
114	 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y � 0 0 1 8 - 9 1 6 2 / 2 4 © 2 0 2 4 I E E E

SECTION TITLE

TT he term free software was used already in the
late 1970s, but was codified by Richard Stall-
man through the definition of the four software
freedoms in 1986. The definition and publi-

cation was performed through the Free Software Foun-
dation, a U.S.-based nonprofit organization founded by
Stallman in 1985.

The term open source software was defined by the
Open Source Initiative, a U.S.-based nonprofit organiza-
tion founded in 1998 by Bruce Perens and Eric Raymond.
The definition was written by Perens and consists of a

list of 10 criteria, which Perens de-
rived from the Debian Free Soft-
ware guidelines.

Open source software is often ab-
breviated as OSS and free and open
source software is often abbrevi-
ated as FOSS. Sometimes the term
libre is thrown in to emphasize the
freedom to do what you want and to
downplay that the software is free of
charge. This leads to free/libre, and
open source software, abbreviated as
FLOSS. This term is primarily used by
nonnative speakers of English.

Not everyone agrees that free and open source software
are the same. Free software proponents argue that users who
receive free software must also be given access to its source
code, even if modified by the provider of the software. To en-
force the right of a user to receive the source code, Stallman
invented the copyleft obligation, which requires that any-
one who distributes free software cannot change the license
terms. This prevents software vendors from keeping propri-
etary modifications of free software locked up.

Rights to and obligations for free and open source
software are codified as free and open source software li-
censes. The copyleft obligation became popular as part of
the GNU General Public License 2.0, a prominent free and
open source software license.

Free and Open
Source Software
Dirk Riehle , Friedrich-Alexander University Erlangen-Nürnberg

Free software is software that gives users

the right to use the software, to modify

the software, and to pass on the software,

modified or not, all free of charge and without

restrictions on what the software is used for.

Open source software provides users with the

same rights as free software. For all practical

purposes, they are the same.

OPEN SOURCE

Digital Object Identifier 10.1109/MC.2024.3407268
Date of current version: 26 July 2024

https://orcid.org/0000-0002-8139-5600

	 A U G U S T 2 0 2 4 � 115

EDITOR DIRK RIEHLE
Friedrich Alexander-University of Erlangen Nürnberg;

dirk.riehle@fau.de

In contrast to free software, open
source proponents tend to rely on en-
lightened self-interest of software us-
ers to contribute their modifications
to open source software projects. They
don’t try to force anyone who distrib-
utes open source software to lay open
any modifications if they don’t want to.

Open source licenses that grant
the rights listed above but don’t con-
tain a copyleft obligation, are called
permissive licenses, while licenses that
contain a copyleft obligation are called
copyleft licenses. Common examples
of permissive licenses are the Massa-
chusetts Institute of Technology (MIT)
license, the Apache 2.0 license, and the
BSD family of licenses.

For the better part of the 1990s and
the 2000s, the philosophical debate
about software freedom and copyleft
allowed the enemies of free and open
source software to spread fear, uncer-
tainty, and doubt about the usefulness of
open source software and arguably de-
layed its dominance by a decade or two.

Today, free and open source software
are part of almost all existing software,
closed or not.

WHY USE OPEN SOURCE
SOFTWARE?
Open source software succeeded be-
cause of the benefits it provides to users
and despite the challenges it poses.

The main benefit of using open
source software for a user is that they
avoid vendor lock-in. They can use the
software under defined and beneficial
circumstances (the open source li-
cense) and do not depend on a vendor.

The lack of vendor lock-in creates
the following three more specific rea-
sons for using open source software in
projects and products:

	› Free of charge: As already men-
tioned, open source software can
be used free of charge. There are
no license fees. While the use of

open source software can create
secondary costs (for example,
maintenance costs), the total cost
of using the software is usually
much lower than licensing a closed
source software from a vendor.

	› Option to adapt to your needs:
Open source software is avail-
able in source code form and
comes with the right to adapt the
software to your needs. If you
were locked-in to some vendor’s
closed-source software, you’d
have to ask and pay them for any
modifications you might need,
and there is no guarantee that
they will create those modifica-
tions for you. With open source
software, you can simply make
the necessary changes yourself
or hire someone to do it for you.

	› Operational safety: Open source
software does not come with an
end date. The usage rights are
given to you forever. Even if you
buy a perpetual license from a
vendor and start using a closed
source software in projects and
products, the vendor might still
discontinue the software or even
go out of business. There is no
guarantee that the software will
be maintained, no guarantee
that bugs will be fixed, etc. Open
source, in contrast, will always
be available as long as there are
copies, and you can always help

yourself. This benefit is partic-
ularly important for long-lived
products, like mobility solutions
(cars, trains, planes, etc.), because
these products easily outlive the
suppliers of the software compo-
nents to these long-lived products.

There are many other reasons why
people use and also contribute to open
source software. They may be learning
something of interest to them, and they
are contributing to software as a shared
common good. Some even argue that
open source project communities will
ultimately be more innovative than
closed source software vendors.

There are many more economic rea-
sons, beyond avoiding vendor lock-in,
why other vendors should be using, con-
tributing to, and leading open source
projects. They are discussed in more de-
tail in a later column. Before we can get
there, we have to discuss, however, how
open source works.

INTELLECTUAL PROPERTY
RIGHTS
Property is, by definition, something
that has an owner. The owner of some
property determines what can be done
with the property, even destroy it. A
person’s property is protected by laws
to ensure that society and the economy
work well and without disruption. Ex-
amples of physical property are the Eif-
fel tower owned by the city of Paris, or a

FROM THE EDITOR

This month’s article on open source software covers the basics: What free and
open source software is, why people and companies are using it, how open
source licenses work, and of course, what the copyleft obligation is. This arti-
cle starts a thread of explanatory articles about open source software in this
column. This thread will be written by me, and it will interrupted by research
and industry contribution articles as I’m able to acquire them. (Keep them
coming!) As part of engaging with you, dear reader, you can comment on this
article at https://uni1.de/ose01. I’m looking forward to your comments. Until
then, keep on hacking!—Dirk Riehle

mailto:dirk.riehle@fau.de

116	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE

cruise ship owned by a cruise company,
or the mobile phone owned by you.

Intellectual property is an intan-
gible form of property: It exists only
in our minds, it is virtual or digital, an
idea or a creative expression. Exam-
ples of intellectual property are the
William Gibson novel Idoru, the Mic-
rosoft brand logo, or the CRISPR/Cas
patents on gene editing. Like physical
property, intellectual property is pro-
tected by laws. These laws are expressed
as the intellectual property rights that
an owner is given.

Software is a form of intellectual prop-
erty. The owner can determine what oth-
ers can do with it, for example, to use the
software. Implied by ownership is that
nobody else is allowed to use some prop-
erty without the owner’s agreement.
For this reason, property rights are also
often called exclusion rights. Users of
the software typically pay a so-called li-
cense fee to the owner for them to waive
their exclusion rights to their property.

The three most important intellec-
tual property rights are:

	› Copyright: Copyright is the
ownership right to a specific
written expression (like a novel);
it is not about the idea behind
the expression. Therefore, a
program written in Java can be
rewritten in Python and it will
have a different copyright. Each
program potentially has a differ-
ent owner. Copyright is granted
automatically, upon creation.
There is no need to register a
copyright. Copyright expires,
but only after many decades (de-
pending on the jurisdiction).

	› Patent rights: A patent is a non-
trivial man-made invention. A
patent right is an ownership right
to an invention to exploit it as one
sees fit. The patent is about the
idea, for example, a mechanism.
The same mechanism, realized
in two different ways, still falls
under the same patent. Patent
rights need to be registered by
application for the patent at a

patent office. If granted, a patent
right holds for several decades
(shorter than copyright though)
and eventually expires as well.

	› Trademark rights: A trademark is a
specific mark representing some
other property, and a trademark
right is the ownership right of
that trademark. Examples of
marks are visual signs (logos)
or sound marks (like the Nokia
jingle), and even smell marks:
that is, uniquely identifiable
smells. Trademark rights are
granted automatically through
the creation of the mark and they
are maintained by enforcing the
mark’s ownership. Trademarks
can be registered. They live as
long as the owner enforces their
ownership to the mark; once they
stop fighting uses by others, they
lose the trademark rights.

There are other forms of intellectual
property, like trade secrets (for exam-
ple, customer lists), but they are not
needed here. The specifics vary greatly,
typically by jurisdiction. Some coun-
tries don’t have copyright laws or have
different rules for patent and trade-
mark rights. Due to the global nature
of the software business, the intellec-
tual property rights granted by leading
countries or unions, like the United
States or the European Union, affect ev-
eryone, though, and need to be under-
stood and managed.

Closed source software, like Adobe
Photoshop, is typically affected by all
intellectual property rights. There will be
the primary copyright owner (Adobe),
but also many other copyright owners.
Other copyright owners are the devel-
opers of the non-Adobe components
that Photoshop has been built from,
including open source software. In
all likelihood, there are many patents
implemented in Photoshop, owned by
Adobe and third parties. Finally, the
Photoshop logo is a trademark owned
by Adobe.

There are few nontrivial software
applications today that do not have a

large number of owners of the different
intellectual properties embedded in
the software. Each developer of such an
application needs to understand how
and why they are incorporating other
parties’ intellectual property in their
software. This is often a laborious task.

OPEN SOURCE
SOFTWARE LICENSES
Licenses are a contract (in most ju-
risdictions) between a licensor and a
licensee. Typically, the licensor allows
the licensee to use their property in re-
turn for some payment.

Software licenses grant licensees some
rights to the software. Software licenses
can be limited in many ways: There may
only be one user allowed at-a-time, the
software may only be used until the end
of the year, the software may not be used
outside of Germany, etc. If someone says
they bought some software, what they
typically did was to assume the licensee
role and pay the licensor a fee for a usage
right to the software.

Open source software licenses are
licenses that have been approved by the
Open Source Initiative. The Open Source
Initiative is a U.S.-based nonprofit orga-
nization that serves as a spokesperson for
and an arbiter of what open source means.

Open source (software) licenses all
follow a common pattern. They consist
of four main sections:

	› The rights grant: An open source
license always (by definition)
grants the licensee the right to
use the software, to receive the
source code, to modify the source
code and run the modified pro-
gram, and to distribute the source
code and resulting programs in
unmodified or modified form.

	› The obligations: An open source
license may impose obligations
on the licensee. For example,
if someone passes on the open
source software, they may have
to create and provide legal no-
tices of the open source software
to recipients. Obligations vary
widely between licenses.

	 A U G U S T 2 0 2 4 � 117

	› The prohibitions: An open source
license may contain clauses
that tell a licensee what they are
not allowed to do. Typically, a
licensee may not claim endorse-
ment of any uses of the open
source software by the licensors
of the open source code or the
creators of the license texts.

	› The disclaimer: Most open source
licenses disclaim warranties
and liabilities. Licensors try to
make sure that anything bad that
happens through the open source
code does not fall back on them.
Such disclaimers may be limited
by the laws of the jurisdiction
where they apply.

Software becomes open source soft-
ware if the owner of the software decides
to license out the software to the world
using an open source license. Thus, the
status of open source is not an intrinsic
property of the software, but is decided
by the original owner, who decides to be-
come an open source software licensor.

Across all open source licenses, the
rights grant is always the same, whatever
the specific choice of words. Prohibitions,
if any, and the disclaimers are also almost
always the same. Obligations, however,
differ widely between licenses.

The most important common obli-
gations are:

	› Provision of legal notices: An open
source user, upon distribution
of a binary version of the open
source code, must compile all
relevant legal notices (license
texts, copyright statements, and
other notices) and provide them
to the recipient of the code.

	› The copyleft obligation: An open
source user, when distributing
the open source code, must apply
the license of the incoming open
source code to the outgoing code,
including any proprietary modifi-
cations made to it, or lose the right
to use and distribute the code.

	› Indemnification: An open
source user, who distributes

open source code, has to help
defend and indemnify any
open source developer whose
code they are distributing, if a
recipient of the user’s distribu-
tion chooses to take legal action
against the developer.

Legal notices and the copyleft ob-
ligation will be discussed in later sec-
tions of this column.

The Linux Foundation is an indus-
try-led nonprofit organization fur-
thering open source projects. Its SPDX
project is giving us unique identifying
names for established open source li-
censes. These so-called SPDX identifi-
ers encode, in human-readable form,
the name and version of a license and
sometimes specific conditions.

	› An example of a simple SPDX iden-
tifier is MIT for the MIT license.

	› An example of a versioned SPDX
license identifier is EPL-2.0 for
the Eclipse 2.0 license.

	› An example of a complex SPDX
license identifier is AGPL-
3.0-or-later for the Affero GPL
3.0 license with the option to
choose a successor license.

Open source license texts themselves
are legal documents. Typically, they are
free to use. Some allow modification—
for example, the Apache-2.0 license—
some don’t, for example, the GPL-2.0
license.

END-USERS AND
DISTRIBUTORS
In open source licenses, there are two
types of users: end-users and distributors.

	› End-users: An end-user of an
open source software receives
the software but does not pass it
on. They are the final element in
a chain of receiving and passing
on the software.

	› Distributors: A distributor re-
ceives the open source software
and also passes it on to third par-
ties. They are the intermediate

elements in the chain of receiv-
ing and passing on the software.

This distinction has an important
consequence. There are typically no
license obligations for an end-user. All
the obligations are put upon the dis-
tributor, who provides the software to
a third party, for example, a customer.
Only a distributor has to worry about
provision of legal notices, the copyleft
obligation, or indemnification.

The terms end-user and distribu-
tor don’t show up in the license texts;
however, they are commonly used to
describe the two situations laid out in
the licenses. Almost all licenses distin-
guish between a situation where the
recipient of an open source software
uses it for themselves (end-user), and
a situation where the recipient of the
open source software passes the soft-
ware on to third parties (distributor).

Companies often explain this dis-
tinction as open source use cases to
their employees so that it becomes
easier to identify whether the open
source software will be distributed and
whether the corresponding license ob-
ligations kick in.

A person or company is an end-user
if the software is not passed on fur-
ther. Examples are:

	› In-house use of the open source
software, for example, editing
documents using LibreOffice
or compiling source code
using gcc.

	› Demonstration of sales prototypes
that include open source compo-
nents, as long as the demo code
isn’t given to third parties.

	› Operation of open source software
as a cloud service, as long as the
open source code doesn’t leave
the (public or private) cloud.

If a person or company distributes
code to third-parties, they are a dis-
tributor. Examples are:

	› Provision of a software to be
deployed on-premise, including

118	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE

traditional laptop or work
station applications, mobile
apps, etc. to customer or other
third parties.

	› Provision of website code that gets
downloaded into a user’s browser
(mostly Javascript, HTML, CSS),
if that user is a customer or
other third party.

	› Provision of container images,
including in recipe form (for ex-
ample, Dockerfiles) and through
registries, to customers or other
third parties.

Open source software can be an ap-
plication, for stand-alone use, or a com-
ponent, for incorporation into a product.
People or companies who use an applica-
tion for their own purposes are obviously
end-users. Companies who include open
source components in a product they sell
are obviously distributors.

People and companies can both be
end-users or distributors.

THE COPYLEFT OBLIGATION
A particularly important obligation is
the copyleft obligation found in some,
but not all, open source licenses. The
copyleft obligation requires that any
incoming open source code with a co-
pyleft obligation be distributed under
the same license to third parties only.
In short: The outgoing license must be
the same as the incoming license.

This does not only apply to the
original open source code, but also to
any code that is derived from the in-
coming copyleft-licensed open source
software. A distributor cannot take
incoming copyleft-licensed code, mod-
ify it, and distribute it under their
own proprietary license. It must be
distributed under the incoming copyl-
eft license.

Not all closed source software will
be affected by incoming copyleft-li-
censed code. U.S. copyright law makes
a distinction between derivative and
collective works. The copyleft effect
applies only to derivative, but not to
collective works. Applied to software,
it leads to the following definitions:

	› Derivative code is code created
by building on the original
code in such a way that the
original code cannot be sepa-
rated from any additions and
modifications easily and using
standard tools. The prime
example of derivative code is
code created by modifying the
original code.

	› Collective code is a set of codes
(programs, libraries) that are
kept separate from each other
and where each individual code
is accessible using standard
tools. The prime example of a
collective work is when distrib-
utors put independent pro-
grams next to each other into
the same directory.

Developers usually prefer not to
modify other people’s code. Rather,
they’ll try to use it as a library. How-
ever, using a copyleft-licensed library
makes any using code a derivative of
the library, because the using code
necessarily incorporates the interface
symbols of the library. This seemingly
little beachhead is enough to turn the
using code into derivative code, even
if the using code and used library are
maintained as separate files.

Licenses that do not contain a co-
pyleft obligation are called permissive
licenses. Licenses that contain a copyl-
eft obligation can be split into weak
and strong copyleft licenses. Weak
copyleft licenses weaken the copyleft
effect by stopping it at a code bound-
ary, if the copyleft-licensed code is its
own separate component that can be
accessed using standard tools. An ex-
ample is a dynamically linked library.
In summary:

	› A permissive license is a license
that has no copyleft obligation.
Examples are the MIT license,
the Apache-2.0 license, and the
BSD family of licenses.

	› A (strong) copyleft license is a
license with an unrestricted
copyleft obligation. Examples

are the GPL-2.0-or-later and the
AGPL-3.0-or-later families.

	› A weak copyleft license is a
license where the copyleft effect
stops at the code boundary, if
the boundary “strongly sepa-
rates” the using code from the
used copyleft-licensed code.
Two components are strongly
separated if they can be
accessed and modified inde-
pendently of each other using
standard tools. The main exam-
ple of a weak copyleft license is
the LGPL-2.0-or-later license.

Sometimes developers construct a
weak copyleft license by taking a strong
copyleft license and modifying or
amending it to weaken it for a particu-
lar use case. The prime example is the
Syscall Note by Linus Torvalds, through
which he stopped the copyleft effect of
the Linux kernel code from reaching ap-
plication code that only uses regular ap-
plication functions of the kernel.

T he copyleft obligation was first
introduced by the GPL-2.0-or-
later license in 1991 and has

proved divisive to the free and open
source software world. Some applaud
the obligation for its intent to ensure
freedom for end-users, who will always
have a right to receive the source code to
any copyleft-licensed binary code they
are receiving, while others have chided
this intention and likened copyleft-li-
censed software to viruses. Given that
most software vendors keep the source
code for their products closed, they will
try to keep copyleft-licensed code out of
their code base at all costs.

DIRK RIEHLE is a professor of
computer science, specializing in
software engineering and open
source, with Friedrich-Alexander
University Erlangen-Nürnberg,
91054 Erlangen, Germany. Contact
him at dirk@riehle.org.

	114_57mc08-opensource-3407268

