
EDITOR DIMITRIOS SERPANOS
ISI/ATHENA and University of Patras; serpanos@computer.org

The definitions of what free software and open
source software are use different words but are
essentially the same. Both free and open source
software can summarily be defined as follows:

“Free and open source software is software that
is available under a license that grants every-
one the right to use the software, to modify
the software, and to pass on the software to
third parties, modified or not, all for free.”

The availability of source code is implied by the ability
to modify the software to one’s liking.

BASE DIMENSIONS
The free software definition was first
written in 1986 by Richard Stallman
for the Free Software Foundation
(https://www.gnu.org/philosophy/
f ree-s w.en.ht m l# f s-def i n it ion).
It defines the four “essential” free-
doms of software. In 1998, the newly

founded Open Source Initiative (OSI) defined open source
software using a ten-item bullet list of criteria that a li-
cense must fulfill to be considered an open source license
(https://opensource.org/osd/).

In an earlier instance of this column, Jesus M. Gonza-
lez-Barahona provides an excellent overview of the his-
tory of free/libre and open source software.1

For this article, two aspects are notable about the open
source definition:

1. It does not say anything about the development
process.

2. It does not restrict the use of the software in any way.

In the remainder of this article, I will use the term open
source software to include all variations that the various

The Future of
the Open Source
Definition
Dirk Riehle  , Friedrich-Alexander-Universität Erlangen-Nürnberg

Many forces pull to change the definitions of

what free and open source software are. This

article looks at these forces and speculates

what the future will hold in store for the

definition of open source software.

Digital Object Identifier 10.1109/MC.2023.3311648
Date of current version: 13 November 2023

OPEN SOURCE
EDITOR DIRK RIEHLE

Friedrich Alexander-University of Erlangen Nürnberg;
dirk.riehle@fau.de

C O M P U T E R 0 0 1 8 - 9 1 6 2 / 2 3 © 2 0 2 3 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y D E C E M B E R 2 0 2 3 95

https://www.gnu.org/philosophy/free-sw.en.html#fs-definition
https://www.gnu.org/philosophy/free-sw.en.html#fs-definition
https://opensource.org/osd/
https://orcid.org/0000-0002-8139-5600

96 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE

communities use: free software, free/
libre software, free/libre and open source
software, etc.

USE OF THE DEFINITION
The website of the OSI provides us
with the definition of open source
software in a formal and structured
way, as a list of ten bullet items. The
OSI also operates the license-review
and license-discuss mailing lists,
which serve as the arbiter and de-
cider of whether a particular soft-
ware license is an open source li-
cense or not. Any license that passes
the review will be added to the public
list of open source licenses on the
OSI’s website.

When reviewing a software li-
cense for inclusion in the approved
open source license list, those who
argue regularly go back to the open
source definition and compare and
evaluate the proposed license against
its ten criteria. The open source defi-
nition this way serves as a specifi-
cation. It has proved its value time
and again as a practical and sharp
tool for making decisions. I view the
definition as a significant cultural
achievement.

Showing up as an open source li-
cense on the OSI’s website constitutes
a stamp of approval of the license,
bestowing the goodwill that comes
with the term “open source” on any
software provided under this license.
Many organizations have tried to get
licenses they created (for their own
purposes) approved as open source
licenses and failed.

OPEN PROJECT
GOVERNANCE
One important aspect that the open
source definition does not address is
how open source projects are governed.
Governance consists of the practices
and processes of how the project op-
erates, how decisions are made, who
can contribute, etc. The open source
definition is solely about software, the
artifact. It does not mention how the
project conducts its business, that is,
how the software is being developed.

Still, the open source development
processes were on the minds of the
founders of the OSI. For most of its
lifetime, and still today, another sec-
tion on the OSI’s website has this to say
about open source software (https://
opensource.org/about/):

“Open source enables a develop-
ment method for software that
harnesses the power of distrib-
uted peer review and transpar-
ency of process. The promise of
open source is higher quality,
better reliability, greater flex-
ibility, lower cost, and an end
to predatory vendor lock-in.”

This paragraph clearly states that
in the authors’ minds, open source
software is developed in a communal
way. For most of open source soft-
ware’s early life, this was the case.
Most important open source software
was and is being developed in an open
way, following the principles of open
collaboration: everyone can partic-
ipate, decisions are made based on the

merits of arguments, and participants
decide about their own processes (https://
dirkriehle.com/ocd/).

Every project is different, but there
are clearly established patterns as well,
be it the peer group model explored by
the original Apache web server team or
the benevolent dictator for life model
explored by Linus Torvalds.

Open source, the artifact, and open
source, the governance process, cre-
ate the two dimensions by which
we can classify software develop-
ment projects. Figure 1 displays this
2 × 2 matrix.

The first two types of software de-
velopment projects are as follows:

1. Community open source is
open source software (by
license) that is being developed
in an open and transparent way
following the principles of open
collaboration.

2. Tightly controlled open source,
here reduced to vendor-owned
open source, is open source by
license developed in an intrans-
parent process, for example,
behind the closed doors of
a vendor.

The two remaining types of software
development projects are proprietary,
by license, and owned by the develop-
ing organization.

3. Inner source is proprietary
software developed using the
principles of open collaboration
within an organization.

4. Closed source software is the
traditional proprietary soft-
ware developed using
established engineering
processes like Waterfall or
Scrum.

VENDOR-OWNED OPEN
SOURCE
In the early noughties, software ven-
dors discovered that open source soft-
ware is a great method for getting a

FROM THE EDITOR

There is turmoil in open source land. An increasing number of software
companies that provided some or all of their products as open source soft-
ware have stopped doing so. They have switched away from open source
to alternative licenses. In this column, I take a look at why this is so and how
these and other events have led us to review the very fundament on which
open source software rests, the open source definition. Happy reading
 everyone, and keep on hacking!—Dirk Riehle

https://opensource.org/about/):
https://opensource.org/about/):
https://dirkriehle.com/ocd
https://dirkriehle.com/ocd

 D E C E M B E R 2 0 2 3 97

foot in the customer’s door. Making
their product available as open source
software affords them frictionless
distribution. In a past instance of
this column, I explained how vendors
turn “free-loading users” into “pay-
ing customers.”2

The vendors of vendor-owned open
source are traditional software vendors
like Elastic, MongoDB, or HashiCorp
and not open source distributors like
Suse, Red Hat, or Univention, which
typically do not own the open source
code they are building their distribu-
tions from.

The owner (copyright holder) of
some software can license out the
software under one or more licenses.
A vendor can make the same software
available under an open source license
and under a commercial license. To
be able to sell a commercial license
to their software, a vendor cannot al-
low that their rights to the software
get diluted.

For this reason, most vendors re-
quire that any potential contributor to
the open source software sign over the
rights to their contribution to the ven-
dor. The required type of contract is
called a contributor license agreement
(CLA). CLAs are used by an organiza-
tion to centralize all needed rights to
the software, for example, to represent
it in court. They were originally in-
vented by the open source foundations
but like many legal tools are now used
by vendors as well.

Foundations and vendors use CLAs
differently, though. While foundations
do not take private contributions, ven-
dors can (and do).

Not surprisingly, the practice of ac-
quiring copyright to tightly control it is
disenchanting to developers. Therefore,
vendors typically do not receive many
contributions and therefore develop
most if not all of their code themselves.
They do not do so in the open but keep
their road maps secret to hinder compe-
tition. In contrast to open source proj-
ects run under an open source founda-
tion, the governance of projects run by a
vendor is typically closed, not open.

STRENGTHENING THE
DEFINITION
Both the closed governance and the
copyright assignment are bother-
some, even infuriating to true open
source enthusiasts. Vendor-owned
open source has been called “faux-pen
source software” (fake open source
software) or simply just a fraud (https://
meshedinsights.com/2021/02/02/
rights-ratchet/).

As a consequence, many such en-
thusiasts have repeatedly asked that
open source governance be added to
the open source definition. Not just
the artifact but also the development
process should be open, before some
software should be called open source
software, and nobody should central-
ize the rights to the software in one
controlled place.

These calls for extending the defi-
nition have led nowhere. Obviously,
the vendors opposed it, and they are
clearly members of the community.
Open source software development
today is mostly paid for by compa-
nies, so it has become vendor friendly,
and attacking business strategies
through a changed definition of what
constitutes open source has received
little support.

I think that it would be quite hard
to come up with actionable defini-
tions of what makes a governance
process open or not. It may not be im-
possible, though: The Apache Way is a
codification of some process practices
that could lead the way to an open
source definition that includes open

governance as a key aspect (https://
www.apache.org/theapacheway/).

I do not hold my breath, though, for
an extension of the definition to in-
clude open governance. Things are too
established with too many invested
forces for anything to change quickly.

DISCRIMINATORY LICENSES
A key aspect of the open source defi-
nition is that it does not discriminate
against specific uses or parties.

There is plenty of people-killing ma-
chinery like rockets and drones that run
Linux. This is fine by the open source
definition! It is not fine by some software
developers. For this reason, Coraline
Ada Ehmke founded the Organiza-
tion for Ethical Source, which tries to
mirror the OSI in defining and approv-
ing so-called ethical licenses (https://
ethicalsource.dev/). Ethical licenses en-
code the authors’ value system most no-
tably by disallowing specific uses. This
then discriminates against these uses
and by definition makes ethical licenses
not open source licenses.

Unrelated, but in a similar way,
vendors with a vendor-owned open
source strategy always want to pre-
vent anyone else from competing with
them using their own software. For
most of the early life of a product, open
sourcing using an aggressive copyleft
license and providing a separate com-
mercial license did the trick and kept
the competition away.

This changed, however, when vendor-
owned open source became popular
and the large cloud service providers

FIGURE 1. The classification of software development projects.

Vendor-Owned
Open Source

Community
Open Source

Inner SourceClosed Source

Closed

C
lo

se
d

Open

O
pe

n

Process/Governance

A
rt

ifa
ct

/L
ic

en
se

https://meshedinsights.com/2021/02/02/rights-ratchet/
https://meshedinsights.com/2021/02/02/rights-ratchet/
https://meshedinsights.com/2021/02/02/rights-ratchet/
https://www.apache.org/theapacheway/
https://www.apache.org/theapacheway/
https://ethicalsource.dev/
https://ethicalsource.dev/

98 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE

(Amazon Web Services, Microsoft
Azure, and Google Cloud) started pro-
viding the vendor’s open source soft-
ware as a cloud service. The existing
open source licensing strategies were
not enough to keep the hyperscalers
away. According to the vendors, com-
petition by the hyperscalers is unfair
and needs to be prevented.

To stop the hyperscalers (and any-
one else) from competing with them,
these vendors invented so-called source
available licenses, also known as non-
compete licenses. These licenses basi-
cally say that the software is like open
source, unless you want to compete
with the vendor, in which case you are
not allowed to use the software (hence
noncompete). Obviously, by the open
source definition, source available li-
censes are not open source licenses.

Vendors license away from open
source to source available typically
only if they feel they need the good-
will of open source less urgently than
before. As a business, these vendors’
products probably matured and al-
ready reached the channel–product fit.

Examples of vendors that relicensed
from open source to source available
are MariaDB, MongoDB, and Elastic
and, more recently, Akka, HashiCorp,
and Cockroach Labs.

These source available licenses
sometimes put in an effort to make the
license more palatable. For example,
some source available licenses revert

to the venerable Apache license for
code that is older than two years. Still,
its discriminatory nature remains.

I consider the relicensing of a prod-
uct that is available as open source soft-
ware by its vendor to a source available
noncompete license a foregone conclu-
sion. Once a product matures, for exam-
ple, by reaching the channel– product
fit, the open source strategy will lose
some significance, and the need to in-
crease profitability and return on in-
vestment for the venture capitalists be-
hind the vendors will take over.

As Figure 2 shows, only commu-
nity open source, if run well, will stay
open and transparent. Vendor-owned
open source will get less and less open
over time.

WEAKENING THE DEFINITION
Open source has matured; it is now a
household name that carries a good,
even a sterling reputation. Open source
is good! Companies and private users
alike love using high-quality open
source software! The governments of
the world increasingly are pushing for
open source in public tenders!

Not surprisingly, vendors like the
goodwill that open source bestows on
them, even if some in the open source
community consider their work fake
open source.

As a consequence, the drumbeat of
public articles, vendor blog posts, and
conference presentations has been
increasing to weaken the definition
of what constitutes open source soft-
ware. Proponents are asking to revise
the definition to include, most notably,
source available licenses.

While the pressure is mounting,
I see no wavering in the OSI’s stance
to not accept any discriminatory lan-
guage in the open source definition,
and I am very happy about this. As the
saying goes, vendors will have to pry
the open source definition from the
OSI’s cold dead hands, and that would
be such a pyrrhic victory that I do not
expect it to happen.

There are enough other vendors
who benefit from community open
source to oppose those vendor-owned
open source firms that would tem-
porarily benefit from weakening the
open source definition.

STEMMING THE
TRUST EROSION
Some argue that vendors licensing
away from an open source to a discrim-
inatory license have been eroding the
trust in open source. I beg to differ. As
explained, open governance and com-
munity participation were never part
of the original open source definition,
and this has been obvious in these ven-
dors’ behavior.

It is a vendor’s prerogative to de-
fine and execute their business strat-
egy. Nobody can tell them how to go
about it. CLAs and lack of community

FIGURE 2. The openness over time of community versus vendor-owned open source.

O
pe

nn
es

s

Community Open Source

Single-Vendor Open Source

Time

Project
Inception

Problem-Solution
Fit

Product-Market
Fit

Channel-Product
Fit

As the saying goes, vendors will have to pry the
open source definition from the OSI’s cold dead

hands, and that would be such a pyrrhic victory that
I do not expect it to happen.

pa r t ic i p a t ion a r e c le a r s i g n s of
commercial intentions to acquire a
 superior return on investment like
traditional closed source vendors
could have.

Anyone who uses open source,
whether for in-house use only or as
a component in products, creates a
dependency on this open source soft-
ware. Such dependencies need to be
thought through. Thus, in my book, it
was always clear that vendors would
eventually try to tighten the screws.
Anyone who uses vendor-owned open
source needs to recognize that payday
will come, sooner or later.

Thus, users need to think through
their use of open source software.
What is the impact of adding a specific
dependency? If the conclusion is to
use vendor-owned open source, fine! If
not, fine as well!

OPEN SOURCE, WHAT NEXT?
The vendor-owned open source firms
will not succeed in weakening the
open source definition. I expect them
to move on and utilize secondary de-
vices to bestow goodwill onto their
products. An obvious choice for a sec-
ondary device is open source foun-
dations. I expect real or fake foun-
dations with the goal of channeling
goodwill and marketing attention to
the products of the commercial firms
backing them.

The open source world at large
would be well advised to come up
with their own commercial open
source foundation. The essence of
the foundation would be to provide
independent specifications and cer-
tifications of good behavior. Cer-
tification marks could be acquired
(and lost) by vendors who seek such

certifications to win user trust. This
way, open source would keep its ster-
ling reputation.

REFERENCES
1. J. M. Gonzalez-Barahona, “A brief

history of free, open source software
and its communities,” Computer, vol.
54, no. 2, pp. 75–79, Feb. 2021, doi:
10.1109/MC.2020.3041887.

2. D. Riehle, “Single-vendor open source
firms,” Computer, vol. 53, no. 4, pp.
68–72, Apr. 2020, doi: 10.1109/MC.2020.
2969672.

DIRK RIEHLE is a professor of open
source software at Friedrich-
Alexander-Universität Erlangen-
Nürnberg, 91058 Erlangen, Germany.
Contact him at dirk@riehle.org.

Over the Rainbow: 21st Century
Security & Privacy Podcast
Tune in with security leaders of academia,
industry, and government.

www.computer.org/over-the-rainbow-podcast
Subscribe Today

Bob Blakley Bob Blakley

Lorrie CranorLorrie Cranor

Digital Object Identifier 10.1109/MC.2023.3326621

http://dx.doi.org/10.1109/MC.2020.3041887
http://dx.doi.org/10.1109/MC.2020.2969672
http://dx.doi.org/10.1109/MC.2020.2969672
mailto:dirk@riehle.org

	095_56mc12-opensource-3311648

