
70 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 2 1 © 2 0 2 1 I E E E

A considerable variety of open source projects find
usage across the various computing appliances
seen at use in our world today. By “open source,”
we refer to a software project that is freely dis-

tributed, and the code base is freely hosted.1 For such a proj-
ect to exist and gain success over time, a number of people
must necessarily contribute. Indeed, some projects of note

have solitary contributors and owners.
However, in our experience, we have
seen that well-governed communities
of contributors yield greater success
over time. Furthermore, healthy proj-
ects rely upon standard principles that
encourage conversation and commu-
nity building.

Open source projects come in all
shapes and sizes, from the tiny tools
maintained by a single developer to
the multinational projects that span
several continents, cultures, time
zones, and businesses. As soon as
more than one person is involved,

there are a couple of questions.

› Which name and address should be used when
registering accounts for project management, social
media sites, and so on?

› How will we pay for the infrastructure bills, both in
terms of where the money comes from and which
account to use for paying those bills?

› What kind of work do we need help with, and how
do we motivate others to provide that help?

Digital Object Identifier 10.1109/MC.2021.3058023
Date of current version: 9 April 2021

Open Source
Community
Governance the
Apache Way
Isabel Drost-Fromm and Rob Tompkins, The Apache Software Foundation

An open source project without the people is a dead

project—or at least one that is fairly deep asleep.

While all successful open source projects understand

that they need to build a community around their

project, the exact options for doing so differ.

OPEN SOURCE EXPANDED

C O M P U T E R 0 0 1 8 - 9 1 6 2 / 1 9 © 2 0 1 9 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y A P R I L 2 0 2 1 71

› Who owns the project trade-
mark? Will that be a separate
entity?

As an example, consider the cre-
ation of the Apache Mahout project.
Apache Mahout was born out of an
email thread in the Apache Lucene
Project’s mailing list. A simple con-
versation about the potential of a text
mining project led to several people
collaborating to start Mahout’s code
base. We used systems hosted on the
private webserver of one of the project
founders. As the idea grew, we needed
to decide where to chat, which mailing
lists to use, where to store source code,
and which issue tracking service to
use. In the end, we moved the collab-
oration to The Apache Software Foun-
dation (ASF). The goal was to make it
independent from individuals in the
community and instead set it up for a
future backed by a diverse community.

Very basic infrastructure decisions
like this taken very early in the project
lifecycle decide what the open source
project will look like for years to come.
The most basic question to ask early on
is ab out balancing control with project
growth and longevity. How important is
it to the initial project founders to retain
control over the course of the project?
How much control are project founders
willing to delegate in return for allowing
the project to grow faster and become in-
dependent of the individual members?

GROWING BY DELEGATING
Initially, most projects are driven by
one or a few dedicated individuals—
there’s one project maintainer driving
development, issue triage, and cus-
tomer support. As a project grows,
this individual turns into a bottleneck
unless a healthy community can be
grown. For example, one developer

said, “So you can either try to drink
from the firehose and inevitably be
bitched about because you’re holding
something up or not giving something
the attention it deserves, or you can
try to make sure that you can let oth-
ers help you. And you’d better select
the ‘let other people help you,’ because
otherwise you will burn out. It’s not a
matter of ‘if,’ but of ‘when’.”2

As one example, look at Linux. For
a long time, the project was known for
following the benevolent dictatorship
pattern. It relied on one single indi-
vidual to take over the stewardship of
the project. This changed only a few
years ago, where the maintainership
of major modules—and, at some point
in time, even the kernel as a whole—is
backed by multiple people.3

The ASF takes a different approach.
Apache projects are expected to be run
by a commu nity of individuals in a
vendor-neutral way. As a result, proj-
ects are a neutral ground where even
competitors can work together to cre-
ate something larger than what any
individual participant could create.
What that implies, though, is that no
single participant has full control over
the project direction.

Yet another option is open source
projects owned by a single commer-
cial entity. Often the goal there is to
retain full control over the project di-
rection. These projects were described
in more detail earlier in this series as
single-vendor open source projects.4

At the end of the day, the moti-
vation for creating the project drives
which governance model is ultimately
adopted. One good overview of open

source project archetypes was pub-
lished by the Mozilla Foundation.5

MOTIVATING COMMUNITY
MEMBERS TO CONTRIBUTE
The goal of every open source project is
to pull people in to help the project along.
One of the most promising vectors to
achieve that is to make use of intrinsic
motivators, including the following:

› Autonomy: The more people
who feel like they are able to
make their own decisions inde-
pendently of others, the more
likely they are to participate.

› Mastery: The more participants feel
like they can improve their own
skills, the more likely they are to put
more energy into a project.

FROM THE EDITOR

Welcome back to the “Open Source Expanded” column and the current theme
of open source communities! After last column’s summary of the history of
open source communities, we will now look at one of the earliest and most
prestigious open source foundations, The Apache Software Foundation (ASF).
I’m glad I could convince Isabel Drost-Fromm, a long-time member and men-
tor of the ASF, and her colleagues to explain to us how ASF-style governance
helps open source projects succeed. Next up will be governance at the Eclipse
Foundation. Happy hacking, everyone, and please stay healthy! — Dirk Riehle

Open source projects come in all shapes and sizes,
from the tiny tools maintained by a single developer

to the multinational projects that span several
continents, cultures, time zones, and businesses.

EDITOR DIRK RIEHLE
Friedrich Alexander-University of Erlangen Nürnberg;

dirk.riehle@fau.de

72 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE EXPANDED

 › Purpose: To participate mean-
ingfully in a project, people need
to understand the purpose of
the project but also the impact
that their contribution has on
the project.

With the commercialization of sev-
eral open source projects, some of the
motivation to contribute has changed
by now, although the superiorit y
of intrinsic to extrinsic motivation
is still valid.

Work transparently: A precondition
for allowing contributions
The goal of open source projects is to
turn users into active contributors.
As a result, more than just the source
code needs to be available. Instead, it
should be easy to follow the entire de-
velopment process.

 › Design documents should be
available.

 › Communication on current
changes to the code base needs
to happen in public.

 › Roadmap planning needs to be
available publicly.

Projects at the ASF have a very sim-
ple rule of thumb for deciding what
needs to happen visibly to everyone.
Every decision that is vital to the
project needs to be made in public—
for everyone to see and for everyone to
participate.

As simple as that sounds, for new
projects coming to the ASF this is of-
ten one of the hardest things to learn.
That’s why, early on, projects at the
ASF undergo an incubation period
where one of the main goals is to move
all of the communication to public
communication channels. (see Delacre-
taz6 and Curcuru7 for a description on
how this works using the example of

how the ASF uses mailing lists as a
communication channel.) Often, the
result of this process is that people
other than the original project owners
become active and part of the develop-
ment team.

The level of transparency de-
scribed directly supports contributors
gaining autonomy. To create a con-
tribution, there is no need to wait for
others to take the time and explain
things such as the project architec-
ture or direction. Instead, all of the
information is available on a self-
serve basis.

Making extensive documentation
about the project transparently avail-
able also means that contributors
can improve their own skills, thus di-
rectly feeding into mastery as an in-
trinsic motivator.

COMMUNICATE EXPLICITLY
WHERE HELP IS NEEDED
Any new contributor coming to a proj-
ect will need information on the gen-
eral project mission—on what is under
development. Figuring out what the
project really needs help with can be
tricky, though. At Apache Mahout, for

a long time, contributors thought that
the best way to get involved would be to
add more machine learning algorithm
implementations. Instead, the project
was looking for better documentation,
help with answering questions on the
mailing list, better test coverage, and
performance optimizations of exist-
ing implementations. Making those
areas explicitly documented increased
the collaboration and drove contribu-
tions to areas where the project really
needed help.8

Making help requests explicit also
means that contributors understand
the purpose of their contributions.
They better understand how what they

do fits into the bigger picture of the en-
tire project.

SLOWING DOWN
TO MOVE FASTER
Many projects start with the intention
of answering every question immedi-
ately, fixing every bug very quickly,
and moving fast.

If the goal is to make contribution
possible for more people, though, it can
help to slow down. Instead of answering
every question yourself as a maintainer,
leaving questions open means that
other community members can step
up and help with user support. Leaving
trivial bugs open and marking them
as such helps new contributors as they
then have trivial changes they can use
to explore how to check out the code,
make the change, build it, run tests, and
submit changes.

Leaving discussions open for a few
days helps with integrating people
in many different time zones; often,
moving fast means that decisions are
made while interested people are well
asleep. As a result, for major decisions
at Apache, we have a rule to leave dis-
cussions open for at least 72 h before a
final decision is made. That way, even if
there’s a public holiday for some of the
contributors, there’s still a good chance
they can weigh in another day. Techno-
logically, this means moving from syn-
chronous communication like video
conferences and chat systems like slack
to asynchronous communication like ar-
chived, searchable mailing lists.

Translated to intrinsic motivation,
one aspect of slowing communication
down means that contributors feel
more autonomous in making contribu-
tions. Instead of being dependent on the
original project authors when it comes
to communication schedules, contrib-
utors can participate according to their
own schedule.

SCRATCH YOUR OWN ITCH
MOTIVATION
The group of people with the highest
motivation to contribute are the users
of an open source project.

The most basic question to ask early on is
about balancing control with project growth

and longevity.

 A P R I L 2 0 2 1 73

 › They find gaps in the project
documentation.

 › They find bugs when de-
ploying the software to their
environment.

 › They help with translating the
user interface to their local
language. End-user desktop ap-
plications are great examples of
this (for example, Thunderbird,
Firefox, and Inkscape).

 › They are in a good position to
help with user support in their
native languages.

 › They are good at identifying new
features.

For the project, the goal at that stage
should be to encourage interested
users to contribute changes. In ad-
dition to making project communi-
cation transparent, there are se vera l
more options for lowering the bar
for participation. For example, what is
implicitly known to project members
will be unknown to new contributors.
It helps to make this implicit knowl-
edge explicit.

 › How exactly can the project be
checked out of version control,
modified, built, and tested?

 › What are the project’s preferred
ways of communicating?

 › How does one submit changes
made to the project?

 › What kind of turnaround time
should contributors expect
for changes to be reviewed,
committed, and put into a new
release?

It also helps to have really trivial
“getting started” issues marked as such
in the project issue tracker.9 Several
Apache projects explicitly label issues as
suitable for new contributors.

It is also beneficial to actively en-
gage with users, asking for bugs to be
fixed or features to be added. Actively
inviting them to become active and ex-
plaining that their contribution would
be needed and appreciated helps with
raising motivation to spend more time

and effort beyond submitting an issue
in the issue tracker.

SHARE CONTROL TO KEEP
PEOPLE GOING
After getting a new contributor ini-
tially involved, the goal should be to
bind them closer to the project. One
way to do that long term is for con-
tributors to turn into owners of the
project. What are some options to
do that?

A first step could be to invite new
contributors to participate in activities
that are typical for maintainers of an
open source project, such as reviewing
incoming changes and mentoring new
people coming to the project. Another
step to reward commitment to the proj-
ect is to hand out commit access (that
is, write access) to the project reposi-
tory. There are also further steps that
open source projects can take.

 › Add new people to the group
that decides who gets invited to
the group next.

 › Share ownership of project as-
sets like trademarks, access
to collaboration, and social
media accounts.

In a more informal way, it helps to
explicitly mentor people and point them
to growth areas. For example, if some-
one has been spending a lot of their
time submitting bug reports related
to the project documentation, inviting
and helping them to directly improve
that documentation can be a good next
step. In that way, motivation grows as
people notice that project participation
helps them improve their own skills.
When faced with growth challenges,
Apache Beam established several best

practices to level up people; one of those
was to actively look for people who
were likely good committers but needed
some mentorship to actually make that
transition. Their experiences were pub-
lished in an informal way online.10

Another way of sharing control is
detailed by Karl Fogel in his book, Pro-
ducing Open Source Software, where he
discusses delegating not only technical
tasks but also management and coordi-
nation tasks.11 One good example of that
at the ASF is what has become a recom-
mended practice for many projects—for
coordination purposes, each project has
one so-called project management com-
mittee (PMC) chair.12 While, formally,
this role comes with a lot of responsi-
bilities, usually those are shared with
the entire PMC group. In the past,
though, it has happened that the PMC
chair gained enough social credibility
that, essentially, he/she was treated as
the benevolent dictator of the project.
To avoid this situation, a lot of Apache
projects have adopted an informal rule
to rotate the PMC chair role among
group members (for example, on a
yearly basis). That way, the likelihood
of one individual acquiring too much
influence becomes smaller.

PRAISE IN PUBLIC
Give people arguments to convince
their employers. Much of the work on
projects that are not being pushed for-
ward by a well-funded entity is done by
motivated individuals. Relying solely
on altruistic motivation does bear
the risk of participants burning out,
in particular, if there is a imbalance
between what participants are being
paid for and what they are doing pro
bono. This seems to be a major prob-
lem and one that we have yet to solve.

Making extensive documentation about the project
transparently available also means that contributors
can improve their own skills, thus directly feeding

into mastery as an intrinsic motivator.

74 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE EXPANDED

We still see examples at companies
where reviews have, in fact, suffered
negative consequences for employees
making open source contributions be-
cause those were hours that (despite
them being after-work hours) were
not spent working on the intent of the
business owner. So, from a project’s
perspective, it’s a good idea to think of
the motivation for employers to pay for
open source contributions—particu-
larly when the project is used in com-
mercial contexts.

While there are many reasons to
actively participate in projects, one
of the more obvious reasons for com-
panies to make time for employees

to participate in projects is employer
branding. (More often than not, large
software shops use walled garden ap-
proaches to promote the appearance
of this while not actually practicing
it.) In turn, this provides an easy vec-
tor for projects. The more visible and
public participation can be made, the
more reasons there are for employees
to spend time on these projects. Ways
to publicly praise participants include
mentions in commit messages and in
release notes but also special mentions
in issue trackers or additional infor-
mation in press releases that go out for
new software releases.

In addition, it helps to share infor-
mation within the project about which
setup and arguments for participation
work well for decision makers. Two
examples of such collections of argu-
ments come from the financial sec-
tor,13 as well as from members of the
ASF itself.14

At the end of the day, though, a lot
depends on the maturity of the employ-
ing company that is supposed to sponsor

open source contributions. Often, con-
tributing back comes at a later step than
publishing an open source project. A
similar observation was made by many
individuals helping organizations tap
into projects, one very prominent exam-
ple being the European Union.15

Political-level institutions are start-
ing to understand that using, devel-
oping, and supporting open source
software in the public sector can have
a direct positive impact on the local
economy as more players are able to
provide supporting services to make
custom modifications. See also16 for
one campaign example that is fairly
successful in the European Union as

well as FOSDEM 202017 for specific
examples of open source in the public
sector in Paris and Baltimore.

In addition, the public sector has
understood that the transparency that
comes with open source software leads
to more trust as well as a bigger chance
for the interoperability of projects,
even across country borders. Examples
of this can be seen in advice from the
European Union for the development
of COVID-19 tracking apps18 where, at
least in Germany, the backing compa-
nies chose not only to release the code
but conduct the development in the
open as much as possible.19 At the level
of the United Nations, this can be seen
in initiatives like the United Nations
Technology Innovation Labs.20

Another way of teaching corpora-
tions the benefits of open governance
models that are so common in open
source projects is to let them adopt
these practices to solve the in-house
issues that they face (like siloed de-
velopment). At InnerSource Commons
(http://innersourcecommons.org/),

corporate software developers can find
a common language, set of patterns,
learning path, and expert group to
seek advice from when moving in-
house software development toward a
model that resembles open source soft-
ware development. Often, after adopt-
ing this development model, the rate
of upstream open source contributions
increases as well.21

WHEN COMMUNITIES FAIL
For projects that fail to survive for
more than a couple of years, there’s
usually one of a few patterns that can
be identified in retrospect.

Setting the bar too high
One reason for project failure may be set-
ting the bar too high. Consider a wildly
successful open source project that failed
to pull in a diverse set of people. Instead
of increasing the pool of people respon-
sible for the project, the original main-
tainers set the bar for participation too
high. As a result, the maintainers, over-
whelmed by maintenance tasks, are
more likely to burn out. Or, even worse,
the project continues to see use long
after the maintainers have stopped
working on the code base, opening the
door for security vulnerabilities and
bugs to linger. Unfortunately, most
open source projects don’t notice these
issues until it is too late.

Relying too much on one entity
Another way for projects to fail is to
rely too much on one commercial
player to provide financial backing
for the majority of those active in the
project. Several projects got into trou-
ble after a single major sponsor pulled
out. One lesson learned here is to di-
versify the group of contributors—and
to actively seek support from multiple
players, ideally those using the project
in production.

Age
Lastly, the age of an open source project
is a large factor in community involve-
ment. Older projects naturally become
more stable over time, thus requiring

Instead of being dependent on the original
project authors when it comes to communication

schedules, contributors can participate according to
their own schedule.

 A P R I L 2 0 2 1 75

fewer changes to fix found bugs and
defects. Fewer changes, consequently,
drive fewer contributors, despite the
user base remaining quite large. Take
the Apache HTTP Server Project, for
example. It is ubiquitously used, yet it
mainly has small, bug fix-style releases
only. This lack of volume in changes can
lead to fewer people being excited about
starting contributions, despite the pres-
tige of being included as a contributor.

W hile open source projects
come in many different
shapes, it is clear that build-

ing a community around any such proj-
ects needs to be a deliberate effort. It
pays to have a good understanding of
what motivates humans, how to mod-
erate discussions, and how to facilitate
conversations, even in tricky situations,
when building those communities.

REFERENCES
1. “The Open Source Definition,” Open

Source Initiative. https://opensource
.org/osd (accessed Mar. 10, 2021).

2. “Git rebase.” Yarchive. https://yarchive
.net/comp/linux/git_rebase.html
(accessed Mar. 10, 2021).

3. Dirk Hohndel in a Conversation With
Linus Torvalds. (Oct. 27, 2017). [Online
Video]. Available: https://www.you
tube.com/watch?v=NLQZzEvavGs&
t=514s (accessed Mar. 10, 2021).

4. D. Riehle, “Single-vendor open
source firms,” Computer, vol. 53,
pp. 68–72, Apr. 2020. doi: 10.1109/
MC.2020.2969672.

5. “Open source archetypes: A frame-
work for purposeful open source.”
May 2018. https://blog.mozilla
.org/wp-content/uploads/2018/05/
MZOTS_OS_Archetypes_report_ext_
scr.pdf (accessed Mar. 10, 2021).

6. “Success at Apache: Remote
 collaboration in the time of
 coronavirus.” The Apache Software
Foundation, May 11, 2020. https://
blogs.apache.org/foundation/
entry/success-at-apache
-asynchronous–decision (accessed
Mar. 10, 2021).

7. “If it didn’t happen on the mailing
list, it didn’t happen.” The Apache
Way. http://theapacheway.com/
on-list/ (accessed Mar. 10, 2021).

8. I. Drost-Fromm, “Call to action—
Mahout needs your help,” https://
lists.apache.org/thread.html/a6ac
3b63ab6480a787150b01a26a
1e15c6253e8356a77b05e844821e%
401364119733%40%3Cdev.mahout
.apache.org%3E (accessed Mar. 10,
2021).

9. “Export admin client metrics through
stream threads,” The Apache Software
Foundation. https://issues.apache
.org/jira/browse/KAFKA-6986?
jql=labels%20in%20 (GoodForNew
Contributors%2C%20 Newcomer)
(accessed Mar. 10, 2021).

10. “An approach to community build-
ing from Apache Beam,” The Apache
Software Foundation, Feb. 22, 2019.
https://blogs.apache.org/comdev/
entry/ an-approach-to-community
-building (accessed Mar. 10, 2021).

11. “Share management tasks as well as
technical tasks,” https://producin
goss.com/en/share-management
.html (accessed Mar. 11, 2020).

12. The Apache Software Foundation.
[Online]. Available: https://www
.apache.org/foundation/how
-it-works.html#pmc for more back-
ground (accessed Mar. 11, 2020).

13. T. Langel, “Making the business
case for contributing to open source.”
Opensource Strategy Forum 2018.
https://www.slideshare.net/slide
show/embed_code/key/HyhXotpRb
fE6ws (accessed Mar. 11, 2020).

14. B. Delacretaz. How to Convince Your
Left Brain (Or Manager) to Follow the
Open Source Path Your Right Brain De-
sires. (Mar. 6, 2020). [Online Video].
Available: https://www.youtube
.com/watch?v=F0SmiQ3SF6Q (ac-
cessed Mar. 10, 2020).

15. The Apache Foundation. #ACEU19:
Thomas Gageik – Open Source Software
at European Commission’s Informatics
Directorate. (Oct. 23, 2019). [Online
Video]. Available: https://youtu
.be/2EvCF4XKLso) (accessed
Mar. 10, 2021).

16. Public Money, Public Code. [Online].
Available: https://publiccode.eu
(accessed Mar. 10, 2021).

17. “Organizing Open Source for cities:
Adapting the Open Source Program
Office,” in Proc. FOSDEM’20, 2020.
https://fosdem.org/2020/schedule/
event/ospoforcities/ (accessed Mar.
10, 2020). Looks good to me; Date of
access March 10, 2021

18. “Mobile applications to support con-
tact tracing in the EU’s fight against
COVID-19: Common EU Toolbox for
Member States, Version 1.0,” eHealth
Network, Brussels, Belgium, 2020.
[Online]. Available: https://ec.europa
.eu/health/sites/health/files/ehealth/
docs/covid-19_apps_en.pdf (accessed
Mar. 10, 2020). Looks good to me;
visited March 10, 2021

19. “Corona-Warn-App,” GitHub, San
Francisco. [Online]. Available:
https://github.com/corona-warn-app
(accessed Mar. 10, 2020).

20. “Open source codes and the chal-
lenge of the SDGs: An UNTIL inter-
view with Amanda Brock,” United
Nations Technology Innovation Labs.
https://open-ae.eu/open-source
-codes-and-the-challenge-of-the
-sdgs-an-until-interview-with-a
manda-brock/ (accessed Mar. 10,
2021).

21. GitHub, San Francisco. Why Inner-
source is a Critical Component of FOSS
Sustainability—GitHub Satellite 2020.
(May 7, 2020). [Online Video].
Available: https://www.youtube
.com/ watch?v=Y_mjvrX7u-w (ac-
cessed Mar. 10, 2021).

ISABEL DROST-FROMM is a
member of The Apache Software
Foundation Wilmington, Delaware,
19801, USA. Contact her at isabel@
apache.org.

ROB TOMPKINS is a member of
The Apache Software Foundation,
Wilmington, Delaware, 19801, USA.
Contact him at chtompki@apache
.org.

