
EDITOR DIRK RIEHLE
Friedrich Alexander-University of Erlangen Nürnberg;

dirk.riehle@fau.de

There is a perception in some circles that software
engineering in open source is wild, eclectic, and
undisciplined. In many cases, the proverbial soft-
ware developers hacking in their garage is real.

The fact is, however, that there exists a great variety of
practices in open source software engineering with vary-
ing degrees of rigor and maturity in engineering practices.

Hallmark practices of traditional software engineer-
ing, including build automation, continuous integration,
reproducible builds, integration and regression testing,
and performance testing, are leveraged in open source.
Open source projects of various sizes, compositions, and
industrial investments have varying degrees of rigor. This

is especially true in the modern en-
vironment of service providers who
make their services available without
fees for open source software proj-
ects. For example, even the smallest
open source software project can af-
ford to host its content on commer-
cial-grade source code management
systems and issue trackers, leverage

commercial-grade continuous integration systems, and
ship builds via commercial-grade software repositories.

But open source software engineering is more than le-
veraging a handful of royalty-free support technologies.
The Open Source Initiative defines open source in terms
of the consumer. That is, the focus of their definition is the
rights granted to the recipients of the source code; specif-
ically, software is considered to be open source when the
source code is publicly distributed under a royalty-free
license that allows its use, study, modification, and re-
distribution. Under this definition, an entirely closed
software development team that works in private, using
proprietary development methodology and leveraging
traditional software development engineering practices,
can be said to produce open source software so long as the
source code produced is royalty free, under the terms of

Digital Object Identifier 10.1109/MC.2021.3069530
Date of current version: 4 June 2021

Open Source
Software Engineering
the Eclipse Way
Wayne Beaton, The Eclipse Foundation

 In open source software engineering, the source code

that is made publicly available is developed using

processes that actively engage and solicit participation

by a community.

OPEN SOURCE EXPANDED

C O M P U T E R 0 0 1 8 - 9 1 6 2 / 2 1 © 2 0 2 1 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y J U N E 2 0 2 1 59

60 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE EXPANDED

an open source software license. This
is colloquially referred to as “throwing
it over the wall.”

OPEN ENGINEERING
Open source software engineering is
the practice of creating open source
software using an open process. An
open process facilitates some degree of
open collaboration between develop-
ers representing a diversity of thought
and motivation. That is, in open source
software engineering, the source code
of the software that is made publicly
available under an open source license
is developed in a forge that is also pub-
licly accessible, using processes that
actively engage and solicit participa-
tion by a community.

Many, perhaps most, open source
projects describe themselves as “agile”
by some definition of the term. That
may mean that they work according to
the Agile Manifesto1 or employ some
formal or informal agile development
methodology. However it is defined,
agile development isn’t specific to
open source; indeed, agile develop-
ment methodologies can be employed
in a fully private software development
context. So, while “agile” is certainly a
common characteristic of many open
source projects, it isn’t a defining one.

When speaking of open source soft-
ware engineering, the notion of commu-
nity frequently comes up. This nebulous
term community is generally understood
to mean the individuals and organiza-
tions that form around an open source
project. The community is the users and
organizations that adopt open source

software and incorporate it into their
own projects or products. The commu-
nity is the primary source of contribu-
tion to an open source project, includ-
ing both the developers who contribute
patches and other content to the project
and the project team themselves.

Open source software engineering
is largely defined by engagement with
the community. The degree to which
an open source project team engages
with a community varies according to
the goals of the project.

There are several variables that an
open source project can tune to man-
age its level of community engage-
ment and inclusivity:

 › transparency
 › openness
 › eliminating barriers
 › shipping software.

TRANSPARENCY
Transparency is the practice of show-
ing the community what the team is
doing. The general idea is to give any-
body who cares to pay attention to the
project the opportunity to understand
the project team’s work.

The act of making source code pub-
licly available under the terms of a rec-
ognized open source license certainly
meets the definition of transparency.
However, making the decision-making
processes behind the development of
that software publicly available meets
the definition even more. Exposing
the decision-making process adds pre-
dictability for the community, which
makes it easier for adopters to set their

own development timelines and for
the project team to build user excite-
ment for their releases.

Open source projects use a variety of
means of open communication to give
their community of users and adopters
an opportunity to monitor their deci-
sion-making process. It’s common for
open source project teams to host calls
and then capture the minutes from
their discussion in one of their public
channels. With the emergence of open
source foundations and foundries-as-a-
service, expectations for transparency
have evolved to include publicly acces-
sible issue trackers. However, the true
measure of transparency is the degree
to which these public-facing tools are
used to accurately disclose the deci-
sion-making processes of the project.

OPENNESS
Openness is the practice of letting oth-
ers participate. That is, “open” in this
context means “open to all comers.”
Like all practices in open source, there
is a range or degree of openness.

Perhaps the most important thing
that an open source project can do to
make it possible for members of its com-
munity to participate is to use the same
source code repository as the commu-
nity. When developers push their con-
tent directly (and frequently) into a re-
pository that the rest of the community
has access to, so that the entire commu-
nity has access to the most up-to-date
version of the project content, members
of that community have the ability to
keep up with project development and
an equal opportunity to contribute. Put
another way, when a project team works
in private and then periodically syn-
chronizes its internal repository with a
public one, it is basically impossible for
anybody outside of the private team to
contribute any content.

Making an open source project’s
repositories publicly available and ac-
cessible does not necessarily mean that
everybody has equal privileges. In an
open-collaboration scenario, it is possible
for members of the community to earn
additional privileges by demonstrating

FROM THE EDITOR

Welcome back to “Open Source Expanded” and the current theme of open
source communities! After Jesus Gonzalez-Barahona has reviewed the histo-
ry of community open source, and Isabel Drost-Fromm and colleagues have
discussed governance at The Apache Software Foundation, it is now my hon-
or to have Wayne Beaton explain how open source software development
works at the Eclipse Foundation. He dives into engineering best practices,
providing insights from one of the most successful open source foundations
of today. Next up will be community health metrics. Happy hacking, everyone,
and please stay healthy! — Dirk Riehle

 J U N E 2 0 2 1 61

knowledge of the open source project’s
code base and development practices.
For example, community members may
make contributions to an open source
project, but those contributions need to
be received, reviewed, and accepted by
a member of the project’s development
team. Over time, a contributor who has
demonstrated knowledge of the project’s
code base and an understanding of the
project’s rules of engagement would be
invited to join the project team.

Likewise, an issue tracker that is
publicly available and accessible to
the community makes it possible for
the entire community to participate
on equal footing. Open-issue track-
ing lets the community raise issues,
provide direct feedback, and partici-
pate in planning. In essence, keeping
source repositories, issue trackers,
and communication channels open for
community participation makes the
project team a part of the community
and not separate from it.

ELIMINATING BARRIERS
To be open, an open source project
should be careful to lower barriers for
participation. Barriers for participa-
tion may or may not be obvious. Every
service that an open source project
team leverages likely has some terms
of use that may be a barrier for some.
That’s not to say that an open source
project should not leverage available
services but that a project team should
be cognizant of what segments of the
community they might be excluding
with their choices.

Open source projects that have a
goal of widespread adoption need to
pay attention to intellectual property
management. Source code is a form of
intellectual property. As with all forms
of intellectual property, source code
must be licensed. Care must be taken
to select the license best suited for the
project’s goals. The software leveraged
by an open source project, the so-called
“third-party software,” is itself licensed.
The adoption of third-party software
with licenses that conflict with the proj-
ect license or with the licenses of other

third-party software puts adopters at
potential legal risk. A license might, for
example, allow the use of a bit of intel-
lectual property under a certain set of
circumstances but not others. Or it may
place requirements on consumers or
make specific requirements of deriva-
tive works or linked code. These, again,
are potential barriers.

A barrier for entry that may not be
obvious is vendor domination, both
real and perceived. It may be diffi-
cult, for example, for some poten-
tial contributors to even adopt open
source software that is controlled by
their competitors. Operating in a ven-
dor-neutral manner is an important
factor in eliminating barriers for en-
try. This is one of the ways in which
open source foundations play an im-
portant role. Open source foundations
are a means of disconnecting an open
source project from direct association
with one specific vendor and opening
it up to more general participation.

SHIP SOFTWARE
A core value of open source software
engineering is engagement with the
community as a source of feedback
and facilitation of participation. Ship-
ping software is the means of engaging
with the broadest possible cross-sec-
tion of the community.

With every single commit to a pub-
licly accessible Git repository being
immediately accessible to the com-
munity, coupled with continuous inte-
gration build infrastructure, an open
source project operating in an open
manner can be thought of as always
shipping. For some open source proj-
ects, this may be enough.

Set ting up forma l releases in-
troduces greater predictability and

provides oppor t unit y to improve
quality for users and adopters. Formal
nightly and integration builds give
adopters an opportunity to test early
and frequently; interim milestone
builds provide an opportunity to en-
gage in more thorough testing, give
the project team a means of practic-
ing their release processes, and, with

the increased quality over nightly and
integration builds, provide an oppor-
tunity to engage with a larger part of
community.

The means by which an open source
project ships software varies just like
the degree to which a project operates
in an open and transparent manner
and eliminates barriers varies based
on the nature of the technology and
how broadly the project wants to en-
gage with its community.

THE ECLIPSE WAY
What we know today as the Eclipse
integrated development environment
has roots that go back to 1998 in closed
source development. In 2001, the soft-
ware was released into open source.
While innovating a new platform and
growing an ecosystem, the original
Eclipse project team also innovated a
new method for developing software
in open source. Many of the practices
in what came to be known as “The
Eclipse Way”2 found their roots in ex-
treme programming3 and principles
that became the Agile Manifesto. The
Eclipse project has shipped high-qual-
ity open source software on time for
20 years and counting.

To drive the success of its open
source software, the development team
drove the creation of an ecosystem of
users, extenders, and adopters—in-
dividuals and organizations building

Exposing the decision-making process adds
predictability for the community, which makes it

easier for adopters to set their own development
timelines and for the project team to build user

excitement for their releases.

62 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE EXPANDED

their own products based on the plat-
form. That ecosystem and community
effectively became the customer.

What is the secret of their success?
While they share numerous practices
that are common across open source
projects, the Eclipse project team high-
lights five key practices that contrib-
ute to their success:

 › milestone builds
 › planning
 › continuous testing
 › endgame
 › decompression.

MILESTONE BUILDS
Shipping code is a defining factor of
the Eclipse Way. Shipping code means
getting the code in front of the con-
sumer frequently, soliciting feedback,
and integrating that feedback quickly
and frequently. To that end, the Eclipse
project adopted a practice of producing
regular milestone builds on its path to
producing a final annual release. In
the very early days, milestone builds
were produced every four weeks, but
experience led the team to expand this
to six weeks with a decision to adopt a
cadence of quarterly releases, and the
time between each milestone build
shrunk to three weeks.

Each milestone is the culmination
of a development cycle that is treated as
a miniature release with distinct plan-
ning, development, and stabilization
phases. The end product of every six-
week development cycle is a high-qual-
ity milestone build that is good enough
to be used by the community.

When the Eclipse platform released
annually, the schedule started with
a few weeks of planning, followed
by seven milestones, and concluded
with the end game (later). With the
completion of milestone six came an
application programming interface
(API) freeze, and with milestone seven
a feature freeze. With the switch to
quarterly releases, the API and fea-
ture freezes now come with the third
milestone. Following feature freeze,
no new work is performed, and all of

the developers focus their attention
on polishing their work, stabilizing
features, and performance testing.
By delivering regular milestones and
having a well-defined feature and API
freeze milestone, the Eclipse project
balances agility with predictability so
that adopters have stability in their
own plans.

PLANNING
With the Eclipse Way, all planning is
done in the open, and there are no pri-
vate channels. The plans themselves
are publicly accessible. The Eclipse
project is actually a collection of proj-
ects that works together. There is a
separate project, for example, focused
on creating the Eclipse platform, a
project focused on creating the Eclipse
development tools for Java, and a proj-
ect focused on creating the Eclipse
plug-in development tools. With the
addition of the Eclipse open source
projects that participate in the simul-
taneous release, this extends to in-
clude almost 100 distinct open source
projects, all collaborating together
to produce high-quality software on
time. Each of these projects has its
own developers and project leads.

Early planning focuses on broad
themes. Themes may be general, like
improve the user interface or spe-
cific, like support Java 15. Everybody,
including the committers, project
leadership, and members of the com-
munity, works together to determine
the themes, and, from that, individual
project teams work out their own proj-
ect plans. Project plans feed into mile-
stone plans, with specific plan items
being assigned to each milestone.

Planning is incremental and itera-
tive. The project teams ultimately de-
cide what work will be done, but deci-
sions are made within the framework of
the overall plan, strategic goals of their
stakeholders, and input from users,
adopters, and the rest of the community.

Plans are dynamic. The Eclipse proj-
ect values high-quality and on-time
delivery above all else, so sometimes
plan items are changed, deferred, or

dropped from milestones and the re-
lease. Individual project plans are up-
dated as development progresses and
communicated to the community. Ev-
erything happens in the open. Plans
are only ever marked as “final” at the
end of the release.

CONTINUOUS TESTING
With high quality being a critical value
of the Eclipse Way, continuous testing
is required. From the very beginning,
the Eclipse project produced fully au-
tomated builds in various flavors, each
with its own specific purpose.

Build and test failures are expected
in nightly builds; nightly builds are
not generally intended to be con-
sumed by anybody but, rather, to pro-
vide important feedback directly to
the project team. The intention is to
resolve problems early while they’re
still small.

In weekly integration builds, fea-
tures are in a state where the whole
development team can use and work
with them. Expectations are that all
automated tests will be successful
and that the project team will use the
results from each integration build to
build the next one.

Milestone builds are produced at
the end of the development cycle. They
are expected to be of sufficient qual-
ity for the community to use; they are
intended to solicit feedback from the
community that can be integrated into
the planning for subsequent develop-
ment cycles.

With the Eclipse Way, the product
is always in beta. That is, the product
itself may not be of the high quality ex-
pected in a milestone or a release, but
it always works. In many ways, every
commit can be thought of as shipped
code. Developers who wish to work
on the very bleeding edge can pull the
code at any point in the development
cycle, build it, and have a reasonably
high probability of success.

Having a solid set of unit tests al-
lows the project team to innovate and
refactor code with confidence. Unit
testing is a critical aspect. The Eclipse

 J U N E 2 0 2 1 63

platform has more than 100,000 JUnit
tests divided across the many projects,
repositories, and components to test
the correctness of behavior. Developers
regularly run subsets of tests on their
own workstations. The full suite of tests
is run after every build; integration and
milestone builds are only considered
complete when all tests pass.

In addition to unit tests, resource
tests are run to mitigate the risks as-
sociated with memory leaks and over-
consumption of resources, and API ver-
ification tests ensure that APIs remain
stable and that cases where compo-
nents break API boundaries and illegal
use internal/non API code are identi-
fied. Unit, resource, and API verifica-
tion tests are run with every nightly,
integration, and milestone build.

Performance tests are run to iden-
tify performance regressions; a data-
base of performance results is main-
tained from build to build to ensure
that regressions are identified quickly.
Performance tests are expensive and
so are only run for weekly integration
and milestone builds.

To encourage the adoption of mile-
stone builds, the developers publish a
new and noteworthy document that
advertises new features to motivate
both users and adopters to take their
important roles in the feedback loop. A
new and noteworthy document is pro-
duced with each milestone build; the
milestone new and noteworthy doc-
uments are combined into aggregate
new and noteworthy for the release.

Working with the community is
a recurring theme. In some cases, an
open source project can be successful
with a “build it and they will come”
sort of attitude, but getting real com-
munity feedback requires sustained
investment from the developers them-
selves. One of the important lessons of
the Eclipse Way is that the developers
are the best evangelists.

ENDGAME
After the last milestone build, the
Eclipse Way enters the endgame. After
the last milestone, the developers stop

doing development and switch into
a mode of rigorous testing and miti-
gation. During this phase, the project
team will produce between three and
four release candidate builds of in-
creasing quality. Like every other build,
all release candidates are available to
the community, and the community is
invited to participate and provide feed-
back. The final release candidate be-
comes the generally available release.

No new functionality is created
during the endgame. In between test-
ing, the developers focus on improv-
ing the documentation and help and
on building the aggregated new and
noteworthy document.

DECOMPRESSION
Following the release, when following
the Eclipse Way, the team enters the de-
compression phase. In the early days of
a single annual release in June, the de-
compression phase coincided with the
arrival of summer in the northern hemi-
sphere and, accordingly, summer va-
cation. After an exciting and fulfilling
year of discovery and creation, the team
would take time to recover for the sanity
of the developers. Time to breathe.

During this time, the team engages
in a retrospective of the last cycle, docu-
menting its achievements and failures,
reviewing its process, and looking for
opportunities to improve cross-team
collaboration. The retrospective itself
is a publicly accessible document (for
example, The Eclipse Helios Retrospec-
tive). The process itself is continually
reevaluated and evolved. The develop-
ment team has influence on how the
process evolves (the Eclipse project’s
committers decided, for example, to
switch to quarterly releases). Note that,
in practice, the individual project teams
tend to engage in a formal retrospective
every few releases. It is also during the
decompression period that the team
starts to work with the community to
assemble the plan for the next release.

The Eclipse project’s practices have
evolved over time. Six-week develop-
ment cycles producing annual releases
gave way to three-week development

cycles producing quarterly releases.
The project team has shared more con-
trol over the years to the point where
the various project teams that collabo-
rate in the Eclipse project represent the
interests of multiple organizations all
working together.

T here are many ways to create
open source sof tware. The
choice of development meth-

odology is certainly an important
consideration but is not a defining
characteristic of open source soft-
ware engineering. Rather, open source
software engineering is a practice of
working in an open and transparent
manner and inviting a community to
participate in some manner.

The manner or degree to which an
open source project engages its com-
munity varies. Operating in an open
and transparent manner, lowering
barriers and inviting contribution,
and sharing control are great ways to
grow a community, but they introduce
challenges. Open source project teams
need to have goals with respect to
community engagement and set (and
evolve) their practices accordingly.

REFERENCES
1. Manifesto for Agile Software

Development. Accessed: Mar. 1,
2021. [Online]. Available: https://
agilemanifesto.org/

2. D. Megert, The Eclipse Way. Eclipse
Summit India. 2016. https://codeand
talk.com/v/eclipsesummit-india-2016/
the-eclipse-way-by-daniel-megert-at
-eclipsesummit (accessed Mar. 1, 2021).

3. K. Beck, Extreme Programming
Explained: Embrace Change. Reading,
MA: Addison-Wesley Professional,
1999.

WAYNE BEATON is the director of
Open Source Projects, The Eclipse
Foundation, Ottawa, Ontario, K2H
1B2, Canada. Contact him at wayne
.beaton@eclipse-foundation.org.

