
SECTION TITLE

66 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 2 2 © 2 0 2 2 I E E E

OPEN SOURCE EXPANDED

T he use of metrics to better understand free,
open source software (FOSS) development is be-
coming commonplace. For projects themselves,
using metrics to show how they work is a new

level of openness and transparency (open development
analytics). For stakeholders, such as companies depend-
ing strategically on FOSS components, metrics allow for
the evaluation and tracking of potential problems in the
software supply chain. For developers, metrics may help
to detect issues, such as bottlenecks in processes or prob-
lems in the onboarding process of new fellows, or find out
about the performance in processes, such as fixing bugs or

completing code reviews, and how to
improve them.

These different needs and objec-
tives make the approach of “a single
metric fits all” impossible: metrics
have to be customized to help to
reach specific goals, or they are of
little use. They also have to be visu-
alized and organized in ways that
are useful for understanding the

underlying FOSS projects. That is the main reason why a
new generation of toolsets is emerging to analyze FOSS
(and software development in general). Instead of focus-
ing on providing a predefined set of metrics, their aim is
to be flexible enough to adapt to the data analytics needs
of a given scenario, providing a flexible and customizable
toolchain that can also interoperate with other analytics
tools. In this article, we introduce GrimoireLab, one such
toolset, and show how it is being used in different cases
(“personas”): FOSS foundations, companies consuming
FOSS, and FOSS developers.

ANALYZING DATA FROM FOSS PROJECTS
About 20 years ago, when we started to consider FOSS
projects as a matter of research, one of their most

Digital Object Identifier 10.1109/MC.2022.3145680
Date of current version: 8 April 2022

Software
Development Metrics
With a Purpose
Jesus M. Gonzalez-Barahona, Universidad Rey Juan Carlos

Daniel Izquierdo-Cortázar, Bitergia

Gregorio Robles, Universidad Rey Juan Carlos

 A new generation of toolsets that are flexible

enough to adapt to the data analytics needs

of a given scenario is emerging to analyze free,

open source software (FOSS). GrimoireLab is

one such toolset that meets many of the needs

of foundations, developers, and companies.

EDITOR DIMITRIOS SERPANOS
ISI/ATHENA and University of Patras; serpanos@computer.org

A P R I L 2 0 2 2 67

EDITOR DIRK RIEHLE
Friedrich Alexander-University of Erlangen Nürnberg;

dirk.riehle@fau.de

interesting singularities (compared
to other kinds of software projects)
was the availability of rich data about
how they worked: in addition to the
source code, they made public their
discussions and comments in mail-
ing lists and, in some cases, issues
in bug-reporting systems. Today, the
public availability of these kinds of
data can be considered as usual and,
to some extent, expected for almost
any FOSS project with any reasonable
impact. In the early 2000s, however,
this was still a novelty.

Before FOSS projects started to vol-
untarily share data about how they de-
veloped software, data-based research
about sof t ware development was
based on the analysis of just a few proj-
ects shared by companies with a hand-
ful of researchers under very strict
nondisclosure agreements. Stakehold-
ers of software components only knew
what their producers wanted to leak
about their development practices. Re-
searchers had a lot of trouble produc-
ing reproducible studies, or even stud-
ies at all, because detailed data about
software development were scarce and
difficult to share.

FOSS open development changed
this landscape completely, allowing
for the blooming of research based
on mining data from software devel-
opment repositories and, with time,
availability of data useful to get in-
sights about the reliability and risks
associated with how components are
produced. The Mining Software Re-
positories Conference (http://www.
msrconf.org/), started in 2004, is a
good showcase of this evolution.

A common thought in the 2000s
was that this wealth of data about
FOSS project development could be
utilized like data about the condi-
tions of persons is used to learn about
their health. In the same way that we
can analyze the levels of certain sub-
stances in a blood test to determine

the health of the person, we could ana-
lyze some parameters of how a project
is developed and determine the health
of that project. We were interested in
finding pre-established parameters
whose thresholds pointed to certain
“health-related issues” in projects.

For getting there, we had access to
data about thousands of FOSS proj-
ects, which would allow for finding
correlations and invariances that
could be translated into symptoms of
problems. We started to create a num-
ber of tools to gather data from dif-
ferent kinds of sources, help us in the
curation of those data, and aggregate
added value. The ultimate goal was
to produce automated reports of the
state of a project, including an analy-
sis of the key parameters that would
help to identify “health” problems
that could be corrected or, at least, de-
tected in advance.

With time, we found that reality
was much more complex than we had
expected. Despite the many years that
have passed, as a scientific community,

we have not been able to identify a set
of metrics or key performance indi-
cators useful to assess the health of a
project, even for specific domains or
kinds of projects. However, we learned
that data can be used in other ways
(both by researchers and stakeholders).

For example, the recent interest by
companies and governments in the
software bill of materials (SBoM) as a
tool to track the origin of software com-
ponents, especially FOSS components,
opens new opportunities to detect prob-
lems related to how those components
are being produced. By using the right
tools, all of the software supply chain
for a certain product (all of the FOSS
projects producing the components
used in it) can be analyzed, finding rel-
evant metrics about how they are de-
veloped: how many people are involved
in the process, how they deal with vul-
nerabilities, when they produced new
releases, or how they are attracting new
developers (or losing them).

As another example, FOSS foun-
dations are starting to provide open

FROM THE EDITOR

A hallmark of scientific progress is to add quantitative assessments to oth-
erwise purely qualitative evaluations. In a previous article in this column, we
looked at the Community Health Analytics for Open Source Software proj-
ect, which defined possible metrics for such quantitative assessments. In
this article by Barahona et al., we also look at tools for quantitatively assess-
ing open source projects. This way, we can calculate metrics and relate them
to actual project success, thereby also evaluating how meaningful these
metrics are. Progress! Happy hacking, be open, be safe!—Dirk Riehle

To some extent, GrimoireLab is the natural evolution
of our previous tools, expanding its aim beyond
research to also provide commercial services of

interest to the industry.

68	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE EXPANDED

metrics services that can be used by
their members but also by any third
party as a new standard of transpar-
ency [see, for example, the Linux
Fou n d a t ion “ I n s i g h t s ” (h t t p s ://
insights.lfx.linuxfoundation.org), Mo-
zi l la “Com mu nity Report” (https://
repor t.mozi l la.community/), and
Wikimedia Foundation “Community
Metrics” (ht t ps://www.mediawiki.
org/wiki/Community_metrics or the
report on the history of the Linux ker-
nel1]. These examples show a trend: it
is becoming increasingly clear that,
to understand the opportunities and
mitigate the risks associated with the
use of FOSS components, metrics are
one of the tools that can help. In gen-
eral, better understanding allows for
better acting, and that is the reason
why software development metrics
can be of assistance: they help us bet-
ter understand how FOSS components
are developed and, therefore, make

better decisions about them. However,
there is no single list of metrics that is
good for all purposes.

GRIMOIRELAB: A
TOOLSET FOR SOFTWARE
DEVELOPMENT ANALYTICS
To fit this need of producing differ-
ent metrics specific to various ob-
jectives, a new generation of toolsets
is emerging. GrimoireLab4 is one of
them. It is distributed as FOSS, which
leads to increased transparency, and
it can be used to analyze FOSS and
non-FOSS projects as long as they use
practices and supporting systems
similar to those in FOSS. To some
extent, GrimoireLab is the natural
evolution of our previous tools, ex-
panding its aim beyond research to
also provide commercial services of
interest to the industry.

Since September 2017, GrimoireLab
is a founding project of Community

Hea lt h Ana ly tics for Open Source
Software (CHAOSS), an undertaking
hosted by the Linux Foundation that
is focused on creating analytics and
metrics to help define community
health for FOSS communities (see
Goggins et al.5). This, to some extent,
means that we walked the full circle,
being involved once again in defin-
ing FOSS project health. Now, how-
ever, this is one of the aims for the
toolset, among many others. In fact,
if something characterizes Grimoire-
Lab, it is its flexibility and support for
many different kinds of analysis: it
has been used in studies by research
teams but also by open source proj-
ects to analyze themselves and com-
panies in industrial environments.

GrimoireLab is composed of a col-
lection of components that can col-
laborate to analyze software develop-
ment repositories. See Figure 1 for a
glimpse of how all of them fit together.

Data Sources

Data Retrieval

Perceval

Graal

Arthur
GrimoireELK

HatStall SortingHat

Cereslib

Raw Data
Dashboards

Data Storage

Identity Management

Orchestration

Analytics

Enriched Data

Manuscripts
Reports

Kibiter

Sigils Kidash

Mordred

FIGURE 1. The components in the GrimoireLab toolset. Data are first retrieved from data source application programming interfaces
by Perceval, with the help of Graal (for running third-party tools on all versions of the source code) or Arthur (to handle job scheduling
for large-scale retrieval) if needed, and stored as raw data. Then, they are enriched by GrimoireElk and Cereslib, and identities are
merged and made consistent with the help of SortingHat and Hatstall, producing the enriched database. Enriched data are consumed
to produce reports and dashboards. Mordred is the component that orchestrates the entire toolchain. (Source: Valerio Cosentino,
contributed to the GrimoireLab project; used with permission.)

	 A P R I L 2 0 2 2 � 69

These components can be used for
the following:

›› They can retrieve data, automat-
ically and incrementally, from
many kinds of software reposi-
tories (data sources).

›› Gathered data can be stored, cu-
rated, and enriched. In this pro-
cess, GrimoireLab also deals with
common issues such as identity
and affiliation management,
merging data from several data
sources, and computing process
metrics from the data retrieved.

›› The data can be analyzed, pro-
ducing specific information. For

example, computing thresholds
and delays in processes, analyz-
ing the structure of a community
and its main contributors, finding
relationships in a geographical
context, or determining the likely
causes of engineering bottle-
necks. GrimoireLab tools allow
users to deal with several aspects
of the development efforts,
including community, perfor-
mance, and activity.

›› They can visualize data in
different formats, producing
actionable charts and visualiza-
tions of several kinds, in which
data can be filtered or which can

be used to drill down to explore
and find details.

GrimoireLab can also be seen as
a black box, consuming data from
software development repositories
as the input and producing dash-
boards or reports as the output (see
t he Gr i moi reL ab d a shboa rd s for
CHAOSS projects at https://chaoss.
biterg.io). Both reports and dash-
boards show metrics and visualiza-
tions, but, while the former are static
(typically PDF documents), the lat-
ter are dynamic (typically web apps
that are actionable and running in
a browser).

FIGURE 2. The Cauldron community engagement panel for some FOSS projects. At the top left is the number of new pull request
submitters over time, the top right shows the evolution of newcomers versus people leaving the community; the bottom left
indicates the number of developers attracted (green) versus those who left the project (blue) for different cohorts, and the bottom
right shows ratio of the same parameters. PR: pull request; MR: merge request.

70	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE EXPANDED

GRIMOIRELAB IN PRACTICE
Modern FOSS development uses many
different support systems for source
code management, issue tracking,
continuous integration, asynchronous
and synchronous communication,
and so on. For each of them, there are
usually several options from which
FOSS projects select what they feel is
more appropriate for them. Grimoire-
Lab provides back ends to extract and
store data from more than 25 different
systems, including Git, GitHub, Git-
Lab, Bugzilla, Jira, Launchpad, Gerrit,
Discourse, mbox archives, Stack Over-
flow, Jenkins, Internet Relay Chat,
Mattermost, Slack, Telegram, Conflu-
ence, Mediawiki, and Meetup.

However, all of this diversity also
needs some organization. GrimoireLab
structures the data for each item it
retrieves so that it can be aggregated
and filtered with other items, even
from different data sources. For ex-
ample, homogeneous references to
dates or authors allow for queries,
such as “all activity items between
two dates, from this specific author.”
Since all of the data can be retrieved
and stored together, being able to
query in this way is fundamental
for building useful dashboards and
reports. GrimoireLab can also use
structured information about how
projects are grouped (for example, for
large collections of repositories), how

the many identities of a developer can
be merged (such as using authors files
maintained by the projects them-
selves), or specific characteristics of
a developer (for instance, to produce
metrics for all developers working for
a certain company).

Setups based on GrimoireLab can
be deployed in several ways. The proj-
ect provides PyPi Python packages
and Docker images ready to be in-
stalled and run. Python packages are
especially well suited for using some
of the tools in isolation. Docker im-
ages are more suitable for complete
deployments of the toolset: when
properly configured, those deploy-
ments can automatically retrieve

FIGURE 3. An example of a dashboard designed for the FOSS foundation persona. It shows how companies and organizations con-
tribute to a set of projects and the evolution over time. The data are about CHAOSS, shown by GrimoireLab. Q: quarter; GSoC: Google
Summer of Code.

	 A P R I L 2 0 2 2 � 71

data from thousands of projects, store
them in a database, analyze them, and
produce visualizations—all of this out
of the box.

However, it takes some time and
certain technical skills to deploy a
working system from packages or con-
tainer images. Most users will prefer
to just interact with the resulting vi-
sualizations or check the metrics of
their interest. For that, they can use
Cauldron, the SaaS version of Gri-
moireLab, which currently supports
some of the data sources supported by
GrimoireLab: GitHub and GitLab, bare
git, Meetup, and Stack Exchange (in-
cluding Stack Overflow).

Cauldron (Figure 2), which is also
FOSS, can be deployed for private use
(Cauldron Cloud) or directly used in the
public Cauldron.io (https://cauldron.
io) instance. It has a friendly and sim-
ple web-based user interface to select
the set of repositories to analyze, or an
SBoM document (in Software Package
Data Exchange format or as a list of re-
positories) can be uploaded to analyze
all projects in a software supply chain.
It automatically retrieves data from all

of them, producing an actionable dash-
board that can be used in a browser.
Cauldron offers data about the main
process and community metrics of
the repositories, which, in many sit-
uations, is good enough to learn what
the user needs, for example, when first
approaching a FOSS project. It can also
compare the results obtained by sev-
eral different projects, which is conve-
nient when evaluating similar options.

PERSONAS INTERESTED
IN FOSS DEVELOPMENT
METRICS
We have summarized how Grimoire-
Lab can show many different aspects of
FOSS projects (and of software projects
in general) by producing dashboards
and reports with different metrics and
visualizations. To show how this ap-
proach helps in coping with the needs
of different stakeholders, we will use
the “persona” metaphor. In our case, a
persona is an actor with a specific pro-
file, analyzing projects with a specific
purpose. We focus on three main per-
sonas: FOSS foundations as umbrellas
of the FOSS projects they host, acting

as neutral playgrounds; consumers,
usually companies, of FOSS compo-
nents; and individual contributors to
FOSS projects.

FOSS foundation persona
Neutrality and transparency are the
most important goals of this persona,
so it can act as a neutral playground. In
this case, data about how the software
is being developed constitute a new
transparency layer. Data contribute
to transparency in the same way that
publishing source code, a clear distri-
bution license, or a detailed (and pub-
lic) decision making process does: by
making the project more predictable,
letting anyone evaluate the risks and
potentials, putting more information
in the hands of stakeholders.

FOSS foundations (Figure 3) can
use the data in many areas. We men-
tion only some cases in which we have
been directly or indirectly involved:
code review fairness,3 committer
elections (as OPNFV and other Linux
Foundation projects do), diversit y
and inclusion,2 or decisions about the
maturity of projects (as the Apache

FIGURE 4. An example of a dashboard designed for the consumer persona. It shows several metrics related to how the project
reacts to issues. Data are about CHAOSS, shown by GrimoireLab. Avg.: average.

72	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE EXPANDED

Software Foundation or the Cloud Na-
tive Computing Foundation do). Using
data and not just opinions helps to cre-

ate a predictable environment where
corporations and other actors can
collaborate and work together. This
is becoming more relevant as FOSS
communities are growing in size,
complexity, and scale, in some cases
acting as an umbrella to thousands of
developers and with hundreds of or-
ganizations participating at different

levels. (For an example, see Cloud Na-
tive Computing Foundation: https://
landscape.cncf.io/.)

FOSS consumer persona
This persona, usually a company,
is interested in understanding the
sustainability, maintenance efforts,
development pace, and process pre-
dictability and takes all of these into
account when planning and estimat-
ing risks and potential benefits (Fig-
ure 4). As more FOSS components are

a part of the critical technological stack
of corporations, the characteristics of
the projects producing those compo-
nents become a very relevant topic.
Company consumers of a certain FOSS
component may also decide to collab-
orate in the project producing it, or,
maybe, the project was promoted by
them because they wanted to share
resources for producing a new com-
ponent that was key to them. In these
cases, the need for data to understand
those projects is even more clear.

In any case, FOSS consumers want
data to make sensible decisions about
the components they consume as well
as the projects that produce and main-
tain them because they are a part of
their software supply chain. For them,

FIGURE 5. An example of a dashboard designed for a contributor persona. In this case, it allows a developer to track its own contri-
butions (pull requests, in this instance) and compare them with contributions by other developers. Data are about CHAOSS, shown by
GrimoireLab. TC: technical committee; WG: working group.

Using data and not just opinions helps to create a
predictable environment where corporations and
other actors can collaborate and work together.

	 A P R I L 2 0 2 2 � 73

many relevant questions can be an-
swered using software development
analytics, such as the impact of cer-
tain actions; the influence they have
on the communities they are part of
and dependent on; and many other
aspects, such as leadership, growth,
community, engagement, diversity,
transparency, community health, per-
formance, collaboration, resilience,
adoption, and so on.

FOSS contributor persona
This persona represents the case of peo-
ple participating as individual contrib-
utors in FOSS projects (Figure 5). They
may do this on behalf of some of the
previous personas or just individually,
with their own purposes and goals.
They may play different roles within
the project: developer, project leader,
documenter, community manager,
developer advocate, and many more.
In any case, software development
analytics again plays an important
role to help them be more efficient
or make better decisions. They can
use software development analytics
for their own purposes and business
goals. Some examples of this are
community managers nurturing and
developing the community; devel-
oper advocates making life easier for
developers, looking for bottlenecks
and providing the best development
environment; or individuals learning
their current status in the commu-
nity, who is who, or whom to ask for
help for a specific issue.

METRICS WITH A PURPOSE
All of these personas have in common
that they find software development
analytics useful for them, but each
persona needs to use the metrics in
different ways and for purposes due
to their individual interests, motiva-
tions, and context. Therefore, the key
question is not which metrics about
FOSS are interesting but which ones
are important for a certain persona or,
more broadly, for a certain goal.

This is the main reason why the
new-generation toolsets, such as Gri-
moireLab, are relevant: instead of pro-
viding a hard-coded, specific toolchain
targeted to the needs of a specific per-
sona, they can be configured to satisfy
many different needs. Their approach
of “get all relevant data from software
repositories and then let components
enrich, query, and visualize it” allows
for targeted dashboards and reports
for each persona, thus reusing most of
the infrastructure but still satisfying
very different needs. They allow for
setting up a general platform to help
different personas effectively make
decisions based on data that can be
traced back, are reproducible, and are
fully accessible to any other player.
The fact that the toolset is also FOSS
itself is key: all of the details of how
the metrics are computed and the final
information is produced are available
for anyone to inspect, leading to in-
creased transparency and trustability
in a domain where nuances may mean
errors in key decisions.

Summarizing, metrics can be a
key part of the daily life of any-
one with an interest in FOSS

projects. However, individuals’ takes
on which metrics and information are
important for them may be very dif-
ferent depending on what they want
from those projects. For dealing with
such diversity in interests, we need
toolsets that are flexible enough but,
at the same time, provide the basics to
efficiently satisfy all of these needs.

ACKNOWLEDGMENT
The work presented in this article has
been funded in part by the Spanish
Government under grants RTI-2018-
101963-B-I00 and RTC-2017-6554-7.

REFERENCES
1.	 K. Stewart, S. Khan, and D. German,

“2020 Linux kernel history report,”
Linux Foundation, Version v5, Aug.

8, 2020. [Online]. Available: https://
www.linuxfoundation.org/tools/
linux-kernel-history-report-2020/

2.	 D. Izquierdo, N. Huesman, A. Sere-
brenik, and G. Robles, “OpenStack
gender diversity report,” IEEE Softw.,
vol. 36, no. 1, pp. 28–33, Jan./Feb.
2019, doi: 10.1109/MS.2018.2874322.

3.	 D. Izquierdo, J. M. Gonzalez-Bara-
hona, L. Kurth, and G. Robles, “Soft-
ware development analytics for Xen:
Why and how,” IEEE Softw., vol. 36,
no. 3, pp. 28–32, 2018, doi: 10.1109/
MS.2018.290101357.

4.	 S. Dueñas et al., “GrimoireLab: A
toolset for software development
analytics,” PeerJ Comput. Sci., vol.
7, p. e601, Jul. 2021, doi: 10.7717/
peerj-cs.601.

5.	 S. P. Goggins, M. Germonprez, and
K. Lumbard, “Making open source
project health transparent,” Com-
puter, vol. 54, no. 8, pp. 104–111,
Aug. 2021, doi: 10.1109/MC.2021.
3084015.

JESUS M. GONZALEZ-BARAHONA
is a professor at Universidad Rey
Juan Carlos, Fuenlabrada, 28943,
Spain. Contact him at jesus.gonzalez.
barahona@urjc.es.

DANIEL IZQUIERDO-CORTÁZAR
is one of the founders of Bitergia,
currently holding the position of CEO
Leganés, 28929, Spain; part of the
governing board of the Community
Health Analytics for Open Source
Software Working Group; and a mem-
ber of the board of directors at the
InnerSource Commons Foundation.
Contact him at dizquierdo@
bitergia.com.

GREGORIO ROBLES is a professor
at the Universidad Rey Juan Carlos,
Fuenlabrada, 28943, Spain. Contact
him at grex@gsyc.urjc.es.

