
78 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y U . S . G o v e r n m e n t w o r k n o t p r o t e c t e d b y U . S . c o p y r i g h t .

OPEN SOURCE EXPANDED

Consumers of open source
consider it to be more
secure than hybrid or
closed source software.10

Security awareness in the design
phase can make it more secure.
Transparency and openness in code
development can mitigate outside
concerns about security. The rigor-
ous testing processes in large open
source communities can reduce
bugs and increase responsiveness
in patching vulnerabilities. And of
course, there is Linus’s Law, “given
enough eyeballs, all bugs are shal-
low,” effectively promulgating the
idea that open source contains fewer
bugs, and fewer bugs mean fewer
potential exploits.

INTRODUCTION
Indeed, a well-run open source
software project can signal all of
the aforementioned advantages and

Cybersecurity Risks
Unique to Open
Source and What
Communities Are
Doing to Reduce
Them
Matthew L. Levy , U.S. Naval Information Warfare Center

This article delineates four categories of risk unique

to open source projects and communities. We also

discuss the communities actively seeking to mitigate

these risk areas and suggest areas to elevate cyberse-

curity risk in open source.

Digital Object Identifier 10.1109/MC.2023.3262903
Date of current version: 31 May 2023

OPEN SOURCE EXPANDED

https://orcid.org/0000-0002-4972-9770

EDITOR DIRK RIEHLE
Friedrich Alexander-University of Erlangen Nürnberg;

dirk.riehle@fau.de

 J U N E 2 0 2 3 79

more. But, with any decision, there is
risk, and thus, we offer this article to
bring some of the risks unique to open
source to the fore. Accordingly, we
delineate and discuss four major risk
areas as consideration for open source
usage. Following this, we highlight
the technologists and researchers who
are evolving the knowledge and tools
to mitigate risk.

INFRASTRUCTURE RISK
Threats to open source infrastructure
come mainly from attacks on the open
source supply chain. Open source sup-
ply chains consist of a product’s depen-
dency graph—the set of components a
program depends on and the way these
components rely on each other—and
the chain of suppliers that provide and
pass on a component to their clients.13
Open source dependencies are vast but
often rooted in a small number of pack-
ages widely used throughout thousands
of open source communities. We con-
ceptualize open source software depen-
dency risk along three dimensions: de-
pendencies, dependents, and package
managers (Figure 1).

Dependencies are packages a project
depends on, making it susceptible to
upstream exploitation. Dependents are
packages depending on that project,
making the dependents susceptible to
upstream exploitation. Package man-
agers are online services that manage
massive collections of packages and
automate package installation, upgrad-
ing, configuring, and removal.

To understand the vastness of open
source infrastructure, we use the ex-
ample of Express.js, a web applica-
tion framework for building Node.
js RESTful application programming
interfaces (APIs). At the time of this
writing, Express.js has 31 direct depen-
dencies, 25 indirect dependencies, and
many more when one considers node.
js runtime calls—also open source
projects. Express.js also has 551,575

direct dependents and 58,521 indirect
dependents (Figure 2).7

Delving deeper into the lineage of
Express.js, we see it depends on a com-
ponent called body-parser.js, which
has 29 dependencies and more than
700,000 dependents. Further, body-
parser depends on a package called in-
herits.js, which has more than 700,000
dependents. Thus, if inherits.js get
infected, it would affect millions of
dependents. Fortunately, from a risk
perspective, core packages are typi-
cally smaller in code size as one moves
upstream, making malicious commits
easier to catch. However, the story of
the corruption of core components
like colors.js, a seemingly simple proj-
ect that provides coloration for node.

js consoles, provides an example of
potential downstream risk. When col-
ors.js was exploited, it had more than
20 million weekly downloads and had
Winston, the popular logging pack-
age, as a dependent.

Package management services also
pose distinct risks in open source.
On one hand, package management
services are indispensable for project
consistency. On the other, an attack on
a single project can affect millions of
package management users. Package
management also execute preinstall
and postinstall scripts that can run
remote code. In a recent attempt to
hack into PayPal, security researchers
demonstrated that by searching for
private repository names in public

Open Source Infrastructure Risk

0.75
0.5
0.25
0

–0.25
–0.5
–0.75

D
ep

en
de

nt
 R

is
k

–6

–6 –4 –2 0 2 4
6

–4
–2

0
2

4
6

Dependency
 R

isk

Package Management Risk

FIGURE 1. Dimensions of infrastructure risk.

FROM THE EDITOR

Welcome back to Open Source Expanded! Security is on the forefront of
many folks’ mind, and open source is in the middle of it. Does transparency
or obscurity make code more secure? Or is it the processes? What does the
complexity of the dependency graph and the software supply chain mean?
How to deal with adversaries and not just unintended bugs? In this column’s
article we will get a first idea of the complexity of the situation, thanks to
Matthew (“Matt”) Levy of the U.S. Navy. As always stay happy and healthy,
and keep on hacking, securely. —Dirk Riehle

80 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE EXPANDED

projects by parsing the package.json
configuration file, they could create
malicious packages on node package
manager (NPM) with the same name.
Because node.js compilation searches
public projects first when collect-
ing dependencies, the project then
downloaded the public (malicious)
package instead of the private one.
Consequently, using Domain Name
System exfiltration techniques in a
preinstall script, the newly installed
package then phoned home from
each computer. The researchers be-
gan by infiltrating PayPal but quickly
discovered they could use the same
techniques against Apple and Micro-
soft servers, and dozens of other large
organizations.

Indeed, recent articles have illus-
trated how difficult it has been for pack-
age managers to verify packages on
their platform, allowing for exploitation
tactics like typosquatting and brand-
jacking, which result in dependency
confusion and dependency injection. In-
deed, a recent report revealed that PyPI,
the most widely used Python package

management service, removed more
than 3653 typosquatted package names.5

PROCESS RISK
Like any other type of software, the
maturity of open source software
processes is gradual, sometimes tak-
ing years to reach the latter stages of
maturity where they are stable and
flexible, and the focus can be on re-
sponding to change. Conversely, soft-
ware projects lacking contributors, re-
sources, and tools to mature software
processes are likely to be less reactive
in their response to improvements or
patches and experience difficulties
that may impact code quality—to rap-
idly deploy improvements and quickly
release patches that extricate vulnera-
bilities and software bugs.

Beyond top-tier projects, many open
source projects have small numbers of
active contributors. Indeed, many proj-
ects, some with thousands of downloads
daily, are surprisingly small and lack
the resources to develop mature soft-
ware processes. A 2015 study of pop-
ular GitHub projects across language

ecosystems found that nearly two-
thirds of open source projects have
only one or two maintainers, and only
three projects in the study had more
than 50 contributors.1 Indeed, from a
process-maturity perspective, many
open source projects may lack the re-
sources to adequately respond to its
users, presenting insidious risk and
opportunity for those seeking to ex-
ploit immature release processes, es-
pecially given that these processes are
open for all to see.

Prior process deficiencies in the
event-stream community provide us
with a prescient example. Event-stream,
a library for working with streaming
data, has more than 1900 dependents
and, at the time of this writing, has
more than 3.3 million weekly down-
loads. In 2018, a single user compro-
mised event-stream by injecting a
malicious package that targeted the
developers of the CoPay bitcoin wallet
application. When Copay developers
ran their build scripts, it modified the
code before being bundled into the
application. Then upon deployment,

FIGURE 2. Dependencies for Express.js (version 4.18.2).

 J U N E 2 0 2 3 81

the code harvested account details
and private keys from accounts hav-
ing a balance of more than 100 Bitcoin
or 1000 Bitcoin Cash.11 The risk from
immature processes is illustrated by
how a single nefarious user, Right9c-
trl, was granted full commit access by
event-stream’s principal maintainer,
Dominic Tarr, by simply asking for it.
There was no identity verification, no
previous history of committing to the
project, and no automated process
that checked dependencies or depen-
dents, upstream or downstream, for
malicious code. In contrast, with ma-
ture governance processes and corre-
sponding tooling around providing
users with commit access or a release
management process that scans for
commits by new members, malicious
code, or malicious design patterns,
the event-stream hack could have
been avoided. Reinforcing this, in a
recent study, nearly half of all open
source communities were missing
either an openly described release
management process or security au-
diting procedures.8

While many major open source
communities now have the advantage
of corporate sponsorships and corpo-
rate employees paid for community
participation, many widely used open
source projects still do not. Moreover,
in these unsubsidized communities,
consumers have tended to experience

bugs after each release, making pro-
grams less useful in the tenuous days
to weeks after an update. Indeed, with-
out mature processes, research on
open source communities has found a
statistically significant association be-
tween prerelease bugs and postrelease
vulnerabilities.4

METADATA RISK
Open source metadata includes commit
data, bug lists, merge requests, discus-
sions, continuous integration configu-
rations, documentation, and active con-
tributor descriptions. Open availability
of metadata benefits those seeking to
contribute to a community and those
seeking to consume its products. But
security research is also sounding the
alarm on open source metadata.9 For
example, commit git histories can be re-
written to distort trust and gain access.
While such a feature enables a contrib-
utor to have fine-grained control over
the information she submits along with
a code commit, user authentication
is not enabled by default which opens

the door to forging information about
collaborators. A git commit creates a re-
cord consisting of a unique identifier in
the form of a hash created from the spe-
cific changes, the date and time of the
changes, and who made them. By de-
sign, a committer can manually change
this record with commands like set git.
With this ability, a nefarious actor can
change commit dates and subsequently
push changes to git for dates and times
of their choosing that can even predate
the creation of a user account or a re-
pository since git lacks the mechanisms
that check these data.

Commands like set git for these pur-
poses may seem benign or far-fetched,
but it allows a nefarious actor to create
their own record of legitimacy—such as
filling in one’s own activity graph. Since
the activity graph displays activity in-
discriminately on public and private
repositories, it is difficult to discredit
fake commits, making this deception
technique difficult to detect (Figure 3).

Similarly, a nefarious committer
could also spoof their identity and

FIGURE 3. 2012 commit history of T.J Holowaychuk, Creator of the Express.js Framework.

FIGURE 4. How to change commit information.

82 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE EXPANDED

attribute commits to other users by
pushing commits on their behalf. In-
deed, default project settings on popu-
lar code repository hosting sites allow
this to happen. Given a commit hash,
a nefarious actor can obtain the e-mail
address of the project committer by
patching the URL string of the commit,
revealing the e-mail address from the
committer username. Subsequently,
the nefarious committer can change
the e-mail address with git config and
commit code changes to git using the
manipulated information (Figure 4).

What makes the aforementioned
example even more alarming is that
the user whose e-mail address used in
the attack vector will likely never know
someone is using it. What is further
insidious about it is how undermines
legitimacy and trustworthiness to

achieve power. Indeed, when observ-
ing the myriad ways state-sponsored
hacking organizations have sought to
undermine systemic trust as one of
their main objectives, this example
is notable, as it is now quite clear that
state-sponsored hacking organiza-
tions are not only tactically attempt-
ing to alter specific outcomes (like an
election) but seeking to sow the seeds
of division for future exploitation.3

NARRATIVE RISK
Underpinning our examples in the pre-
ceding sections are the narratives that
nefarious actors exploit. Concerning
cybersecurity, narratives have been
given increasing attention as a growing
body of researchers point to the persua-
sive and identity-building capacities
of how narratives can be weaponized
to shape understanding and mobilize
individuals. Narratives are the speech-
acts that constitute spoken or written

accounts of interconnected events
and allow for the interpretation and
analysis of human experience, mean-
ing, knowledge, social action, human
agency, and the complexity of social
elements of human life. The creation of
narratives is powerful in that they are
open to interpretation, inviting others
to attribute meaning, and can thereby
make fringe ideas less antagonistic or
threatening and engage recruits. Thus,
if those seeking to craft narratives in
open source communities adhere to the
dominant cultural codes of that com-
munity, they stand a greater chance of
being successful at shaping strategic
decision-making and making others
in the group reluctant to challenge it as
they seek to secure a sympathetic hear-
ing for positions unlikely to gain such a
hearing otherwise.12

Dominating narratives in open
source have to do with extraordinary
levels of implicit trust. For decades,
high levels of trust had little impact
on community legitimacy since, even
in hacker communities, tampering with
open source was seen as taboo. How-
ever, as nation-state actors have become
the driving force behind advanced cy-
berattacks, high levels of trust represent
targets ripe for exploitation. Under-
pinning the attack vectors mentioned
in previous sections are exploitations
of the trust narrative. For example, the
attack on the event-stream community
was an attack on the trust narrative. The
lead developer, Dominic Tarr, implic-
itly trusted right9ctrl with contributor
access, and given the culture of trust in
open source community identity, they
exploited it to steal Bitcoin wallets. The
attack vector described that takes advan-
tage of the purposely open structure of
git, where nefarious actors can modify

usernames and e-mail addresses on a
per-commit basis, also illustrate the ex-
ploitation of high levels of trust in com-
munity identity and commit history as
a form of discourse. There are also high
levels of trust in the integrity of package
management services that coinciden-
tally are now the principal vector for
open source supply chain attacks. And
there are numerous other examples:
One being the controversial case of the
hypocrite commits, where University of
Minnesota researchers pushed bogus
commits after establishing a trusted
identity on the Linux project, or how the
trust narrative was undermined when
commit information was altered and
two malicious commits were added to
the PHP-src repository in the creator’s
name, Rasmus Lerdorf, where the code
planted a backdoor for obtaining remote
code execution for any website running
this hijacked version of PHP. These are
scary propositions. One is at the heart of
the open source movement. The other
is a project that runs on roughly 79% of
websites on the Internet.

DISCUSSION
Not until recently have open source
projects, participants, researchers, and
teams begun to actuate awareness of
these risks. As recently reported in
this journal, roughly five years ago,
university researchers created the
Community Health Analytics in Open
Source Software (CHAOSS) project to
provide a compendium of health met-
rics that go far beyond those based on
user and project commit history. CHA-
OSS has evolved significantly and now
delineates five categories of health
metrics: evolution, common, diversity,
equity, and inclusion (DEI), value, and
risk. In addition, adjacent projects also
develop tooling for organizations to
evaluate projects using CHAOSS met-
rics.6 Given our aforementioned ex-
amples, future CHAOSS metrics could
also include cybersecurity risk. For
example, metrics delineating the se-
curity controls (for example, vigilant
mode, commit signature verification)
used in an open source project, metrics

Because node.js compilation searches public
projects first when collecting dependencies, the
project then downloaded the public (malicious)

package instead of the private one.

 J U N E 2 0 2 3 83

on supply chain vulnerabilities that
include native libraries, and metrics
that investigate discourse and narra-
tive emotives in these communities.

Indeed, CHAOSS has begun to take
similar strides in adopting best prac-
tices from the Open Source Security
Foundation (OpenSSF). But specific-
ity pertinent to cybersecurity risk
is needed. At present, CHAOSS con-
tains metric specifications to evaluate
whether OpenSSF best practices are
used, but needed are metrics on the de-
tails of how they are employed—such
as whether privileged developers use
multifactor authentication (MFA) to-
kens, whether the code contains secrets
such as hashes or other resource-identi-
fying information, or if the project has
active efforts to identify and disclose
vulnerabilities.

DARPA’s SocialCyber project is an-
other area of security research that
could be used to elevate CHAOSS. So-
cialCyber is developing analytics that
can detect and counteract cybersocial
operations, such as those that may
target open source developer commu-
nities through combinations of sub-
missions of flawed code or designs,
social media campaigns against OSS
developers and maintainers critical of
the flaws, as well as via misleading bug
reports, obfuscating technical discus-
sions, and social capture of functional
authority on OSS projects.2

In sum, we make the clarion call
for the larger network of open source
researchers and technologists to el-
evate CHAOSS and other communi-
ties that elucidate and mitigate open
source risk.

W e hope this article illu-
minates open source risk
without dissuading open

source usage. We further hope this ar-
ticle serves to persuade open source
communities to adopt additional se-
curity controls. And we hope critical

communities like CHAOSS, OpenSSF,
and SocialCyber continue to receive
increased attention. To conclude, and
paraphrase Louis Brandeis, we are at-
tempting to use sunlight as the best dis-
infectant to elucidate the security risks
in open source. Accordingly, the point
of this article is not to say that open
source is any more or less risky than us-
ing other forms of proprietary or hybrid
software. It is to illustrate that open
source, and its underlying social struc-
tures, carry their own unique risks.

REFERENCES
1. G. Avelino, M. T. Valente, and A.

Hora, “What is the truck factor of
popular GitHub applications? A first
assessment,” PeerJ PrePrints, vol.
3, Jan. 2017, Art. no. e1233v2, doi:
10.7287/peerj.preprints.1233v3.

2. S. Bratus, “Hybrid AI to protect
integrity of open-source code
(SocialCyber),” Defense Advanced
Research Projects Agency, Arling-
ton, VA, USA, 2020. [Online].
Available: https://www.darpa.mil/
program/hybrid-ai-to-protect
-integrity-of-open-source-code

3. P. Burkhart and T. McCourt, Why
Hackers Win: Power and Disruption in
the Network Society. Berkeley, CA, USA:
Univ. California Press, 2019, pp. 31–34.

4. F. Camilo, A. Meneely, and M. Nagap-
pan, “Do bugs foreshadow vulner-
abilities? A study of the chromium
project,” in Proc. IEEE/ACM 12th
Work. Conf. Mining Softw. Repositories,
2015, pp. 269–279, doi: 10.1109/MSR.
2015.32.

5. T. Claburn. “About half of Py-
thon libraries in PyPI may have
security issues, boffins say.” The
Register. Accessed: Nov. 10, 2021.
[Online]. Available: https://www.
theregister.com/2021/07/28/
python_pypi_security/

6. S. Goggins, M. Germonprez,
and K. Lumbard, “Making open
source project health transpar-
ent,” Computer, vol. 54, no. 8,

pp. 104–111, Aug. 2021, doi: 10.1109/
MC.2021.3084015.

7. Google, Inc. “Open-source insights.”
Open-Source Insights. Accessed: Dec. 8,
2022. [Online]. Available: https://deps.dev

8. M. Gresham. “Addressing cy-
bersecurity challenges in
open-source software.” Snyk.
Accessed: Feb. 18, 2023. [Online].
Available: https://snyk.io/blog/
addressing-cybersecurity-challenges
-in-open-source-software/

9. M. Kapko. “Fake GitHub commits can
trick developers into using malicious
code.” Cybersecurity Dive. Accessed:
May 8, 2022. [Online]. Available:
https://www.cybersecuritydive.com/
news/github-commits-malicious
-code/627466/

10. L. Morgan and P. Finnegan, “How
perceptions of open source software
influence adoption: An exploratory
study,” in Proc. 15th Eur. Conf. Inf. Syst.
(ECIS), 2007, pp. 973–984.

11. “Details about the event-stream
incident.” npm Blog. Accessed:
Jul. 3, 2022. [Online]. Available:
https://blog.npmjs.org/post/
180565383195/details-about-the
-event-stream-incident

12. F. Polletta, It Was Like a Fever:
Storytelling in Protest and Politics.
Chicago, IL, USA: Univ. Chicago
Press, 2009.

13. D. Riehle. “Dependency graph vs.
software supply chain.” Bayave.
Accessed: Mar. 16, 2023. [Online].
 Available: https://bayave.com
/2023/02/14/dependency-graph
-vs-software-supply-chain/

MATTHEW L. LEVY is a re-
search scientist at the U.S. Naval
Information Warfare Center, San
Diego, CA 92152 USA. Contact him
at matthew.l.levy.civ@us.navy.mil.

https://www.darpa.mil/program/hybrid-ai-to-protect-integrity-of-open-source-code
https://www.darpa.mil/program/hybrid-ai-to-protect-integrity-of-open-source-code
https://www.darpa.mil/program/hybrid-ai-to-protect-integrity-of-open-source-code
https://www.theregister.com/2021/07/28/python_pypi_security/
https://www.theregister.com/2021/07/28/python_pypi_security/
https://www.theregister.com/2021/07/28/python_pypi_security/
http://dx.doi.org/10.1109/MC.2021.3084015
http://dx.doi.org/10.1109/MC.2021.3084015
https://deps.dev
https://snyk.io/blog/addressing-cybersecurity-challenges-in-open-source-software/
https://snyk.io/blog/addressing-cybersecurity-challenges-in-open-source-software/
https://snyk.io/blog/addressing-cybersecurity-challenges-in-open-source-software/
https://www.cybersecuritydive.com/news/github-commits-malicious-code/627466/
https://www.cybersecuritydive.com/news/github-commits-malicious-code/627466/
https://www.cybersecuritydive.com/news/github-commits-malicious-code/627466/
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://bayave.com/2023/02/14/dependency-graph-vs-software-supply-chain/
https://bayave.com/2023/02/14/dependency-graph-vs-software-supply-chain/
https://bayave.com/2023/02/14/dependency-graph-vs-software-supply-chain/
mailto:matthew.l.levy.civ@us.navy.mil

	078_56mc06-opensource-3262903

