
C O M P U T E R 0 0 1 8 - 9 1 6 2 / 2 0 © 2 0 2 0 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y D E C E M B E R 2 0 2 0 115

Freely licensed open source software (FOSS) has
become a key ingredient in software implemen-
tation across all sectors and at all scales of enter-
prise. Once from the realm of informal hacker

collaboration enabled by the Internet, it has evolved into a
discipline in its own right. Whether approached from the
pragmatic angle of Open Source Initiative (OSI)-approved
licensing or the ethical angle of user rights, the fundamen-
tal enabler of FOSS is the ability of developers to reuse and
adapt preexisting code without the need to seek specific
rights-holder approval or negotiate terms. In practice, that
means it’s easy to start at the point of innovation rather
than needing to first build (or buy) the well-understood

preliminaries and platforms that oth-
ers have already pioneered.

The fact that the d eveloper can
jump straight to innovation with-
out asking for basic permissions can
conceal the fact that FOSS needs to
be managed just like any other soft-
ware component. It has dependen-
cies that will need to be monitored
and updated when there are secu-
rity exposures. It has a license that

grants rights in return for satisfying responsibilities. And
it comes from a source that needs at least a little ongoing
engagement. In this regard, it is just like proprietary soft-
ware, only with more freedoms.

Of these three management needs, satisfying the re-
sponsibilities associated with the (otherwise freely per-
missive) license is the most pressing. FOSS can be used
only as a result of the grant of the licenses, copyrights,
and patents its creators have generously offered. Their
corresponding requirements thus need to be respected if
the license is to remain current. The actions associated
with this compliance also bring other benefits, such as the
creation of a comprehensive manifest for each subsystem
(allowing dependency tracking to be performed) and the
acknowledgment of the communities and individuals in-
volved. As such, it is both an essential risk management

Digital Object Identifier 10.1109/MC.2020.3024403
Date of current version: 19 November 2020

Continuous Open
Source License
Complia nce
Simon Phipps, Meshed Insights Ltd.

Stefano Zacchiroli, Université de Paris

In this article, we consider the role of policy and

process in open source usage and propose

in-workflow automation as the best path to

promoting compliance.

OPEN SOURCE EXPANDED
EDITOR DIRK RIEHLE

Friedrich Alexander-University of Erlangen Nürnberg;
dirk.riehle@fau.de

116	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE EXPANDED

activity and a best practice to keep your
code up to date and your company in
good standing with the communities
upon which you depend.

As McAffer1 explained in this col-
umn, these tasks are best performed by
a dedicated open source program office
(OSPO) in larger organizations. But that
doesn’t mean it all has to be a matter of
manual effort. Increasingly, organiza-
tions are weaving license compliance
into the systems that also continuously
build, test, and deploy their software.
This serves multiple needs:

›› the routine hygiene of software
for internal use

›› the more consequential man-
agement of the manifest for
software shipped to third parties
or embedded in systems

›› the specific needs that arise
when a company is being pre-
pared to acquire or be acquired.

While some commercial suppliers
tend to emphasize the supposed risks
associated with the GNU General Pub-
lic License (GPL) family, compliance
is much broader and more positive
than that lens implies. The GPL does
indeed require licensees to make the

complete and corresponding source
code (CCS) available to recipients of the
executable code that arises from the use
of their licensed materials, but almost

every FOSS license has requirements
that are important to respect. Licenses
like BSD, MIT, and Apache all require a
record of the previous contributors to
be passed on to users; licenses like the
Mozilla Public License and the Eclipse
Public License require certain delivera-
bles to be accompanied by source code to
varying extents; and so on.

These requirements are all a known
quantity with current compliance strat-
egies, and most are highly amenable
to automation. Addressing these re-
quirements controls risk, improves
quality, and cultivates community
respect. In this article, we will thus
focus on the current tools and popu-
lar workflows that allow FOSS license
compliance to be satisfied invisibly
most of the time.

THE OPEN SOURCE
SUPPLY CHAIN
Given that almost every enterprise
software system contains open source
software, where has it come from? How
is it manipulated and assembled to pro-
duce internal systems? Who receives

the resulting constructions? These
questions define a software supply
chain, which may involve a surpris-
ingly long and broad sequence of en-
tities on the inbound side and could
include third parties on the outbound
side, even if your business does not ap-
parently trade in software. A previous
column by Harutyunyan2 covers this
concept in more depth.

In brief, your open source supply
chain comprises inbound software—
the open source and proprietary soft-
ware entering your enterprise—together
with its dependencies; in-house de-
velopment, the adaptations you make
to inbound software and the software
you develop; and then outbound soft-
ware, the software you pass to others,
either under open source licenses or
proprietary terms, as software, as soft-
ware-implemented services, or embed-
ded in hardware.

Managing your open source supply
chain will require a comprehensive
open source policy (see Figure 1). Fun-
damentally, your open source policy
encapsulates the risks that you con-
sider justified within your business.
This will include a determination of
which licenses you have analyzed and
understood, which combinations of
those licenses are acceptable within
both inbound and outbound software,
what management steps are required
to ensure the risks are managed, and
how the determinations are recorded
and reviewed.

Your open source policy should go
beyond licensing, however. You will
need policies on how vulnerabilities
discovered in inbound software will be
evaluated and what steps will be taken
to ensure that all uses of the affected
inbound software are addressed. It
is important to have policies on what
skills are required in house for man-
aging critical components and how
staff absences/departures will be han-
dled, for example, through third-party
contractors or supplier subscriptions.
You should also have a policy and as-
sociated budget for memberships and
sponsorships of community charities

FROM THE EDITOR

Companies that use open source software in their products need to manage
this dependency. This implies tracking what open source you use and comply-
ing with its licenses. We return to this topic one more time with this article, in
which established experts Simon Phipps and Stefano Zacchiroli explain to us
available tools for managing this dependency and how to set them up in a tool
chain. An open source program office (OSPO) that is worth its salt needs to
have a solution similar to what Simon and Stefano are showing us. As always,
in these trying times, be happy, stay healthy, and keep on hacking.— Dirk Riehle

The fact that the developer can jump straight to
innovation without asking for basic permissions can
conceal the fact that FOSS needs to be managed

just like any other software component.

	 D E C E M B E R 2 0 2 0 � 117

(OSI , Free Sof t w a re Fou nd at ion ,
Apache, and so on) and software trade
associations (Eclipse Foundation, Li-
nux Foundation, and so on) so that you
are able to properly exercise influence
as well as make upstream contribu-
tions. McAffer1 has covered gover-
nance topics and open source policies
in more depth in this series.

These policies will then drive your
open source review process. This will
be triggered when someone wishes to
use inbound software that has not been
previously evaluated. Your review will
address the needs detailed in your open
source policy—including licensing,
staffing, maintenance, reputational is-
sues, community influence, component
maturity, and more. A previous article
by Spinellis3 has covered all of the fac-
tors that you should take into account
when choosing an FOSS component.

At the conclusion of the review, the
inbound software will be given a go/
no-go determination, usually by your
OSPO. The result of the assessment
will be recorded so that the future
use of cleared components does not
require any further permission to pro-
ceed. This is essential if the core value
of open source is to be leveraged.

One further step is the creation of
your policy for upstream contribu-
tion. Your developers should be able to
freely contribute their improvements
to the upstream maintainers of your
inbound software. Your policy and as-
sociated process should ensure that all
contributor agreements are reviewed
and approved in advance and that your
patent portfolio is not inadvertently
used against upstream communities
or inbound software.

COMPONENT INVENTORY
MANAGEMENT
Specific tools exist to support the busi-
ness processes related to open source
reviews, in the form of component
inventory managers. Eclipse SW360
(https://www.eclipse.org/sw360/) is a
popular open source solution in that
space and a cornerstone of most en-
terprise FOSS governance workflows.

Let’s see how it works as a classic ex-
ample of a tool supporting the inbound
part of software supply chains.

All sof tware components, open
source or otherwise, known to your
organization will be added to the or-
ganization-specific SW360 instance
and assigned a canonical name, allow-
ing recognition of the ones carrying
different names in different contexts

(upstream repository, distribution,
package manager, and so on) as the
same. The source code of the compo-
nent releases will also be uploaded to
SW360 and, from there, automatically
analyzed with license scanners, such
as FOSSology or ScanCode. Crucially,
the addition of novel FOSS compo-
nents to SW360 can trigger clearance
requests that only specific users (for
example, OSPO members) can per-
form before the component is deemed
fit for use. Once a component is clear
ed, it will remain so for all future
uses. Component reviews and clear-
ance decisions are typically based on
license-scanning results but can also
take into account the other factors we
have discussed, such as known vul-
nerabilities, development activity, bus
factor, and so on.

SW360 can also maintain a map-
ping between the IT products distrib-
uted by your organization and the
FOSS components they contain, for
example, as dependencies or reused
code. This mapping enables SW360

to automatically produce license com-
pliance documents, such as software
bills of material (SBOMs)2 in ma-
chine-readable standard formats, such
as SPDX as well as human-readable
documents like the list of all the FOSS
licenses used in the product, copyright
notices for attribution purposes, and
offers for source code relevant to a
given product.

All workf lows in SW360 can be
performed manually via a web por-
tal or automated via command-line
tools and RESTful application pro-
gramming interfaces. You can, for
instance, further support the clearance
process by plugging other scanners
into the scanning subsystem as well as
integrate information retrieved from
external knowledge bases, for example,
ClearlyDefined or Software Heritage.
The reliance on SPDX as an exchange
format allows SW360 to automate the
import of entire SBOMs for inbound
software as well as the production of
CCS tarballs for outbound software,
when required by the license.

CONTINUOUS LICENSE
COMPLIANCE
Once you have a clear grasp of cleared
components in your software supply
chain and can fulfill license obliga-
tions at a specific point in time, the
question that naturally arises is how
to maintain that status quo in the long
run as development continues. This

FIGURE 1. The software supply chain.

Inbound
Software

Software
Reuse In-House

Software
Outband
Software

Software
Distribution

Organization Boundaries

SW360 can also maintain a mapping between the
IT products distributed by your organization and the

FOSS components they contain.

118	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE EXPANDED

boils down to deciding when you re-
view your products for adherence to
your internal open source policy.

Various approaches are possible, in-
cluding sporadic “fire drills,” periodic
checks, and release-time checks. The
best approach is to continuously and
automatically check that all your prod-
ucts adhere to your open source pol-
icy—this is what we refer to as continu-
ous open source license compliance in this
article, or continuous compliance.

In practice, this means integrating
license compliance checks into exist-
ing continuous integration/continu-
ous deployment (CI/CD) toolchains,
making the build fail in case a diver-
gence between the actual build arti-
facts and your open source policy is
detected (see Figure 2). Doing so im-
mediately notifies the developers of
policy issues that should be dealt with,
resulting in shorter feedback loops (a
core tenet of agile development prac-
tices) and reduced risks of wasted de-
velopment efforts (for example, the
integration of an FOSS component that
will need to be replaced before release).
For continuous compliance to work,
the verification of adherence to your
open source policy should be as auto-
mated as possible so that it stays out of

the way of engineers—until things
go wrong.

TOOLCHAIN INTEGRATION
Implementing in practice the general
idea of continuous compliance as a
fully automated verification of adher-
ence to your open source policy can be
tricky. No one-size-fits-all solution is
well established in the industry yet,
nor will one probably ever be, due to
how each build toolchain is a unique

snowflake. Your own implementation
of continuous compliance will likely
combine several tools and integrate
them with custom adapters.

This need is behind the current in-
dustry push toward open compliance,
as in the idea that one should prefer-
ably rely on FOSS tools to implement
continuous compliance. With FOSS
compliance tools, it is easier to tailor
tools to your specific needs and avoid
or mitigate lock-in risks, and you will
have opportunities to contribute back
to the ecosystem, remaining on top of
the technology you use and keeping an
influence on software evolution. Propri-
etary compliance tools can still be used
but are usually integrated as black boxes
into toolchains that contain increas-
ingly large majorities of open tools.

The tooling landscape (ht t ps://
github.com/Open-Source-Compliance/
Sharing-creates-value/), conducted by
the Open Source Tooling Group and
the OpenChain curriculum (https://
g i t h u b.com/O p e nC h a i n-P r oje c t/
curriculum/), provides a good over-
view of existing tools to support au-
tomated governance of FOSS supply
chains. As there are too many to be
explained in full here, we conclude
with a few examples and discuss how
they can be used to implement contin-
uous compliance.

Several high-quality license and
source code scanners exist. As we
have seen, their integration into con-
tinuous compliance happens at the
component inventory level, during the
clearance of inbound components. We
refer to the comprehensive overview of
such tools given by Ombredanne4 last
month in this column for more details.

Dependency trackers ensure that
all of the dependencies pulled in at
build time are known and cleared in
your component inventory. This is of
paramount importance because while
you can easily audit the direct depen-
dencies declared in your software
products, transitive dependencies can
change in the ecosystem unexpectedly
and might pull in unknown compo-
nents or newer versions of known com-
ponents yet to be cleared.

Eclipse SW360 Antenna (https://
www.eclipse.org/antenna/) is a popular
tool used to automate dependency track-
ing that, in conjunction with SW360,

FIGURE 2. The integration of license compliance checks into existing CI/CD toolchains. QA: quality assurance; VCS: Version
Control System.

Retrieve
Source Code

Build Run Tests

QA
(Linting, Static
Analysis, and

so on)

Open Source
Policy Check

Deploy

All Done

VCS Executable Test Report QA Report
Compliance

Material (SBOM,
Notices, and CCS)

Deployed
Product

CI Continuous Compliance CD

With FOSS compliance tools, it is easier to tailor
tools to your specific needs and avoid

or mitigate lock-in risks.

	 D E C E M B E R 2 0 2 0 � 119

constitutes a fairly comprehensive,
continuous compliance implemen-
tation. Antenna integrates with build
automation tools, like Maven or Gra-
dle; scans source code artifacts of all

dependencies during build; verifies
that they are cleared in SW360 (or al-
ternatively, populates it with them so
that they can be cleared later on); and
automatically produces compliance
materials, such as the list of all depen-
dencies with their licenses in a spread-
sheet-friendly format and a CCS bun-
dle containing all their source code.
Integration with other build tools is
possible with custom code, and the
build can be made to fail in case non-
cleared components are encountered
or if their license does not adhere to
your open source policy.

The overall continuous compliance
ecosystem is moving at a fast pace,
with new tools and approaches being
released frequently. Other notewor-
thy players in the same feature space
of what SW360 and Antenna offer are
Quartermaster (https://qmstr.org/),
hosted by The Linux Foundation as
part of its Automated Compliance
Tooling umbrella project, and the OSS
Review Toolkit (ORT, https://github
.com/oss-review-toolkit/ort). The lat-
ter is particularly interesting as it pro-
vides a highly customizable pipeline
for continuous compliance, composed

of several independent blocks: a de-
pendency analyzer, a downloader for
dependencies source code, an abstrac-
tion over license scanners, a policy
checker that supports custom business

rules, and a reporter to build SBOMs.
ORT components can, and often are,
used independently from the other
blocks in custom continuous compli-
ance toolchains.

Continuous open source license
compliance is now a well-estab-
lished industry best practice

in managing the lifecycle of software
products. It consists of automating,
as much as possible, the verification
of the adherence of your IT products,
which almost invariably contain open
source components, to the open source
policy of your organization. Ideally,
such an automated verification is then
integrated into your existing CI/CD
toolchain, making software builds fail
and notifying developers early when
issues are spotted.

No one-size-fits-all technology to
implement continuous compliance
has emerged yet due to the hetero-
geneity of build toolchains. On the
other hand, there is consensus on the
types of tools you will need: compo-
nent inventories, scanners, depen-
dency trackers, policy checkers, and

generators of compliance material
(SBOMs, notices, and CCS bundles)
are all tools of the trade. High-quality
open source implementations of all
these tools exist and should be used as
the basis for addressing your specific
continuous compliance needs.

REFERENCES
1.	 J. McAffer, “Getting started with

open source governance,” Computer,
vol. 52, no. 10, pp. 92–96, Oct. 2019.
doi: 10.1109/MC.2019.2929568.

2.	 N. Harutyunyan, “Managing your
open source supply chain—Why
and how?” Computer, vol. 53, no. 6,
pp. 77–81, June 2020. doi: 10.1109/
MC.2020.2983530.

3.	 D. Spinellis, “How to select open
source components,” Computer, vol.
52, no. 12, pp. 103–106, Dec. 2019. doi:
10.1109/MC.2019.2940809.

4.	 P. Ombredanne, “Free and open
source software license compliance:
tools for software composition
analysis,” Computer, vol. 53, no. 10,
pp. 105–109, Oct. 2020. doi: 10.1109/
MC.2020.3011082.

SIMON PHIPPS is the founder and
management leader of Meshed
Insights Ltd. Contact him at simon@
meshedinsights.com.

STEFANO ZACCHIROLI is an associ-
ate professor of computer science at
the Université de Paris. Contact him
at zack@upsilon.cc.

The build can be made to fail in case noncleared
components are encountered or if their license

does not adhere to your open source policy.

