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1. Introduction

Open source software is software that is available for free to users under an open source license. Commu -
nity open source software is open source software that is being developed by a broad and diverse commu -
nity of people with no single person having a controlling stake in the software.

This article presents how to create, grow, and mature healthy community open source projects. The overall 
domain is  broken down into four distinct  parts,  which build on each other,  see Figure  1.  This  article  
presents the first two of the four parts: Getting users and contributions.

Figure 1. Breakdown of overall domain

This article linearly leads the reader through the activities of finding users and getting contributions. A later  
article will lead the reader through the activities of growing the community, and governing the community.

We present the patterns in the form of a short handbook of best practices to reduce friction in industry  
adoption. Essentially, in this context, a (current) best practice is a pattern. For readability, the actual hand -
book, which starts with Section 3, directly addresses the reader.
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2. Related Work

The base for this work is mostly Karl Fogel’s book on  Producing Open Source Software [3], combined 
with the author’s own practical observations. For some of the theory behind the handbook, we refer the 
reader to a 2014 article on The Five Stages of Open Source Volunteering [8], which provides more back-
ground analysis.

There are three types and two domains of related work relevant for this article. The types are:

• Practitioner literature
• Academic literature
• Patterns literature

The two domains of relevance are:

• Community management
• Open source communities

In the practitioner literature category, Jono Bacon’s book on the art of the community [1] as well as his ex -
pansion on the topic [2] are relevant. As is appropriate for a patterns article, we draw on this work where  
appropriate to fulfill the “rule of three” known occurrences. This rule, if fulfilled, heuristically validates the  
relevance of a pattern. This use of literature applies not only to practitioner literature, but to the academic  
literature section as well.

Also of relevance to this article is the general community building literature. For example, Kim presents  
experiences with community building on the web [5].

The academic literature on community building and management is vast and deep. We therefore restrict our 
review to selected articles on open source community management. Two examples are:

• West and Gallagher present patterns of open innovation in open source software [12]
• Tamburri et al. present YOSHI, a tool to identify community structures in open source [11]

The patterns literature itself also provides some related work. Examples are:

• Nakakoji et al. present evolution patterns of open source communities [6]
• Sauermann and Franzoni present user contribution patterns in crowd sourced projects [9]
• Schümmer presents patterns of community-building collaboration [10]
• Homsky and Raveh present patterns for online communities as well [4]

All articles are related, but none of them focuses specifically on getting users and contributions in commu-
nity open source projects, as the patterns presented in this article do.

3. Get Used! (Setting-up Shop)

In the beginning, there are no users. To get users, you need to get found, so you need to have visitors. Visi -
tors come out of curiosity or to solve a problem, often called “scratching an itch”. The mindmap in Figure  
2 provides an overview of the core best practices for getting visitors and turning them into users.

3.1 Get found

Before anything good can happen to your project, you need to be found. For this, in a first step, you have to  
→Have a good name, you need to have →Have one defined place or location to send people to, you need 
→Have a good project page to concisely convey to search engines and humans alike what you are about, 
and you have to →Register in all relevant places to cover all major paths to your doorstep.
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The screenshots in Figure 3 show the range of possible project pages, commensurate with the relevance of 
the project. The more customized a page, the more dominant is the visitor information and the less promi -
nent is the code. 

Landing page for PostgreSQL Landing page for GnuCash Generic Github project page

Figure 3: Example landing pages of successful community open source projects

Search engines pick-up well on a no-nonsense project page, but may need additional search engine opti-
mization (SEO) content, which is beyond the scope of this handbook.

3.1.4 Register in relevant places

To lead potential users to your project, you need to find all other places where users might be looking for a 
project like yours. There, by registering and providing information, you should be signposting the way to 
your project. This will not only lead humans to your project, but also strengthen search engine pick-up of 
your →One defined place.

Therefore, put signposts (links) to your one defined place in all places that potential users might frequent in 
search of projects of interest to them.

The list of relevant places keeps changing, but you should get a matching domain and register on Github or 
Gitlab and OpenHub at a minimum.

3.2 Inspire trust

Most people searching for an open source project have a purpose and limited time. Having found your 
project, they need to decide whether it is the right project for their needs. Not only do you need to →Have 
a good project page that explains what you are about to the busy visitor, you also need to inspire trust that 
digging into your project won’t waste the visitor’s time.

You inspire trust by being open and transparent about all important issues.
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3.2.1 Provide all relevant information

A good project page convinces a visitor to stay and keep looking. However, the project page is only a sum-
mary, and you now need to provide all relevant information that the visitor needs to decide whether to be-
come a user. By demonstrating that you understand your users’ information needs and are actively working 
to fulfill them, you →Inspire trust.

Therefore, provide all relevant information in an easily accessible way. This includes, but is not limited to  
the following:

• The project license(s)
• The project’s status (in beta, mature, etc.)
• A more detailed project description (than the summary on the landing page)
• The main dependencies, platforms the software requires
• A roadmap to show where the project is headed

Some information is specific to a project’s target audience. For example, corporate users will appreciate a  
clean bill-of-materials based on current industry standards.

3.2.2 Practice open communication

People looking to find some open source software that helps them reach their goals understand that they are 
creating a dependency on that open source software, and they consequently want to understand properties  
of that dependency. The more transparent the inner workings of your project and its community, the more  
likely it is to →Inspire trust. This is the domain of open communication [8]. 

Therefore, make your project open and transparent by communicating

• Publicly.  If all  communication is public, visitors are assured that no shadowy cabal is playing  
games on the side and that decisions are the result of inclusive deliberations.

• In written form. Written communication (emails, forums) is asynchronous, which makes it easier 
for non-native speakers and to work around the world.

• Completely. If all public communication is also complete, it strengthens the perception of inclu-
siveness, in which all topics of relevance are open for discussion.

• And archiving it. If whatever you write “is on the record”, it not only disciplines your writing, it 
also creates trust because you can be held to your promises.

Open communication means no surprises, and if you are an outsider, no surprises are good.

As the volume of communication in a project grows, you need to learn to →Communicate effectively and to 
have multiple → Public discussion channels.

3.2.3 Explain sensitive topics

Sometimes, there are sensitive issues, and you need to get ahead of the story and →Inspire trust by explic-
itly explaining any decisions you made on these issues. 

Therefore, have an FAQ on relevant topics. This deepens the perception of your project’s openness and  
transparency and further inspires trust.

Example sensitive topics are why you forked from an original project or why you require a contributor li -
cense agreement or why you are using proprietary technology for video conferencing.

3.2.4 Be matter-of-fact

People are different and so does their perception of what is trustworthy behavior. In general, your audience  
will include or even be exclusively software developers, who tend to be down to earth and shun hyperbole. 
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Therefore, to →Inspire trust, be matter-of-fact in your →Open communication and avoid going overboard 
with promises and emotions.

There are other relevant qualities of communication, for example, you should  →Assume good faith, but 
they are more relevant in later contexts, like →Getting contributions and will be discussed there.

3.3 Make use easy

Visitors, looking to solve a problem, have limited time to spend on your project before they decide whether  
it works for them or not. Therefore, helping them make the right decision includes making it easy for them 
to use your project to understand what they are getting into. You don’t want them to stumble and fall over 
random technical problems and abandon your project even if it was the right fit. 

3.3.1 Define use cases

You need to guide visitors along usage examples culled from use cases, both for the →Demo system and 
the →Readily usable binary, to improve chances that they understand what your project is about. Without 
such guidance, they might easily get the wrong idea, and leave even if the project was a good fit for their  
needs.

Therefore, define your main use cases and break them down into usage examples. Document use cases and  
usage examples for visitors and make it possible to experience them in the →Demo system or the →Read-
ily usable binary.

Understanding your use cases is not easy and covered outside this handbook under product management. 
Once you have your use cases, you should document them on the project’s website, including usage exam-
ples within those use cases.

3.3.2 Provide live demo system

Text is just letters on a page. A live demo system speaks much louder! 

Therefore, provide a demo instance of the software that visitors can play with to explore how good a fit  
your project is for their needs. Make it easy to try the demo and structure it by use cases and usage exam -
ples for different target audiences, next to a generic case. Use the →Usage examples that you previously 
defined.

3.3.3 Provide readily usable binary

Most users of your project  just  want  to use your software.  Few will  want  to build the software from 
sources. When just trying out the project, nobody wants to go through a build cycle. 

Therefore, provide a readily usable binary that people can download or point their system to. Make the  
needed information easy to find on your project’s website. If you can provide it, a live demo version of the  
software would be even better.

3.3.4 Follow established practices

Visitors and users of your project need to understand your practices to be effective at understanding and us-
ing your project. This is easiest, if they already know these practices. 

Therefore, follow commonly established and known practices whenever possible. Document any deviation 
from expected practices to minimize surprises and friction. If you are unsure as to what the default practice  
is, choose a common one and document the choice.

There are many different common practices in open source; for getting and engaging contributors, →Prac-
ticing code review is the primary one. 
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4.1 Say welcome!

If you are open for business, you need to say so. If you would like to get contributions, you need to say so  
as well. 

Therefore, invite people to contribute, and make this information available in a prominent place, for exam-
ple, on your →Landing page for your →One defined place.

4.2 Make contributing easy

Stepping out of the shadows and making a first contribution can be a technically and socially complex 
challenge. 

Therefore, make it as easy and as enjoyable as possible for people to contribute.

For newbies, providing a →Good first issue is a well-worn strategy to get them started. You should also 
→Provide tasks for everyone, enticing more experienced people to join. Newbies and experts benefit from 
a →Contribution guide that tells them how to contribute, and a →Developer manual helps everyone better 
understand what they are doing. 

4.2.1 Provide good first issue

Some people contribute to an open source project to learn something new and have fun while doing it.  
Some also contribute to demonstrate their skills to the job market. In any of these cases, these people are  
not necessarily users of your project, and hence have no particular experience with it. Yet, they found your 
project and are considering a contribution. 

Therefore, to engage these people, provide simple tasks that are easy to understand and carry out. Mark 
them as the so-called “good first issue” to indicate that these are useful but not complicated tasks. These  
tasks help get people over the initial contribution hurdle.

Examples of good first issues are help with translations and documentation, fixing up visuals in a user in-
terface, and even an (apparently) simple bug in an infrequently used component.

4.2.2 Provide contribution guide

Other people contribute to an open source project to fix a bug that got in their way of using the software.  
They do so, because “it is the right thing to do”, and because they don’t want to have to reapply the bug fix  
in every future project version again, over and over. 

Therefore, to invite such contributions and make it easy for yourself, provide a contribution guide that ex-
plains to anyone interested how to contribute to the project and what it means.

In the most common process, people declare their interest to make a non-trivial contribution, discuss their  
design and its implications on a developer mailing list, and incrementally program and submit their contri -
bution. Such incremental build-out makes it easy for reviewers to accept contributions and to close the 
feedback loop with the contributor.

4.2.3 Provide tasks for everyone

Yet other people simply like your project and would like to help. 

Therefore, to engage these people, provide tasks for every level of competence (e.g. novice, intermediate, 
expert) and for every role (e.g. programming, documentation, design) and possibly on other dimensions as  
well.

You can use these tags (novice, etc.) on issues to identify the level of competence required for resolving the 
tagged issue.
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4.2.4 Provide developer manual

It is one thing to want to contribute, it is another thing to do so. It is easy to fail at contributing because of a 
project’s complexity. 

Therefore, provide a developer manual to make it easy to contribute, to increase the quality of contribu-
tions, and to reduce your own workload. Without such a manual, contributions would be less consistent and 
you would have to correct the same mistakes over and over again.

Providing a developer manual is complementary to →Providing a contribution guide. 

The developer manual focuses on the technical and tooling side of the project so that any development that  
a contributor performs matches the project’s expectations. 

On the tooling side, typical content includes how the system is built, how to run automated tests and, if  
necessary, manually test the system. If the set-up is complex, providing a pre-configured virtual machine  
might be helpful.

On the architecture and code side, typical content includes how the project’s architecture looks like and 
how to extend it as well as how the code structure (repositories, directories) is organized.

4.3 Communicate effectively

Effective communication is key to successful coordination and collaboration. Many books have been writ -
ten on the subject, but in the context of getting contributions, it boils down to a few key practices: You  
should  →Assume good faith,  ensure that you  →Speak to the issue, not the person, →Praise plentifully,  
criticize specifically, and →Be matter-of-fact, as previously noted.

4.3.1 Assume good faith

It is easy to worry about things going wrong. Then, any potential contributor who suggests something that 
is unusual or does not agree with your ideas, may seem like a problem. Often, they are not.

Therefore, assume good faith [13] about people’s intentions, take what they write literally, and don’t inter-
pret into it what isn’t there. 

As you respond, →Speak to the issue, not the person, and →Be matter-of-fact.

4.3.2 Speak to the issue, not the person

As you engage with people, it becomes easy to equate an issue with the person bringing it up. You might 
confuse the two and attribute the issue at hand to the person raising it. Consequently, you might be attack-
ing the person rather than the technical matter. This is no good, as it might make you lose a valuable con-
tributor.

Therefore, in your response, make sure that you specifically talk about the issue and not the person. Avoid 
equating the two so that you don’t involuntarily attack and offend the person. Don’t finger-point.

For example, don’t say “you don’t know what you are doing, because [...]” but rather say “this needs to be  
done differently, because [...]”.

4.3.3 Praise plentifully, critique specifically

You want any contributors to feel valued so they keep contributing. Yet, not all they do or contribute can  
be accepted as is and hence you need to critique it. As a rule of thumb, ten times praise weighs as much as 
one time criticism.

Therefore, praise plentifully, yet critique if you have to with high specificity, avoiding any broader inter-
pretation of your critique. This way it remains clear that you value the contribution, yet, as you critique  
such a contribution, you have a good and specific reason. 
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4.4 Practice code review

As a lead developer (a.k.a. committer or maintainer) of the project you hold primary responsibility for en-
suring fit-for-purpose quality of the project. As a consequence, you can’t just accept any contribution un-
seen, rather, you have to make sure that it fits the project and does not introduce bugs.

Therefore, review any contributed code, before you accept it into the project. If necessary, →Turn the con-
tribution into a conversation with the contributor to guide them to making the changes you deem necessary 
before you can accept the contribution into the project.

This practice is at the core of quality assurance of open source projects. Since code review is an engineer-
ing practice and not a community management practice, we leave it to other articles.

4.5 Engage contributors

As you receive contributions, you need to make sure they don’t appear to be falling into a black hole. Noth-
ing would be more discouraging than getting no response to something you spent valuable time on. Hence, 
→React speedily to any contribution, try to →Turn contributions into conversations, and keep contributors 
interested by →Understanding contributor needs.

Such engagement can consume a lot of time and energy, hence look ahead to →View recruiting as invest-
ment from the →Grow community! section. Over time, you can build up contributors to help with engaging 
newbies. Eventually, you will need full-time community management.

4.5.1 React speedily

Few things are more frustrating than trying to make a contribution and getting ignored. This is particularly 
bad, if it is a user’s first contribution.

Therefore, react speedily to any incoming contribution. If necessary, prioritize your handling of contribu-
tions by how new the contributor is to the community. At a minimum, acknowledge receipt, if you can’t  
get to the contribution any time soon.

You may have to balance recruiting with contributor engagement to not burn out. 

4.5.2 Turn contributions into conversations

People come for the transaction, and stay for the relationship. 

Therefore, turn a contribution into a conversation to build that relationship. Do not quietly accept contribu-
tions, but rather view them as the beginning of a conversation.

Usually,  this  happens naturally,  because it  is  the  rare  contribution that  can be accepted as  submitted.  
Rather, you have to request changes before you can accept the contribution. In the ensuing conversation,  
you can assess how competent the contributor is and whether you should try to reel them in for further con-
tributions. Don’t ask for more right away, though, but rather first try to  →Understand the contributor’s  
need and whether it fits the project.

4.5.3 Have public discussion channels

Open communication implies that you conduct your business in the open, for everyone to see.

Therefore, have public discussion channels that allow everyone to participate.

This is the place where people can ask their questions, including about making a contribution, receive guid -
ance, and can report about progress. Publicly conducting your business  →Inspires and  →Builds trust. It 
also documents your project, making everyone's life easier.

Mailing lists and discussion boards, including threaded discussions like Github’s issues are good channels, 
because they usually archive all content and hence can be searched and serve as documentation. Twitter 
discussions don’t and hence are inferior discussion channels.
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Depending on the volume of communication, you may have to structure communication into different top-
ics and create channels for each of these.

4.5.4 Understand contributor needs

To keep getting contributions, you need to make people return, repeatedly, until they become regular (ha-
bitual) contributors. You got started by →Turning contributions into conversations, now you need to pre-
pare them for requests to contribute more.

Therefore, understand what made a person come and contribute. Use the initial conversation as well as the  
→Discussion channels to build this understanding, both in general and with respect to promising individu-
als.

Typical contributor needs are:

• Having a technical need fulfilled, for example:

◦ Having a particular feature added to the project
◦ Making the project work on a new operating system
◦ Integrating the project with another component

• Having a personal need fulfilled, for example:

◦ Enjoying themselves by doing good
◦ Having fun with others, enjoying the camaraderie
◦ Learning something of professional relevance

If you understand and track needs, you can more successfully ask people to help out later on. If this feels  
manipulative, it is not. Know your users, and you will have a useful project that people will want to con -
tribute to.

4.6 Build trust

Contributing to a project is significantly more time-consuming than just using it. Users only become con-
tributors, if they trust you to be valued for their contributions and to be treated fairly. Therefore, do just  
that: →Practice open collaboration, →Manage all work publicly, and →Track and give credit.

4.6.1 Practice open collaboration

By practicing open communication, you are talking the talk of openness and transparency. You also need to 
be walking the walk, that is, in your actual work, collaborate like you communicate.

Therefore, practice open collaboration. 

In open collaboration,

• You welcome everyone (and don’t exclude anyone without good reason),
• You make decisions based on the merits of the argument, not based on status, and
• You let people self-organize and manage themselves.

Open collaboration does not mean anarchy. The project’s well-being remains the driving concern and in-
forms decisions as to what should be done, for example, to possibly exclude a troll or how to organize soft-
ware development. However, these decisions are driven by community consensus and not dictated top-
down.

4.6.2 Manage all work publicly

All work, including intermediate and final work results, should be public and appropriately licensed. This 
is obvious for the open source code of the project, but is sometimes forgotten when it comes to processes 
and artifacts.
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Therefore, manage all work publicly.

Work comprises both processes and resulting artifacts. For example, you should hold meetings publicly  
and provide the meeting minutes publicly as well. By managing all work publicly, you build trust and 
avoid conspiracy theories.

4.6.3 Track and give credit

As discussed, you should →Praise plentifully. To be fair to all involved people, praise should roughly cor-
respond to the contributions. Praise can be informal, for example, a simple thank you in an email, and for-
mal, for example, in a contributions list maintained by the project. 

Therefore, track and give credit.

In terms of code contributions, a version control system lets you track who did what. For other work, you  
may have to track it by hand, and if only by memory. In particular, if people add their copyright, you need  
to track this for the project’s legal notices.

4.6.4 Celebrate small successes

Engaging with contributors and building trust with them is important. However, to take first steps towards 
a community, you need to make people come together.

Therefore, celebrate small successes in a commensurate form.

An example small success is a major feature concluded or a feature release. A commensurate celebration 
would be an email or blog post celebrating the involved people and their teamwork. Another example of a  
small success would be a project presentation at a relevant conference. A commensurate celebration would  
be again, an email or a blog post or a video or stars or requests to applaud, then hopefully met by the com -
munity.

More on community building will be discussed in a follow-on article. 

4.7 Protect intellectual property

Every open source project has its enemies. These could be the vendors whose products the project is com-
moditizing. These could also be competing open source projects, though those generally ignore each other  
and rather compete fairly. 

The worst that can happen to an open source project is that its license gets diluted by intellectual property  
owned by someone who didn’t contribute it. Then, users might get sued over intellectual property infringe-
ment, usually copyright violation or patent infringement.

Therefore, make sure that all contributions conform with the project’s license agreement. In addition, you 
may want to make relicensing possible. For the first case, you need to →Require a developer certificate of  
origin, and for the second case you need to →Require a contributor license agreement.

4.7.1 Require developer certificate of origin

To protect the project’s intellectual property, any contribution must conform to the existing license. You 
should only accept contributions, if the contributor agrees to the project’s license and can actually provide  
their intended contribution under that license.

Therefore, require a developer certificate of origin (DCO) for each contribution. 

A DCO states that the developer making the contribution is the owner of all relevant rights needed to make 
the contribution in conformance with the project’s license. Usually, it is a short text that a contributor sub-
mits together with their contribution and their electronic signature.

A DCO only declares conformance with the current license, not future licenses. For the latter, you need to 
→Require a CLA.
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6. Conclusions

This article presents (current) best practices of getting users and contributions in community open source  
projects. The patterns are presented in handbook form to make use easy. Future work will expand on this  
base and present well-known patterns of growing open source communities and governing them well.
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