
78	 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y � 0 0 1 8 - 9 1 6 2 / 2 5 © 2 0 2 5 I E E E

SECTION TITLE

FF or decades, software develop-
ers and managers have tried
to find ways to make their
jobs easier. One idea was to

share small programs that produced
commonplace functionality, whether
commonplace math functions, sort
routines, reuse on a small scale, and
even more ambitious goals for reuse
on a large scale. Sometimes, software
was developed with reuse in mind
but without an understanding of who
would be using it. As a consequence,
it often takes more effort to do the re-
use than to do new development!

With the massive software sys-
tems being developed today, it
certainly seems like open source
software provides a convenient and
inexpensive answer. Pieces of open
source software are reviewed both
by teams of developers and by many
users. When it appears that a new
update is available, open source soft-
ware is often automatically down-
loaded and used.

From a cybersecurity perspec-
tive, it was argued that open source

Open Source
Software: The
Ultimate in Reuse
or a Risk Not Worth
Taking?
Nancy R. Mead , Carnegie Mellon University

Carol Woody and Scott Hissam, Software Engineering Institute

Open source software components are widely

used to improve software development cost

and schedule. However, in order to have

confidence in open source software, more

work is needed to adequately measure the

cybersecurity risks associated with use of open

software components. This article discusses the

measurement challenges.

OPEN SOURCE

Digital Object Identifier 10.1109/MC.2024.3423908
Date of current version: 29 January 2025

https://orcid.org/0000-0002-2919-086X
https://orcid.org/0000-0002-5286-9176

	 F E B R U A R Y 2 0 2 5 � 79

EDITOR DIRK RIEHLE
Friedrich Alexander-University of Erlangen Nürnberg;

dirk.riehle@fau.de

was more secure because the source
code could be inspected so readily.
However, cybersecurity threats in
open source can be obfuscated by
malicious actors. These bad actors
could include individuals, collectives,
or nation-states. They may be internal
or external to the development team.

Some known goals of hackers include

	› near-term financial goals, such
as resulting from ransomware
attacks

	› data collection for future use or
to perform pattern analysis

	› destroying or damaging critical
systems

	› intelligence gathering
	› industrial espionage.

Some users and organizations inad-
vertently enable successful attacks on
open source software by

	› using programs with typos in
the program name

	› using programs with updated
fictitious version numbers

	› falling victim to phishing
attacks

	› lacking awareness of published
warnings about compromised
software and continuing to
download compromised versions.

In addition to obvious near-term
financial goals, such as ransomware,

quiet tampering, with some unknown
future attack in mind, can also take
place. Reports on ransomware and
quiet tampering appear in the media
daily. Sometimes, the goal is to collect
data from users of the open source
software and do pattern analysis.
There are times when it is unknown
whether the malicious actor is an in-
dividual, a team, or a nation-state.
What’s worse, even when a successful
attack is detected and documented,
some users continue to download
the compromised software! Given
that this is the case, it seems obvi-
ous that open source can no longer
be automatically trusted. It’s not just
a matter of coding errors but cyber-
security risk. Here are some exam-
ples of compromised open source as
well as efforts underway to measure
the trustworthiness of a given open
source package.

OPEN SOURCE
CYBERSECURITY
COMPROMISES
A few examples of compromises to
widely used open source software can
be found in Mead et al.,5 which pro-
vides the basis for much of this column
and is available for download by those
readers who want to dig a little deeper.

Log4j vulnerability
The Cyber Safety Review Board found
that the Log4j vulnerability is too

widespread over Internet-connected
systems to be completely contained.2
First disclosed in December 2021, the
Log4j vulnerability is a critical se-
curity flaw in a popular piece of Java
logging software. It has been in cir-
culation since 2012 and is embedded
in millions of software packages, and
additional downloads of the software
occur daily. Clearly, a unified effort
across organizations is needed to elim-
inate this vulnerability.4

Unfortunately, such a unified effort
is far from reality. Although a patched
version of Log4j is available, quoting
from the Sonatype report7

“As of September 2023,
downloads vulnerable to the
infamous Log4Shell vulnera-
bility still account for nearly
a quarter of all new down-
loads of Log4j. It should be
highlighted, that almost two
years after the initial finding
of this vulnerability, we’re
seeing this pace continue every
week—that a quarter of all
net new downloads are of the
vulnerable version of Log4j.
This is only part of the story.
The reality is, nearly 1/3 of all
Log4j downloads, ever, are
of the vulnerable version.”

This bit of information, com-
bined with the fact that 39% of or-
ganizations surveyed by Sonatype
take more than a week to mitigate
vulnerabilities, paints a grim pic-
ture of the current state of open
source cybersecurity.

xz Utils Backdoor
The details of this attack are best de-
scribed at https://arstechnica.com/
s e c u r i t y/ 2 0 2 4/ 0 4/ w h a t- w e -k n o
w-about-the-xz-utils-backdoor-that-
almost-infected-the-world/. Quot-
ing from just part of the report

FROM THE EDITOR

Welcome back! In this month’s instance of the “Open Source” column, Nancy
Mead and colleagues from Carnegie Mellon University’s Software Engineer-
ing Institute review open source from a security perspective. Security, by now,
is a recurring topic in this column for its importance in an ever more complex
world of software. In this article, Mead et al.’s vantage point is unique in that
their system-of-systems and large contracts perspective is different from the
fast-paced and sometimes haphazard world of commercial development.
With that, happy reading and keep on hacking!—Dirk Riehle

https://arstechnica.com/security/2024/04/what-we-know-about-the-xz-utils-backdoor-that-almost-infected-the-world/
https://arstechnica.com/security/2024/04/what-we-know-about-the-xz-utils-backdoor-that-almost-infected-the-world/
https://arstechnica.com/security/2024/04/what-we-know-about-the-xz-utils-backdoor-that-almost-infected-the-world/
https://arstechnica.com/security/2024/04/what-we-know-about-the-xz-utils-backdoor-that-almost-infected-the-world/

80	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE

“On Friday, a lone Microsoft
developer rocked the world
when he revealed a backdoor
had been intentionally planted
in xz Utils, an open source data
compression utility available
on almost all installations
of Linux and other Unix-like
operating systems. The per-
son or people behind this
project likely spent years
on it. They were likely very
close to seeing the backdoor
update merged into Debian
and Red Hat, the two biggest
distributions of Linux, when an
eagle-eyed software developer
spotted something fishy.”

The person or persons responsi-
ble spent years establishing credi-
bility to become one of the primary
maintainers of the widely used open
source software. This occurred in part
because an excessive number of re-
quests for new features, possibly from
the same collective group, put the pri-
mary maintainer into overload. He
then asked the newer “trusted” devel-
oper to help out. The backdoor would
have allowed the attacker to inject
malicious code during Secure Shell
(SSH) operations, thereby overcoming

standard security measures. The
footprint of the persona has all but
disappeared, and speculation is that
it could have been the work of a na-
tion-state—in one of several possible
geographic areas. However, that’s all
it is, just speculation.

CURRENT TECHNIQUES
FOR CYBERSECURITY
MEASUREMENT OF OPEN
SOURCE
Several attempts have been and are
being made to assess whether a partic-
ular piece of open source software is
secure. Some of these efforts attempt
to define a way of measuring how se-
cure a particular piece of open source
software might be. This, of course, is
highly desirable from a risk assess-
ment perspective. A couple of exam-
ples of these measurement approaches
are described here. The field evolves
rapidly, so there may be many other
approaches available.

The Open Source Security Founda-
tion (OSSF) Scorecard is a tool available
for free download that incorporates a
set of metrics that can be applied to
an open source software project. The
idea is that those project attributes
that OSSF believes contribute to a
more secure open source application

are then reported using a weighted
approach that leads to a score. There
are around 20 project attributes that
are evaluated by default. Each at-
tribute can be rated from zero to 10,
with 10 being the best score, and the
risk level per attribute is set as low,
medium, high, or critical to produce
a weighted average considering both
score and risk level. Scorecard is run
weekly against 1 million open source
projects deemed critical, and the re-
sults are publicly available. A snippet
of the checks run by default is shown
in Table 1 (see https://github.com/
ossf/scorecard?tab=readme-ov-file#
scorecard-checks).

From a metrics perspective, there
are limitations to this approach.

	› The open source community
is driving and evolving which
items to measure and, therefore,
build into the tool. Also, it is not
clear how those factors were
determined, whether the set
of factors is complete, or what
is intended for the long-term
road map (that is, insufficient
transparency).

	› The relative importance of each
factor is also built into the tool,
which makes it difficult (but

TABLE 1. Partial set of default checks run by scorecard. (Source: Adapted from https://
github.com/ossf/scorecard?tab=readme-ov-file#scorecard-checks.)

Name Description Risk level Token required GitLab support Note

Binary-Artifacts Is the project free of
checked-in binaries?

High PAT, GITHUB_TOKEN Supported

Branch-Protection Does the project use
Branch Protection?

High PAT (repo or repo> public_
repo), GITHUB_TOKEN

Supported (see
notes)

Certain settings
are only
supported with a
maintainer PAT

CI-Tests Does the project
run tests in CI, for
example, GitHub
Actions, Prow?

Low PAT, GITHUB_TOKEN Supported

CII-Best-Practices Has the project earned
an OpenSSF (formerly
CII) Best Practices
Badge at the passing,
silver, or gold level?

Low PAT, GITHUB_TOKEN Validating

https://github.com/ossf/scorecard?tab=readme-ov-file#scorecard-checks
https://github.com/ossf/scorecard?tab=readme-ov-file#scorecard-checks
https://github.com/ossf/scorecard?tab=readme-ov-file#scorecard-checks
https://github.com/ossf/scorecard?tab=readme-ov-file#scorecard-checks
https://github.com/ossf/scorecard?tab=readme-ov-file#scorecard-checks

	 F E B R U A R Y 2 0 2 5 � 81

not impossible) to tailor the
results to specific and custom
end-user needs.11

	› Many of the items measured
in the tool appear to be self-re-
ported by the developer(s) versus
validated by a third party, but
this is a common “attribute” of
open source projects.

Other tools, such as MITRE’s Hip-
check, are also available.6 Hipcheck
analyzes repositories, and its docu-
mentation says it can answer questions
such as the following:

	› Does this project practice code
review?

	› When was this project last
updated?

	› Are there concerning contribu-
tors to this project?

	› Are there potential malicious
contributions to review?

	› Are there potential typosquat-
ting attacks present?

	› Where are the highest-risk parts
of the codebase?

For pull requests, its documenta-
tion similarly says it provides answers
to questions such as the following:

	› What parts of the code are in the
greatest need of review?

	› Is this pull request especially
concerning?

	› Is this contributor new to this
part of the code?

It’s not surprising that Hipcheck
has some of the same limitations
as Scorecard.

For an OSSF project, it is possible to
get a score for the project using Score-
card along with scores for the indi-
vidual dependency projects, but ques-
tions arise from this approach. How
do those individual scores roll up into
the overall score? Does the user pick
the lowest score across all the depen-
dencies or apply some sort of weighted
average of scores? This area needs ex-
ploration and elaboration.

Furthermore, a recent research
paper10 indicated cases where open
source projects that score highly by
Scorecard might, in fact, produce
packages that have more reported
vulnerabilities. From a research per-
spective, it is unknown whether this

occurs because the application has
received more reviews (and there-
fore more vulnerabilities were identi-
fied) or whether attacks on a popular
application have exposed it to more
vulnerabilities. Needless to say, the re-
sults of Zahan et al.10 are useful only for
those open source projects evaluated by
the tool, which is applied exclusively to
GitHub, and those are only a fraction of
the total number of open source appli-
cations available. All these issues indi-
cate that further study is needed.

EXAMPLES OF POTENTIALLY
USEFUL MEASURES
An extensive three-year study of secu-
rity testing and analysis revealed that
92% of tests discovered vulnerabilities
in the applications being tested.8 De-
spite showing improvement year over
year, the numbers still indicate an un-
acceptable state of affairs. In addition,
27% of tests identified high-severity
vulnerabilities, and 6.2% identified
critical-severity vulnerabilities. In the
Synopsys study, improvements in open
source software appeared to link to im-
proved development processes, includ-
ing inspection and testing. However,
older open source software that is no
longer maintained still exists in some
libraries, and it can be downloaded
without those corresponding improve-
ments. This study and others indicate
that the community has started mak-
ing progress in this area by defining
measures that go beyond identifying
vulnerabilities in open source software

while keeping in mind that the goal is to
reduce vulnerabilities.

Measures that are effective more
generally in supply chain risk man-
agement can also be applied to open
source software. Documentation and
examples of how to define these mea-

sures and collect and analyze relevant
data in various phases of the software
assurance lifecycle already exist.9 The
report discusses how the Software As-
surance Framework (SAF) illustrates
promising metrics for specific activ-
ities. SAF examines practices in the
categories of process management,
project management, engineering,
and support. For each category, multi-
ple areas of practice as well as specific
practices are specified.

This is demonstrated in Table 2,
which pertains to SAF “Practice Area
2.4 Program Risk Management” and
addresses the question, “Does the pro-
gram manage program-level cyberse-
curity risks?” Table 2, in addition to
itemizing specific practices and their
outputs, postulates candidate met-
rics. This work illustrates what can
be done, although much more work
is needed to flesh out all the desired
candidate metrics and to assess
their effectiveness.

WHAT ELSE IS NEEDED?
Once all the metrics needed to predict
cybersecurity in open source software
are understood, and this problem
has not yet been solved, standards
will be needed that make it easier to
apply these metrics. Standards orga-
nizations, such as NIST and ISO, and
cybersecurity-specific standards or-
ganizations, such as CISQ, could take
on these challenges. Providers could
consider including software products
that come with metrics that help users

Even when a successful attack is detected and
documented, some users continue to download the

compromised software!

82	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE

understand the product’s cybersecu-
rity posture.

As an example, at the operational
level, Vulnerability Exploitability
eXchange (VEX) helps users under-
stand whether or not a particular
product is affected by a specific vul-
nerability.1 A VEX document is “a
machine-readable collection of in-
formation conveying the status of
products or components with respect
to a vulnerability.” The description of

VEX further states: “VEX is designed
to integrate with SBOM, vulnerabil-
ity databases, and security adviso-
ries, but does not require any of these.
VEX documents can be authored by
the supplier of the software or by a
third party.”

Such publicly available informa-
tion can help users make choices about
open source and other products in the
supply chain. Of course, this is just
one example of how data might be col-
lected and used, and it focuses on vul-
nerabilities in existing software.

Similar standard ways of doc-
umenting and reporting cyberse-
curity risk are needed throughout
the software product development
process. One of the challenges in

analyzing data is that when they are
collected, they may not be collected
or documented in a standard way.
Reports are often written in unstruc-
tured prose that is not amenable to
analysis, even when the reports are
scanned, searched for keywords and
phrases, and analyzed in a standard
way. When reports are written in
a nonstandard way, analyzing the
content to achieve consistent results
is challenging.

In the meantime, until the ideal state
is reached and standard trusted
methods for measuring the cyber-

security of open source software exist,
practitioners and managers need to
take advantage of the measurement
tools and reports that are currently
available, such as those available from
CISA and ENISA.3 Open source soft-
ware that has already been reported as
compromised should not continue to
be downloaded and used, as happens
so often at present.

REFERENCES
	 1.	 Cybersecurity & Infrastructure Security

Agency (CISA). “Minimum requirements
for vulnerability exploitability eXchange
(VEX).” CISA (.gov). Accessed: Jul. 18,

2024. [Online]. Available: https://www.
cisa.gov/sites/default/files/2023-04/
ßß´minimum-requirements-for-vex
-508c.pdf

	 2.	 Cyber Safety Review Board (CSRB).
“Review of the December 2021 Log4j
Event. Cybersecurity and Infra-
structure Security Agency (CISA).”
Accessed: Jul. 18, 2024. [Online].
Available: https://www.cisa.gov/
sites/default/files/
publications/CSRB-Report
-on-Log4-July-11-2022_508.pdf

	 3.	 European Union Agency for Cyber-
security (ENISA). “Good practices for
supply chain cybersecurity.” ENISA
Website. Accessed: Jul. 18, 2024.
[Online]. Available: https://www.
enisa.europa.eu/publications/good
-practices-for-supply-chain
-cybersecurity

	 4.	 S. Ikeda. “New cyber safety review
board report: Log4j vulnerability is
“endemic,” expect it to be exploited
into the 2030s.” CPO Magazine. Ac-
cessed: Jul. 18, 2024. [Online]. Avail-
able: https://www.cpomagazine.com/
cyber-security/new-cyber-safety
-review-board-report-log4j-vulnerability
-is-endemic-expect-it-to-be-exploited
-into-the-2030s/

	 5.	 N. R. Mead, C. Woody, and S. Hissam.
“The measurement challenges in
software assurance and supply chain
risk management.” SEI Website. Ac-
cessed: Dec. 22, 2023. [Online]. Avail-
able: https://insights.sei.cmu.edu/
library/measurement-challenges-in
-sw-assurance-and-scrm-white-paper/

TABLE 2. SAF Practice Area 2.4 Program Risk Management: Does the
program manage program-level cybersecurity risks?

Activities/practices Outputs Candidate metrics

Ensure that project strategies and plans
address project-level cybersecurity risks
(for example, program risks related to
cybersecurity resources and funding)

Program Plan
Technology Development Strategy (TDS)
Analysis of Alternatives (AoA)

Percentage of program managers
receiving cybersecurity risk training
Percentage of programs with
cybersecurity-related risk management
plans

Identify and manage project-level
cybersecurity risks (for example,
program risks related to cybersecurity
resources and funding)

Risk Management Plan
Risk Repository

Percentage of programs with
cybersecurity-related risks
Number of cybersecurity-related risks
tracked per month

Improvements in open source software appeared
to link to improved development processes,

including inspection and testing.

https://www.cisa.gov/sites/default/files/2023-04/minimum-requirements-for-vex-508c.pdf
https://www.cisa.gov/sites/default/files/2023-04/minimum-requirements-for-vex-508c.pdf
https://www.cisa.gov/sites/default/files/2023-04/minimum-requirements-for-vex-508c.pdf
https://www.cisa.gov/sites/default/files/2023-04/minimum-requirements-for-vex-508c.pdf
https://www.cisa.gov/sites/default/files/publications/CSRB-Report-on-Log4-July-11-2022_508.pdf
https://www.cisa.gov/sites/default/files/publications/CSRB-Report-on-Log4-July-11-2022_508.pdf
https://www.cisa.gov/sites/default/files/publications/CSRB-Report-on-Log4-July-11-2022_508.pdf
https://www.cisa.gov/sites/default/files/publications/CSRB-Report-on-Log4-July-11-2022_508.pdf
https://www.enisa.europa.eu/publications/good-practices-for-supply-chain-cybersecurity
https://www.enisa.europa.eu/publications/good-practices-for-supply-chain-cybersecurity
https://www.enisa.europa.eu/publications/good-practices-for-supply-chain-cybersecurity
https://www.enisa.europa.eu/publications/good-practices-for-supply-chain-cybersecurity
https://www.cpomagazine.com/cyber-security/new-cyber-safety-review-board-report-log4j-vulnerability-is-endemic-expect-it-to-be-exploited-into-the-2030s/
https://www.cpomagazine.com/cyber-security/new-cyber-safety-review-board-report-log4j-vulnerability-is-endemic-expect-it-to-be-exploited-into-the-2030s/
https://www.cpomagazine.com/cyber-security/new-cyber-safety-review-board-report-log4j-vulnerability-is-endemic-expect-it-to-be-exploited-into-the-2030s/
https://www.cpomagazine.com/cyber-security/new-cyber-safety-review-board-report-log4j-vulnerability-is-endemic-expect-it-to-be-exploited-into-the-2030s/
https://www.cpomagazine.com/cyber-security/new-cyber-safety-review-board-report-log4j-vulnerability-is-endemic-expect-it-to-be-exploited-into-the-2030s/
https://insights.sei.cmu.edu/library/measurement-challenges-in-sw-assurance-and-scrm-white-paper/
https://insights.sei.cmu.edu/library/measurement-challenges-in-sw-assurance-and-scrm-white-paper/
https://insights.sei.cmu.edu/library/measurement-challenges-in-sw-assurance-and-scrm-white-paper/

	 F E B R U A R Y 2 0 2 5 � 83

	 6.	 MITRE Corporation. “Hipcheck.”
GitHub Website. Accessed: Dec. 19,
2023. [Online]. Available: https://
github.com/mitre/hipcheck

	 7.	 Sonatype Incorporated. “Sonatype
9th annual state of the software
supply Chain report.” Sonatype
Website. Accessed: Jul. 18, 2024.
[Online]. Available: https://
www.sonatype.com/state-of
-the-software-supply-chain/
introduction

	 8.	 Synopsys. “2023 open source
security and risk analysis report.”
Synopsys Website. Accessed:
Dec. 18, 2023. [Online]. Available:
https://www.synopsys.com/
software-integrity/engage/ossra/
rep-ossra-2023-pdf

	 9.	 C. Woody, R. Ellison, and C. Ryan,
Exploring the Use of Metrics

for Software Assurance. CMU/
SEI-2018-TN-004. Pittsburgh, PA,
USA: Software Engineering Institute,
Carnegie Mellon Univ., 2019.

	10.	 N. Zahan, S. Shohan, D. Harris,
and L. Williams, “Do software
security practices yield fewer
vulnerabilities?” in Proc. IEEE/
ACM 45th Int. Conf. Softw. Eng.,

Softw. Eng. Pract. (ICSE-SEIP),
Piscataway, NJ, USA: IEEE Press,
2023, pp. 292–303, doi: 10.1109/
ICSE-SEIP58684.2023.00032.

	11.	 “OpenSSF scorecard – Security
health metrics for open source.”
GitHub. Accessed: Jul. 18, 2024.
[Online]. Available: https://github.
com/ossf/scorecard

NANCY R. MEAD is a fellow at the
Software Engineering Institute and an
adjunct professor of software engi-
neering at Carnegie Mellon University,
Pittsburgh, PA 15213 USA. Contact her
at nm00@andrew.cmu.edu.

CAROL WOODY has been a senior
member of the technical staff at
the Software Engineering Institute,

Carnegie Mellon University, Pittsburgh,
PA 15213 USA, since 2001. Currently,
she is the technical manager for the
Cyber Security Engineering team.
Contact her at cwoody@cert.org.

SCOTT HISSAM is with the Software
Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA 15213 USA.
Contact him at shissam@sei.cmu.edu.

Digital Object Identifier 10.1109/MC.2025.3529137

IEEE Annals of the History of Computing publishes work
covering the broad history of computer technology, including
technical, economic, political, social, cultural, institutional,
and material aspects of computing. Featuring scholarly articles
by historians, computer scientists, and interdisciplinary
scholars in fi elds such as media studies and science and
technology studies, as well as fi rsthand accounts, Annals is the
primary scholarly publication for recording, analyzing, and
debating the history of computing.

www.computer.org/annals

Volume 46  Number 2  

Logistical Histories
of Computing

AN.general_hHalf_Sept2024.indd 1AN.general_hHalf_Sept2024.indd 1 9/30/24 5:50 PM9/30/24 5:50 PM

https://github.com/mitre/hipcheck
https://github.com/mitre/hipcheck
https://www.sonatype.com/state-of-the-software-supply-chain/introduction
https://www.sonatype.com/state-of-the-software-supply-chain/introduction
https://www.sonatype.com/state-of-the-software-supply-chain/introduction
https://www.sonatype.com/state-of-the-software-supply-chain/introduction
https://www.synopsys.com/software-integrity/engage/ossra/rep-ossra-2023-pdf
https://www.synopsys.com/software-integrity/engage/ossra/rep-ossra-2023-pdf
https://www.synopsys.com/software-integrity/engage/ossra/rep-ossra-2023-pdf
http://dx.doi.org/10.1109/ICSE-SEIP58684.2023.00032
http://dx.doi.org/10.1109/ICSE-SEIP58684.2023.00032
mailto:cwoody@cert.org
mailto:shissam@sei.cmu.edu
https://github.com/ossf/scorecard
https://github.com/ossf/scorecard
mailto:nm00@andrew.cmu.edu

	078_58mc02-opensource-3423908

