
90 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 2 4 © 2 0 2 4 I E E E

OPEN SOURCE

AA n open source program office (OSPO) often
starts out as a single person who is tasked
with reigning in the use of open source soft-
ware in projects and products. Once the scope

of the challenge becomes clear, the OSPO is set up as a
new organizational unit. An OPSO is typically a central
function, often located in the office of the chief technol-
ogy officer.

The overall mandate of an OSPO can be laid out along
the three dimensions of a basic maturity model of engag-
ing with open source. This model consists of three stages:

1. Using open source software in projects and products:
The main challenge of using open source soft-
ware is to ensure that only software that fits the

company’s business model is used
and that vulnerabilities are avoided
or at least managed. This form of
engagement is therefore mostly
about license compliance and supply
chain security. Tools and tactics are
focused inward. They include, for
example, education, software com-
position analysis, and component
managers.

2. Contributing code to existing open source projects: The
main challenge of contributing to open source proj-
ects is to avoid the outflow of intellectual property
that is competitively differentiating and therefore
should be kept closed. This includes avoiding any
contribution that signals important information
to markets and the competition about the compa-
ny’s product strategy. This form of engagement is
mostly about managing the dependencies on open
source software. Tools and tactics include educa-
tion of the company’s open source contributors and
outreach to open source communities.

3. Creating and leading open source projects: The main
challenge is to identify the business opportunities
and justify the costs that result from creating and
leading open source projects. This includes prioritiz-
ing and aligning open source leadership with the stra-
tegic goals of the company. This form of engagement

Open Source
Program Offices
Dirk Riehle , Friedrich-Alexander-Universität Erlangen-Nürnberg

An open source program office is a company

organizational unit tasked with managing the

use of, contribution to, and leadership of open

source projects from the company’s perspective.

by way of policies, guidance, and education.

Digital Object Identifier 10.1109/MC.2024.3422730
Date of current version: 15 November 2024

https://orcid.org/0000-0002-8139-5600

 D E C E M B E R 2 0 2 4 91

EDITOR DIRK RIEHLE
Friedrich-Alexander-Universität Erlangen-Nürnberg

dirk.riehle@fau.de

is mostly about industry collab-
oration for market positioning
and managing revenue streams.
It requires understanding of
how industry dynamics play
out, including but not limited to
which features, components, or
layers of the stack are ready for
commoditization.

A company’s open source strategy
consists of strategies for these three
forms of engagement. The open source
strategy, initially designed or at least
facilitated by the company’s OSPO, is
part of and has to align with the com-
pany’s overall business strategy.

For each form of engagement, the
OSPO may have to set up and operate
tools and metrics, perform internal and
external marketing, train its employ-
ees, ensure compliance, manage risks,
respond to crises, etc. All of these tasks
come with often nontrivial workflows.

The scope of an OSPO’s mandate
widens with the growing maturity of
the open source understanding and
engagement of the organization: from
initially just using open source soft-
ware, through contributing to open
source projects, all the way to creat-
ing and leading open source projects.
All of these activities need competent
guidance, policies, and tooling.

USING OPEN SOURCE
SOFTWARE
The first stage of engaging with open
source is typically to use the software.

As explained in a previous column1 in-
stance, there are two main categories
of users: end-users and distributors.

 › End-users worry about using
quality software that, for ex-
ample, will be maintained for a
sufficiently long time and is not
riddled with vulnerabilities.

 › Distributors, in addition to wor-
rying about software quality,
also worry about fulfilling the
open source license obligations
of the code they are incorporat-
ing into their products.

An OSPO supports the employees of
the company in making the decision of
which open source software to use and
which not to use. Support can range
from advising what to use to outright
forbidding the use of a particular open
source software.

The associated workflows can get
laborious and grow in volume quickly.
Efficiency is key. To this end, most
OSPOs, based on the dominant business
models of the company, will provide ini-
tial guidance to developers searching

for open source software to use. Table 1
shows how open source software can
be prequalified as allowed, must-ask,
or verboten. Software that falls into
the “allowed” category is likely to be
allowed for use in projects and prod-
ucts, software that falls under “must
ask” will likely trigger stringent review
and resolution, and software that falls
under “verboten” is unlikely to be
allowed at all (Table 1).

Employees who would like to use
open source software that passes this
filter will then have to feed it into an
approval process operated by an open
source review board (on behalf of the
OSPO). The review board typically
consists of experts from the program
office and other parts of the company.

In a comprehensive approval process,
the review board will perform a thor-
ough analysis of the open source soft-
ware to understand what’s in the pack-
age. The two main aspects of interest are
code quality and software licenses.

 › To review software quality, the
review board or selected mem-
bers will run metrics tools on the
code and the community to get
an indicator of their quality and
longevity. Example indicators
are the number of outstanding
bugs, mean time to bug fix, and
diversity and size of the project
community.

 › To review the software licenses, the
review board will run software
composition analysis tools to
identify the licenses in the code

FROM THE EDITOR

Welcome back! This month’s “Open Source” column continues discussing
the fundamentals of practical open source use in organizations. To this end,
we discuss open source program offices, the common name for the orga-
nizational unit tasked with “taking care of open source” and “ensuring that
nothing goes wrong.” Of course, this is just the starting point for an organi-
zation’s open source engagement, as we’ll also see. Enjoy this new career
perspective and keep on hacking! —Dirk Riehle

TABLE 1. Simple prequalification matrix for
selecting open source components.

Allowed Must ask Verboten

Software SQLite glibc CoreNLP

By license MIT LGPL-2.0 AGPL-3.0 or later

By origin github.com/google github.com/random Stackoverflow

mailto:dirk.riehle@fau.de

92 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE

(which may be different from the
licenses declared by the develop-
ers). Often, developers name one
primary license, while actual
code has been composed from
code of many different licenses
over time.

The review board makes a recom-
mendation or casts a decision based
on these findings and the use of the
open source software is approved or
rejected. The review of licenses of in-
coming open source code is also often
called the inbound licensing process.

For actual use of the open source
software in projects and products,
the software, together with the re-
sults of the review process, should
be put into an open source software
management system for retrieval
when building software inside the
company. A company should never
pull open source software straight off
the web into their projects and prod-
ucts: It should only use reviewed, ap-
proved, and managed versions of the
software from a trusted system. Oth-
erwise, it significantly increases the
risk of falling prey to software supply
chain attacks.

CONTRIBUTING TO OPEN
SOURCE PROJECTS
The second stage of engaging with
open source is typically to contribute
to an open source project. Most peo-
ple and companies start contributing
by filing bug reports for components
they use in the projects and prod-
ucts. Both people and companies
may or may not move on to contrib-
uting source code. There are many
other ways of contributing to open
source projects.

Corporate reasons for contributing
to open source projects range from the
tactical to the strategic.

Tactical reasons are mostly about code
contributions that the company does not
consider competitively differentiating.
The three common types of contribu-
tions are 1) bug fixes, 2) refactorings, and
3) new functionality. Nondifferentiating
code is better maintained by the open
source project than the company. This
makes it easier for the company to catch
up with new versions of the open source
software because the company doesn’t
have to repeatedly merge their closed

modifications into the open source soft-
ware as it updates to a new version.

Strategic reasons are mostly about
ensuring technical compatibility with
and managing the dependencies of the
company’s projects and products on
the open source software. Sometimes,
an open source project does not have
enough interest in a particular feature
or technology to maintain it. If the com-
pany’s projects or products rely on it, it
must step up and start supporting and
maintaining it or see the open source
software go stale for it. Also, without
a voice in the project, the open source
project might take a left turn where
the company wants it to go straight. To
manage its technical dependencies and
to ensure that nothing goes wrong, a
company must pay in by actively con-
tributing. This way, the company main-
tains its interests.

An OSPO, like in the case of incoming
open source software, typically also op-
erates a review and approval process for
proprietary software to be contributed to
open source projects. This is also called
the outbound licensing process.

A company should only ever con-
tribute code to open source software

projects that are competitively nondif-
ferentiating for it. As part of an overall
strategy, it may decide to let go of closed
code that was once considered differen-
tiating, but under the new strategy isn’t
any longer.

The outbound licensing process
reviews whether a particular open
source engagement hurts or strength-
ens the competitive position of the
company.

 › The obvious reason to not
contribute a software feature to
an open source project is that
customers are paying for it.

 › Another reason may be that the
open source license requires a
free patent grant that the com-
pany is not willing to provide.

 › Sometimes information that a
company is depending on a par-
ticular open source software,
as laid open by a contribution,
is hurting its competitive
position.

It is a common beginners’ mistake
to assume that the open source project
exists to serve the company. It doesn’t.
The project exists for its own purpose.
A company can’t demand a bug fix, for
example, even if the bug causes major
pain. Similarly, a company can’t pro-
vide a bug fix to a project and expect
the project to maintain it. The bug fix
might just linger and never get picked
up if nobody is interested in it.

There is no guarantee that an open
source project will behave the way a
company wants it to. The company can
ask nicely, but there is no guarantee
that it will receive a response.

Consequently, a company needs to
build both capability and credibility
with an open source software and its
project community. Then, not only
will the company be able to provide
good contributions, it may also be
listened to. For open source projects,
on which a company’s projects and
products critically depend, building
such capabilities and credibility is
a must.

The outbound licensing process reviews whether
a particular open source engagement hurts or

strengthens the competitive position of the company.

 D E C E M B E R 2 0 2 4 93

LEADING OPEN
SOURCE PROJECTS
The third and most advanced stage of
engaging with open source is to create
and lead open source projects. This of-
ten correlates with a taking on a larger
role in the open source ecosystem, most
notably by joining and actively partici-
pating, sometimes leading, open source
foundations.

There are many reasons for why
companies create and lead open source
projects. Three important reasons for
doing so are:

1. lowering the cost of develop-
ment of nondifferentiating
software components by shar-
ing the costs of development
with other interested parties

2. establishing de facto standards
through widely used open
source software that works well
with a company’s projects and
products, saving more costs

3. tapping into broad-scale
innovation by the open source
community in such a way that
it benefits the company’s com-
plementary products.

Small hobby projects on GitHub or
GitLab are created as quickly as they are
abandoned. Creating successful, long-
term viable open source projects that
fulfill the creator’s needs is a significant
long-term investment and needs to be
thought through from the beginning.

An OSPO collaborates with the
main lines of business to identif y
their strategic needs for new open
source projects and then helps them
realize these projects.

A particularly important case of cre-
ating and leading new open source proj-
ects is the open sourcing of existing in-
ternal (closed) software. The OSPO works
with the line of business to determine:

 › a proper home (on a company
managed site or at an open
source foundation)

 › the extent of open sourcing (what
and what not to open source)

 › the extent of intellectual prop-
erty made available (trade-
marks, patents)

 › a timeline including staffing,
launch, marketing, etc.

Open source foundations are non-
profit organizations with the pur-
pose of hosting and furthering open
source software. Such foundations are
created to establish a fair and equal
playing field for all parties interested
in a particular open source software.
A well-run open source foundation
ensures that the investment of the in-
volved parties into some open source
software is safe.

Open sou rce fou nd at ion s a re
therefore the natural place for com-
panies to go to and create new open
source projects. Some of the large
open source foundations have ef-
fectively become the host of whole
platforms or layers of the technology
stack that operate modern software
systems. For example, the Apache
Software Foundation is host to most
of the open source data processing
components, and the Cloud Native
Computing Foundation is host to
most of the managed cloud ser-
vices components.

Open source foundations are nat-
ural partners to corporate OSPOs.
The OSPO often provides nontech-
nical guidance and staffing, estab-
lishes and supports the integration
of line-of-business representatives
into the open source foundations,
and coordinates t he interaction
across the ecosystem, for example,
between the components of an open
source platform at an open source
foundation.

GOOD GOVERNANCE
CERTIFICATION
As discussed, open source governance
at its core consists of governing

 › how and which open source
software to use

 › how and when to contribute to
open source projects

 › how and why to create and lead
open source projects.

The OpenChain project, hosted by
the Linux Foundation, is an attempt by
industry to specify good open source
governance of companies to make the
flow of open source software along

the software supply chain as smooth
as possible.

To this end, the OpenChain project
is defining a standard for good gover-
nance. Like any specification, it does
not provide best practices, but rather
focuses on requirements like “define
open source use cases” or “have an
open source approval process.”

At the time of writing, the Open-
Chain 2.1 specification of 2020 was the
most recent standard. Version 2.1 covers:

 › The OSPO. The specification
covers requirements for

 o having a defined OSPO
mandate
 o having posts and roles with

defined responsibilities
 o having specific posts like the

legal counsel or public contact
 o managing the evolution of

this structure
 o having a defined and se-
cured budget for operating
the OSPO.

Creating successful, long-term viable open
source projects that fulfill the creator’s needs is a
significant long-term investment and needs to be

thought through from the beginning.

94 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE

 › Using open source software in
products. The specification covers
requirements for having an
open source usage policy and
processes for ensuring license
compliance.

The usage policy require-
ments cover:

 o having a policy,
 o creating awareness for the

policy
 o assessing a company’s compe-

tence with it.

The license compliance re-
quirements cover:

 o defining use cases
 o having a standardized license

interpretation
 o managing the open source

components in your products
 o tracking the corresponding

license compliance artifacts
 o responding to third-party

inquiries
 o remediation of compliance

issues.

 › Contributing to open source
projects. The specification only
states that you should have a
contribution policy.

Nothing is said about creating or
leading open source projects.

The OpenChain specification is a
work in progress and will likely keep
evolving and extending its scope.
However, this does not diminish its
significance. Already today, certifica-
tion agencies have set up OpenChain
compliance marks and are offering
certification with (their interpretation
of) the OpenChain specification.

At the time of writing, no company
was requiring that its suppliers provide

such a certification mark, but it may
only be a matter of time until compa-
nies will be required by their custom-
ers to demonstrate proper open source
governance, most likely by featuring an
OpenChain compliance mark.

THE OSPO LIFE CYCLE
OSPOs have a life cycle.

Most companies star t out with
tasking one employee, part time, “to
take care of open source.” This per-
son will typically try to help product
and project teams get license compli-
ance right. As a side job, this person
can’t achieve much and is likely to get
quickly overwhelmed by the number
of requests as word gets out about
their responsibility.

Next, companies create an OSPO.
The initial mandate is usually to cre-
ate an open source policy for the com-
pany and to ensure that nothing goes
wrong with its intellectual property.
This leads to a focus on open source
governance and license compliance.
In addition, firm-internal marketing
leads to more and structured aware-
ness of open source within the organi-
zation, ideally combined with training
for personnel.

Then, as the OSPO grows, not only
does it have to deal with an increas-
ing volume of requests to approve
and manage components for use in
products and projects, but it also ex-
pands its scope. It helps teams review
code to be contributed to open source
projects. It may even decide to take
a small or large leadership role by
initiating and leading open source
projects. This includes active en-
gagement in organizations like open
source foundations.

If the OSPO does its job right, it will
create and transfer significant skills to
project and product teams. The teams
learn how to deal with open source: to

use it properly, to know how and when
to contribute, and to know how and
why to get active in open source foun-
dations and lead open source projects.
Over time, these skills become an en-
trenched capability of every project
and product organization.

Consequently, af ter a phase of
growth, OSPOs are likely to shrink as
they transfer some of their strategic
and tactical responsibilities to the proj-
ect and product organizations directly
affected by open source exposure and
engagement. As a central function, the
OSPO will retreat to supporting reve-
nue-generating organizational units.

AA t the time of writing, most com-
panies have no OSPO. Those who
do, are still in the early growth

stages. However, we could also already
observe how some OSPOs have shrunk
in recent days.

A stable long-term state for OSPOs
is likely to focus on coordination and
support rather than leadership. Coor-
dination includes maintaining foun-
dation membership and ensuring that
the different stakeholders within a
company remain informed and coor-
dinated. Support includes the central
provision of tooling and training.

REFERENCE
 1. D. Riehle, “Free- and open source

software,” Computer, vol. 57, no. 8,
pp. 114–118, Aug. 2024, doi: 10.1109/
MC.2024.3407268.

DIRK RIEHLE is a professor of open
source software at Friedrich-Alexander-
Universität Erlangen-Nürnberg,
91058 Erlangen, Germany. Contact
him at dirk@riehle.org.

http://dx.doi.org/10.1109/MC.2024.3407268
http://dx.doi.org/10.1109/MC.2024.3407268
mailto:dirk@riehle.org

	090_57mc12-opensource-3422730

