the search space
(available articles) together with having finished the possible
interpretation (theoretical saturation) shows that our data was
as thick as it could get. It’s important to note that most of
our findings are derived from studies of beginner student
courses. The transferability of these findings to beginners
or novices in professional data engineering contexts may
be limited. The challenges faced by students in controlled
academic environments may differ from those encountered by
professionals learning on the job. Additionally, our findings
may not fully represent all aspects of data engineering, as the
field encompasses a broad range of skills beyond program-
ming, including data modeling, Extract Transform Load (ETL)
processes, and data pipeline management.

C. Dependability

The dependability of findings in qualitative research (relia-
bility in quantitative research) is the stability of findings after
all random variation has been removed. Here, a systematic
review really shines to the extent that the search query and
selection filters allowed the investigators to identify all relevant
work. The replication of the same search query and article
selection at a different point in time would only be different
for the primary data to the extent that new work would have
been found (as is possible at a future point in time).

D. Confirmability

The confirmability of findings in qualitative research (objec-
tivity in quantitative research) is the independence of findings
from a particular investigator. We applied a form of inves-
tigator triangulation in that the second author reviewed and
confirmed the first author’s work along multiple dimensions:
The second author both reviewed and confirmed (a) the search
queries, selection filters, and their results and (b) the qualitative
data analysis of the first author. In addition, working from a
corresponding work log (laboratory book), the second author
audited the steps taken by the first author to arrive at these
findings (confirmability audit) and confirmed the findings.

E. More limitations

In addition to the qualitative research criteria discussed
above, our study has several specific limitations typical of
systematic literature reviews. Our focus on English-language
publications may have introduced a language bias, potentially
excluding relevant studies published in other languages. While
the second author provided supervision and feedback through-
out the coding process, we acknowledge that a more for-
malized inter-coder reliability assessment could have further
strengthened our methodological rigor. However, the thorough
review process and regular discussions between authors helped
ensure consistency in data extraction and analysis.

A key limitation of our study is the relatively limited number
of studies specifically focused on data engineering mistakes.
To address this limitation, we deliberately included broader
programming studies that provided insights into mistakes made
with languages commonly used in data engineering (such
as SQL for data manipulation and Java for data processing
frameworks). This methodological choice allowed us to build
a comprehensive foundation of programming mistakes while
identifying patterns across technologies relevant to data engi-
neering practice. However, many of our findings are derived
from more general programming or data science contexts and
may not fully capture the unique challenges in data engineer-
ing. This limitation is compounded by the fact that most of
the studies we reviewed focused on beginner programming
courses in academic settings. It’s not clear how well these
findings translate to beginners or novices in professional data
engineering contexts.

The review may also be affected by publication bias, as
studies with positive or significant results are more likely to be
published than those with negative or non-significant results.

Furthermore, data engineering is a rapidly evolving field,
and some of the older studies may not reflect the current
state of tools and practices in the industry. Our study may
also not fully capture all aspects of data engineering, as the
field encompasses a wide range of skills and tools beyond just
programming.

These limitations highlight the need for future research
that focuses more specifically on data engineering contexts,
particularly in professional settings, to validate and expand
upon our findings.

VII. CONCLUSION

This study highlights common programming mistakes made
by beginners in data engineering, revealing challenges that
range from basic syntax mistakes to complex, domain-specific
issues. While general programming mistakes are widespread,
the most significant hurdles for novices are unique to data
engineering: misunderstanding datasets, inefficient algorithm
implementation, and misinterpretation of data-specific prob-
lems.

Our findings have important implications not only for the
development of data engineering tools but also for educational
practices in the field. These insights can guide the creation of
more intuitive programming languages and libraries specifi-
cally tailored to data engineering tasks, potentially mitigating
common mistakes through improved design and functionality.
Simultaneously, they underscore the need for educational
interventions that focus on practical skill development and
problem-solving abilities in real-world data engineering sce-
narios.

Future research could explore how addressing these com-
mon mistakes through educational methods impacts the ef-
ficiency and effectiveness of novice data engineers in both
academic and real-world projects. Additionally, investigating
the interplay between tool development, educational platforms,
and practical experience could provide valuable insights for
refining both technical tools and teaching methodologies.

This study serves as a foundation for improving not only
the toolset available to aspiring data engineers but also the
educational frameworks that support their growth. Ultimately,
this dual approach will contribute to the development of more
proficient professionals capable of addressing the complex
data challenges of tomorrow, fostering a generation of data
engineers who are better prepared for both technical and
practical demands.

REFERENCES

[1] U.S. Bureau of Labor Statistics, “Occupational outlook handbook: Data
scientists,” https://www.bls.gov/ooh/math/data-scientists.htm, 2024, ac-
cessed: January 05, 2025.

[2] World Economic Forum, “The future of jobs report 2023,” World
Economic Forum, Tech. Rep., April 2023, accessed: January 05, 2025.
[Online]. Available: https://www3.weforum.org/docs/WEF Future of
Jobs 2023.pdf

[3] B. Howe, M. Franklin, L. Haas, T. Kraska, and J. Ullman, “Data
science education: We’re missing the boat, again,” in 2017 IEEE 33rd
international conference on data engineering (ICDE). IEEE, 2017, pp.
1473–1474.

[4] M. Konecki, “Problems in programming education and means of their
improvement,” DAAAM international scientific book, vol. 2014, pp. 459–
470, 2014.

[5] B. Kitchenham, L. Madeyski, and D. Budgen, “Segress: Software engi-
neering guidelines for reporting secondary studies,” IEEE Transactions
on Software Engineering, vol. 49, no. 3, pp. 1273–1298, 2023.

[6] Y. Qian and J. Lehman, “Students’ misconceptions and other
difficulties in introductory programming: A literature review,” ACM
Trans. Comput. Educ., vol. 18, no. 1, oct 2017. [Online]. Available:
https://doi.org/10.1145/3077618

[7] R. P. Medeiros, G. L. Ramalho, and T. P. Falcão, “A systematic literature
review on teaching and learning introductory programming in higher
education,” IEEE Transactions on Education, vol. 62, no. 2, pp. 77–90,
2018.

[8] B. Memarian and T. Doleck, “Data science pedagogical tools and
practices: A systematic literature review,” Education and information
technologies, vol. 29, no. 7, pp. 8179–8201, 2024.

[9] N. C. Brown and A. Altadmri, “Novice java programming mistakes:
Large-scale data vs. educator beliefs,” ACM Transactions on Computing
Education (TOCE), vol. 17, no. 2, pp. 1–21, 2017.

[10] ——, “Investigating novice programming mistakes: Educator beliefs
vs. student data,” in Proceedings of the tenth annual conference on
International computing education research, 2014, pp. 43–50.

[11] R. Smith and S. Rixner, “The error landscape: Characterizing the
mistakes of novice programmers,” in Proceedings of the 50th ACM
technical symposium on computer science education, 2019, pp. 538–
544.

[12] A. Altadmri and N. C. Brown, “37 million compilations: Investigating
novice programming mistakes in large-scale student data,” in Pro-
ceedings of the 46th ACM technical symposium on computer science
education, 2015, pp. 522–527.

[13] P. O. Jegede, E. A. Olajubu, O. O. Bakare, I. O. Elesemoyo, and
J. Owolabi, “Analysis of syntactic errors of novice python program-
mers in a nigeria university,” in Science and Information Conference.
Springer, 2023, pp. 285–295.

[14] M. Hristova, A. Misra, M. Rutter, and R. Mercuri, “Identifying and
correcting java programming errors for introductory computer science
students,” ACM Sigcse Bulletin, vol. 35, no. 1, pp. 153–156, 2003.

[15] A. S. Júnior, J. C. A. de Figueiredo, and D. Serey, “Analyzing the
impact of programming mistakes on students’ programming abilities,” in
Brazilian Symposium on Computers in Education (Simpósio Brasileiro
de Informática na Educação-SBIE), vol. 30, no. 1, 2019, p. 369.

[16] P. Denny, A. Luxton-Reilly, and E. Tempero, “All syntax errors are not
equal,” in Proceedings of the 17th ACM annual conference on Innovation
and technology in computer science education, 2012, pp. 75–80.

[17] A. Ettles, A. Luxton-Reilly, and P. Denny, “Common logic errors
made by novice programmers,” in Proceedings of the 20th Australasian
Computing Education Conference, 2018, pp. 83–89.

[18] D. McCall and M. Kölling, “Meaningful categorisation of novice pro-
grammer errors,” in 2014 IEEE Frontiers in Education Conference (FIE)
Proceedings. IEEE, 2014, pp. 1–8.

[19] E. Albrecht and J. Grabowski, “Sometimes it’s just sloppiness-studying
students’ programming errors and misconceptions,” in Proceedings of
the 51st ACM Technical Symposium on Computer Science Education,
2020, pp. 340–345.

[20] M. Ahmadzadeh, D. Elliman, and C. Higgins, “An analysis of patterns
of debugging among novice computer science students,” in Proceedings
of the 10th annual SIGCSE conference on Innovation and technology in
computer science education, 2005, pp. 84–88.

[21] E. L. Kiran and K. M. Moudgalya, “Evaluation of programming compe-
tency using student error patterns,” in 2015 International Conference on
Learning and Teaching in Computing and Engineering. IEEE, 2015,
pp. 34–41.

[22] J. Jackson, M. Cobb, and C. Carver, “Identifying top java errors for
novice programmers,” in Proceedings frontiers in education 35th annual
conference. IEEE, 2005, pp. T4C–T4C.

[23] D. McCall and M. Kölling, “A new look at novice programmer errors,”
ACM Transactions on Computing Education (TOCE), vol. 19, no. 4, pp.
1–30, 2019.

[24] D. Miedema, E. Aivaloglou, and G. Fletcher, “Identifying sql miscon-
ceptions of novices: Findings from a think-aloud study,” ACM Inroads,
vol. 13, no. 1, pp. 52–65, 2022.

[25] B. Kitchenham, “Procedures for performing systematic reviews,” Keele
University, Keele, UK, Tech. Rep. 33, 2004.

[26] A. Booth, A. Sutton, M. Clowes, and M. M.-S. James, Systematic
approaches to a successful literature review. Sage Publications, 2021.

[27] J. Webster and R. T. Watson, “Analyzing the past to prepare for the
future: Writing a literature review,” MIS quarterly, pp. xiii–xxiii, 2002.

[28] V. Braun and V. Clarke, “Thematic analysis,” in APA handbook of
research methods in psychology, Vol. 2. Research designs: Quantitative,
qualitative, neuropsychological, and biological, H. Cooper, P. M. Camic,
D. L. Long, A. T. Panter, D. Rindskopf, and K. J. Sher, Eds. American
Psychological Association, 2012, pp. 57–71.

[29] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proceedings of the 18th
international conference on evaluation and assessment in software
engineering, 2014, pp. 1–10.

[30] J. Corbin and A. Strauss, Basics of qualitative research: Techniques and
procedures for developing grounded theory. Sage Publications, 2014.

[31] Y. S. Lincoln and E. G. Guba, Naturalistic inquiry. Sage Publications,
1985.

[32] G. A. Bowen, “Naturalistic inquiry and the saturation concept: a research
note,” Qualitative research, vol. 8, no. 1, pp. 137–152, 2008.

[33] S. Magnet. (2024) The data engineer job market in 2024 [research
on 1,000 job postings]. Accessed: 2024-01-06. [Online]. Available:
https://365datascience.com/career-advice/data-engineer-job-market/

[34] O. Yarygina, “Learning analytics of cs0 students programming errors:
The case of data science minor,” in Proceedings of the 23rd International
Conference on Academic Mindtrek, 2020, pp. 149–152.

[35] M. N. C. Vee, B. Meyer, and K. L. Mannock, “Empirical study of novice
errors and error paths in objectoriented programming,” in Proceedings
of the 7th Annual HEA-ICS Conference. Citeseer, 2006.

[36] M. Kaczorowska, “Analysis of typical programming mistakes made by
first and second year it students,” Journal of Computer Sciences Institute,
vol. 15, 2020.

[37] A. Singh, A. Fariha, C. Brooks, G. Soares, A. Z. Henley, A. Tiwari,
H. Choi, and S. Gulwani, “Investigating student mistakes in introductory
data science programming,” in Proceedings of the 55th ACM Technical
Symposium on Computer Science Education V. 1, 2024, pp. 1258–1264.

[38] L. C. Kaczmarczyk, E. R. Petrick, J. P. East, and G. L. Herman,
“Identifying student misconceptions of programming,” in Proceedings
of the 41st ACM technical symposium on Computer science education,
2010, pp. 107–111.

[39] J. C. Spohrer and E. Soloway, “Novice mistakes: Are the folk wisdoms
correct?” Communications of the ACM, vol. 29, no. 7, pp. 624–632,
1986.

[40] Y. S. Lincoln and E. G. Guba, “Establishing dependability and confirma-
bility in naturalistic inquiry through an audit.” 1982.

APPENDIX

The search process led to the following list of articles used in the
literature review:

• Singh et al., ”Investigating Student Mistakes in Introductory
Data Science Programming” [37]

• Brown and Altadmri, ”Novice Java programming mistakes:
Large-scale data vs. educator beliefs” [9]

• Brown and Altadmri, ”Investigating novice programming mis-
takes: Educator beliefs vs. student data” [10]

• Jegede et al., ”Analysis of Syntactic Errors of Novice Python
Programmers in a Nigeria University” [13]

• Kaczorowska, ”Analysis of typical programming mistakes made
by first and second year IT students” [36]

• Smith and Rixner, ”The error landscape: Characterizing the
mistakes of novice programmers” [11]

• Altadmri and Brown, ”37 million compilations: Investigating
novice programming mistakes in large-scale student data” [12]

• Hristova et al., ”Identifying and correcting Java programming
errors for introductory computer science students” [14]

• Júnior et al., ”Analyzing the Impact of Programming Mistakes
on Students’ Programming Abilities” [15]

• Denny et al., ”All syntax errors are not equal” [16]
• Ettles et al., ”Common logic errors made by novice program-

mers” [17]
• McCall and Kölling, ”Meaningful categorisation of novice

programmer errors” [18]

• Albrecht and Grabowski, ”Sometimes it’s just sloppiness-
studying students’ programming errors and misconceptions”
[19]

• Kaczmarczyk et al., ”Identifying student misconceptions of
programming” [38]

• Yarygina, ”Learning analytics of CS0 students programming
errors: The case of data science minor” [34]

• Ahmadzadeh et al., ”An analysis of patterns of debugging
among novice computer science students” [20]

• Kiran and Moudgalya, ”Evaluation of programming competency
using student error patterns” [21]

• Jackson et al., ”Identifying top Java errors for novice program-
mers” [22]

• McCall and Kölling, ”A new look at novice programmer errors”
[23]

• Miedema et al., ”Identifying SQL misconceptions of novices:
Findings from a think-aloud study” [24]

• Vee et al., ”Empirical study of novice errors and error paths in
object-oriented programming” [35]

This part of the appendix provides the mapping between each
identified programming mistake type and the corresponding literature
sources where these mistakes were observed and analyzed.

• Domain-Specific Mistakes (1)
– (1.1) Dataset Misunderstandings [37]
– (1.2) Faulty Data Analysis Logic [34], [37]
– (1.3) Incorrect Data Handling [34], [37]
– (1.4) Misunderstanding Data Types [34], [37]

• Strategic Errors (2)
– (2.1) Suboptimal Coding [19], [35], [37]
– (2.2) Wrong Algorithm [17], [19], [35]–[37]

• Misinterpretation Errors (3)
– (3.1) Incorrect Programming Assumptions [10], [12], [14],

[16], [17], [19], [20], [22], [24], [36]

– (3.2) Task Misunderstanding [17], [19], [37]
• Environment and Language Misconceptions (4)

– (4.1) Incorrect Language Understanding [9]–[14], [17],
[19]–[24], [34]–[38]

– (4.2) Library Misuse [11], [22], [36], [37]
– (4.3) Path and I/O Errors [19], [21], [34], [37]

• Logical Errors (5)
– (5.1) Incorrect Loop Conditions [19], [38]
– (5.2) Faulty Conditional Logic [17], [19], [36]
– (5.3) Off-by-One / Out-of-Bounds Errors [11], [17], [19],

[20], [36], [38]
• Semantic Errors (6)

– (6.1) Incorrect Function Usage [9], [10], [14], [20]–[24],
[34]–[37]

– (6.2) Type Mismatches [9]–[12], [14], [16]–[23], [35], [36]
– (6.3) Variable Scope Issues [19], [21], [24], [36], [37]

• Syntax Errors (7)
– (7.1) Incorrect Loop&if-else Syntax [10], [12], [14], [22],

[36]
– (7.2) Incorrect Operators [9], [10], [12], [14], [17], [19],

[21], [22], [24], [35]–[37]
– (7.3) Invalid Keywords Usage [10], [12], [14]
– (7.4) Missing Semicolons [16], [18], [19], [21]–[23], [36]
– (7.5) Unbalanced Delimiters [9], [10], [12]–[14], [18], [19],

[22]–[24], [36]
– (7.6) Variable not declared or initialized [13], [17]–[20],

[22], [23], [36], [37]
• Sloppiness Errors (8)

– (8.1) Typographical Errors [18], [19], [22]–[24], [34], [35]
• Memory Management Mistakes (9)

– (9.1) Memory Language Misconceptions [11], [36], [38]
– (9.2) Memory Leaks [11], [36]

