
Department Informatik
Technical Reports / ISSN 2191-5008

Julia Krause, Andreas Kaufmann, Dirk Riehle

The Code System of a Systematic Literature
Review on Pre-Requirements Specification
Traceability

Technical Report CS-2020-02

August 2020

Please cite as:
Julia Krause, Andreas Kaufmann, Dirk Riehle , “The Code System of a Systematic Literature Review on Pre-Requirements
Specification Traceability,” Friedrich-Alexander-Universität Erlangen-Nürnberg, Dept. of Computer Science, Technical
Reports, CS-2020-02, August 2020.

Friedrich-Alexander-Universität Erlangen-Nürnberg
Department Informatik

Martensstr. 3 · 91058 Erlangen · Germany

www.cs.fau.de

1

The Code System of a Systematic Literature Review on Pre-Requirements Specification
Traceability

Julia Krause, Andreas Kaufmann, Dirk Riehle Professorship for Open Source Software
Dept. of Computer Science, University of Erlangen, Germany

julia.krause@fau.de, andreas.kaufmann@fau.de, dirk@riehle.org

F

Abstract

Tracing requirements back to their origin is important to understand the context and to identify all potential concerns or conflicts in
the genesis of the requirements. The so-called pre-requirements specification (pre-RS) traceability is part of requirements traceability
(RT) and is recognized as an important factor for long-term project success. Different approaches have been developed to connect
requirements and their origin, but still, there is no general established solution. Mostly it is seen as an effort without significant benefits
leading to resistance towards its implementation. To guide future research, a comprehensive understanding of the use cases, benefits,
challenges, and existing approaches encountered is vital. However, the landscape of the scientific literature on this field remains somewhat
fragmented, with pre-RS traceability often only considered in the periphery. We, therefore, conducted a systematic literature review, which
identified 67 relevant papers. The literature was coded using qualitative data analysis (QDA) methods. In this technical report, we present
the whole resulting code system of the QDA and describe the relationships between the identified themes, focusing on the relevance,
problems, solutions, and techniques of pre-RS traceability.

Index Terms

Pre-Requirements Specification Traceability, Requirements Traceability, Requirements Engineering, Qualitative Data Analysis

Contents

1 Introduction 2

2 Research Method 2

3 Code System 3
3.1 Requirements traceability & pre-RS traceability general . 3
3.2 Traceability users . 5
3.3 Use cases, benefits & consequences . 5
3.4 Problems & Challenges . 8
3.5 Solutions & Suggestions . 11
3.6 Tools & Techniques . 15

4 Discussion 18

5 Conclusion 19

References 19

2

1 Introduction
What is the reason behind a requirement? Why was this requirement changed and who was or is involved? These questions
are becoming more important especially for long-term or continuously changing systems. Pre-requirements specification
(pre-RS) traceability can answer these questions by providing trace links between requirements and their origins. On the
other side, post-RS traceability links requirements and artifacts based on the requirements specification (RS). Compared to
post-RS traceability, research on pre-RS traceability is sparse. As early as in 1992, Gotel stated that "[pre]-RS traceability
has the potential for much greater leverage than post-RS traceability on costs and quality of software produced" [1]. Yet,
to this date, the space of the academic literature on pre-RS traceability has not been systematically laid out.

Pre-RS traceability is a remarkably dynamic procedure. It handles a lot of unstructured, qualitative, continuously changing,
and varying data, like meeting protocols, change requests, etc. Especially, at the beginning of each project many decisions,
discussions, and negotiations are made yielding much information that must be considered in the RS. Past decisions should
be preserved to assist in future decision-making. Thus, repeating wrong decisions can be avoided [2], [3].

Understanding all involved persons, their needs, and their different roles in the project become crucial [4]–[7]. Additionally,
finding an appropriate traceability technique or tool is important. Each project setting is unique, therefore generic tools
have to be customized or individual tools have to be developed [8]. However, the effort of establishing and maintaining
pre-RS traceability is often seen as too high [9]–[11]. So it is commonly only applied to fulfill regulatory compliance for
safety-critical systems, without realizing the full potential of these traces.

Keeping track of the origin of a requirement provides many benefits like presenting the state of the RS by proving
fulfillment of stakeholder needs [10], [12]. Pre-RS traceability supports communication because involved persons can
be identified and contacted [4], [13]. Furthermore, analysts or requirements engineers feel much more prepared for
negotiations, knowing details about the requirements creation and decisions behind a particular requirement [12], [14].

Nevertheless, pre-RS traceability is commonly handled as a sub-topic of requirements traceability (RT) which is still a
big challenge. In this work, we want to focus on pre-RS traceability to document the state-of-the-art by analyzing current
issues, scenarios, techniques, and tools. We conducted a systematic literature review (SLR) of articles published in 13
academic journals and over 15 conference proceedings from January 1992 until June 2020. As part of the review process
we performed qualitative data analysis (QDA) on the 67 papers we retrieved as relevant to our topic. The focus of this
technical report is based on the resulting code system of our QDA to provide an overview of the different topics and their
prevalence in published literature. The main purpose of this report is to serve scientists who are interested in a specific
area of pre-RS traceability. Additionally, we are working on a SLR paper including findings based on the code system and
answers to our three guiding research questions.

This technical report is structured as follows. First, section 2 provides a brief overview of our research method including
the QDA from which the presented code system results. The code system is then presented in detail in section 3. Section 4
discusses the code system and related finding. We close the report by drawing a conclusion in section 5.

2 Research Method
We set out to map the field of pre-RS research in three main dimensions: When is it used? What problems does it solve?
And how does it solve the problem? To guide our analysis of the published literature, we refined these dimensions of
interest into the following three research questions:

RQ1) Relevance - What are the use cases and benefits of pre-RS traceability?
RQ2) Problems & Solutions - What are the problems and solution approaches of pre-RS traceability?
RQ3) Techniques - What are pre-RS traceability techniques?
Guided by these research questions we performed a pre-structured (deductive) qualitative literature review following the

process of Kitchenham [15]. To plan and document our complete audit trail we created a research protocol that includes
background information and important cornerstones like research questions, search strategy, selection and quality criteria,
research process, the data extraction process, and work program.

We retrieved literature from well-known scientific databases (Google Scholar, IEEE Xplorer, ACM Digital Library, Web of
Science, and Springer Link) by keyword searching. Our basic search term was "pre-requirements specification traceability"
which we varied in the different spellings and abbreviations we found. The keyword search resulted in 36 relevant papers.
Based on these 36 papers we carried out a forward and backward search. During this search, we uncovered 31 additional
papers about pre-RS traceability because some of the relevant papers do not contain any varying terms of pre-RS traceability.

To identify literature as relevant we developed qualitative and topic-specific criteria. We analyzed a pilot sample of ten
papers to test and refined the criteria. As qualitative criteria, the literature has to be written in English and have to be
peer-reviewed. We do not exclude non-evaluated techniques, because we would lose interesting ideas and well described
theoretical approaches. Our topic-specific inclusion criteria were:
• Literature about a technique or method to link origin artifacts with RS
• Literature about an overview which presents different techniques, issues and/or problems to link origin artifacts with

RS or issues related to this topic

3

• Literature about an evaluation of a technique or method which links origin artifacts with RS
We refined the criteria to exclude literature that only mentioned pre-RS traceability to be given completeness and not
going into details of this topic.

To analyze the relevant literature we conducted a QDA tool-supported by MAXQDA1. The iterative coding process consists
of the three steps: open coding, axial coding and selective coding [16]. During our QDA we performed peer debriefings to
continuously check and improve the quality of our research [17]. The following section 3 explains the whole code system
and their codes into more detail.

3 Code System
The main codes of the code system are represented in table 1 including their number of codings in the right column. Not
all main codes are directly related to the research questions. They were created during the QDA to capture additional
important phenomenon and background information.

The following subsections present the child codes of each main code. Each code is described by a summary of the findings
based on the referenced literature in the right column. The penultimate column contains the number of codings or marks
group-code-only (GC). A GC does not contain any codings it just groups child codes by similarity. Mentioned relationships
between codes within the short summaries based on the code-relations-analysis of MAXQDA. The code-relations-analysis
identifies two codes as related if the coded text segments overlap each other.

During data analysis, we aimed to focus exclusively on information specific to pre-RS traceability and avoid general
RT or post-RS traceability related information. Due to the strong correlation between pre-RS traceability and post-RS
traceability as subordinate topics of RT, this was not always possible. Therefore, we made sure to include content in the
code system which is only or also related to pre-RS traceability.

TABLE 1: Main codes of the code system and their number (No.) of codings includes

Code and description No. of codings

Requirements Traceability (RT) 5
Pre-RS traceability general (+ sub codes) 94
Traceability users (+ sub codes) 31
Use cases & Benefits (+ sub codes) 220
Problems & Challenges (+ sub codes) 242
Solutions & Suggestions (+ sub codes) 249
Traceability tool (+ sub codes) 47
Traceability models/techniques (+ sub codes) 193
Consequences of poor pre-RS traceability 4

3.1 Requirements traceability & pre-RS traceability general
The first part of the code system presented in table 2 is not directly related to the research questions. However, the main
codes requirements traceability (RT) and pre-RS traceability general provide basic information to gain a common ground for
further elaborations. The child codes of pre-RS traceability general are ordered by descending number of codings.

Analyzing the pre-RS traceability definitions and descriptions, we discovered conflicting views. As the codes below show,
some literature excludes inter-requirements traceability as part of pre-RS traceability. Inter-requirements traceability consists of
trace links between two related requirements or two versions of one requirement. Other literature included inter-requirements
traceability as part of pre-RS traceability. We created two codes to model this contradiction. Comparing the number
of codings of these two codes definition/descriptions > exclude inter-requirements traceability and definition/descriptions
> include inter-requirements traceability more literature includes inter-requirements traceability. Based on this and our
experience gained from the analysis we also refer to inter-requirements traceability as part of pre-RS traceability. For
example in the case of refinements, the origin of a newer requirement can be the previous version and a particular decision.
This would lead to two pre-RS trace links.

TABLE 2: Child codes of the codes requirements traceability (RT) and pre-RS traceability general

Requirements traceability (RT): This code collects some descriptions about RT. RT
ensures that the requirements satisfy the stakeholder needs by linking them to the
origin and to further design or development artifacts. RT is part of the requirements
management and is seen as a tool to handle complexity by uncovering dependencies
between requirements and other artifacts.

5 [7], [18]–[21]

1. https://www.maxqda.com

4

Pre-RS traceability general: The collection of child codes combine information
about what pre-RS traceability is, what are their metrics and different traceability
types.

GC

Definition/Descriptions: According to the literature the definition of pre-RS
traceability and its differentiation from other terms is clear. Pre-RS traceability
“[...] refers to those aspects of a requirements’s life prior to inclusion in the RS.”
[9]. Most of the literature refers to this definition. Sometimes it is also called
upstream tracing [22].

17 [1]–[3], [6], [9],
[10], [20], [23]–
[29]

Include inter-requirements traceability: Some papers are explicit in including
requirements refinements and requirements-to-requirements relationships in
pre-RS traceability.

4 [4], [6], [11], [30]

Exclude inter-requirements traceability: Some papers exclude requirements-
to-requirements relationships from pre-RS traceability.

2 [20], [31]

Types of requirements origin artifacts: Connecting requirements with their
origin requires to take a closer look on the different characteristics of this origin
artifacts. They can be media objects like videos, images or recordings or they can
be document based. Documents can contain unstructured, (semi-)formal natural
language or formal content.

19 [1], [10]–[12],
[18], [20], [21],
[32]–[35]

Delimitation of Types: This code contains overviews and comparisons of different
requirements traceability types with focus of pre-RS traceability. The different
types can overlap thematically and are represented by the child codes.

13 [1]–[3], [6], [9],
[10], [26], [30],
[36]

Inter-requirements traceability: Tracing between requirements is necessary
to understand their dependencies between different requirements. One use
case is the impact analysis. Furthermore, it also describes the tracing between
different requirements versions created during requirements evolution.

6 [6], [20], [25]

Pre-RS forwards traceability: The content of this code describes the tracing
from an origin artifact to one or more requirements.

5 [1], [11], [19], [20]

Pre-RS backwards traceability: The content of this code describes the tracing
from a requirement back to the origin artifact(s).

5 [1], [11], [19], [20]

Requirement-rationale: The rational provides information about why the
requirement exists.

3 [20], [31]

Requirement-stakeholder/roles: This link traces from a requirement to the
owner or other involved persons.

3 [20], [31]

Multiplicity between origin & target: This code is about the direction of the
link. The trace link can be unidirectional or bidirectional without effecting the
navigation between artifacts.

2 [3]

Upstream: Upstream is associated with pre-RS traceability, going backward
from a requirement to its origin. The opposite is downstream tracing related
to post-RS traceability.

2 [22]

Vertical traceability: This includes tracing between elements of the same
model, for example tracing between different abstraction levels.

2 [26], [31]

Horizontal traceability: The opposite of vertical traceability describes the
tracing between elements of different models or versions, like tracing between
different requirement groups or to other artifacts.

2 [26], [31]

Extra-requirements traceability: It describes all non inter-requirements
relationships, means all trace links to other artifacts. In the case of pre-RS
traceability, extra-requirement traceability describe links between requirements
and their input artifacts.

1 [6]

Functional tracing: Tracing between the functional aspects of the software
system is called functional tracing.

1 [6]

Non-functional tracing: It describes all traces which involved non-functional
requirements.

1 [6]

5

Traceability activities: To create and manage pre-RS traceability different
activities are necessary: (1) planning for traceability, (2) recording/extracting of
traces: this can be done immediately during the writing of related requirements
or by recovering methods. A recovering method typically contains the steps
parsing documents, generating and afterward evaluating the candidate links. (3)
Using traces by performing traceability analysis or generating of reports and (4)
maintaining traces.

7 [3], [37]–[40]

3.2 Traceability users
A large part of the literature mentioned traceability users and their roles as a highly influencing factor in RT. Therefore, it
is necessary to dive into details of different user types, their roles, and activities for pre-RS traceability. We observe that
the distinction of different types is mainly based on traceability practice and motivation or the traceability function and
capabilities. The user categories of Ramesh (high-end and low-end users) [41] and Gotel and Finkelstein (provider and
end-users) [9] are often referenced.

Table 3 presents the code traceability users including references and more specific child codes. The codes of the table
are ordered by descending number of codings.

TABLE 3: Child codes of the traceability users code

Traceability users: This code contains overviews and comparisons of different
traceability user types. This user types are represented by the child codes.

4 [42]–[44]

User types by motivation/practice: Different types of traceability users were
recognized. The types high-end and low-end users distinguished by traceability
practice are often referenced by other literature. Following types are also
distinguished by motivation and practice [43]: (1) the regulated, (2) the sub-
contractor, (3) the consultant and (4) the enthusiast

4 [41], [43], [45]

High-end users: "High-end users view traceability as an important component
of a quality system engineering process". They know how to use traceability
and its benefits. Studies uncovered that this knowledge is based on more years
of experience than low-end users have.

10 [41]

Low-end users: They see traceability as mandatory and regulation by
stakeholder. They only do what is necessary and see no further benefits.

8 [41]

Provider: Only they can create trace links. Therefore, providers spent the time
and effort for creation and maintenance, but there is a danger that they often
don’t know the need and benefit of a link. That leads to misunderstandings and
unfitting or incomplete trace links.

3 [9], [37]

End-user: Typical end-users have to work with traceability. Different end-users
have different interests and requirements for trace links, but they are typically
not able to create these links themselves.

3 [1], [9], [46]

3.3 Use cases, benefits & consequences
The answers to research question RQ1 are presented in table 4. RQ1 itself and their answers refer to the relevance of
pre-RS traceability. During the QDA we added the code consequences of poor pre-RS traceability. Not many codings could
be found for this code, but it contributes to the motivation of establishing pre-RS traceability.

The codes of table 4 are ordered by descending number of codings. The most commonly stated use case for pre-RS
traceability is the identification of the source and the responsibilities or the fulfillment of regulations for safety-critical
systems. The prevalence of these use cases is reflected in the number of codings for this code. But beyond that, the
literature refers to a wide variety of 14 different use cases and nine benefits.

6

TABLE 4: Child codes of the use cases and benefits codes

Use cases: This code just groups all identified use cases. GC

Find source (support understanding): Finding the source of a requirement is
the most mentioned reason for pre-RS traceability. This use case describes the
tracing between requirements and other origin artifacts except personal contacts
(coded by the following code). Finding the source goes together with the codes
responsibility identification and track history/relationships. The benefits are to
monitor & gain knowledge for future, improving communication & collaboration
and supporting reusability of requirements and trace information.

36 [3], [4], [6],
[9]–[12], [19]–
[21], [28], [33],
[38], [42], [43],
[47]–[51]

Responsibility identification: This code is strongly related to the code above
find source (support understanding). But unlike the code above, responsibility
identification describes one or more added contacts to a requirement. A contact
includes specific contact information like mail address, telephone number, and
role information.

18 [4], [6], [9]–[12],
[19], [20], [38],
[41], [47], [48],
[52], [53]

Fulfillment of regulatory/compliance/norms: This use case is related to RT,
including pre-RS traceability. Especial for security or safety-critical systems, it
becomes necessary to prove the fulfillment standards. Therefore, pre-RS traceability
can present the reason and the regulation of particular requirements. Related
benefits are the reduction of maintenance costs, monitor & gain knowledge for
the future, and the improvement of the product/software quality.

17 [7], [10]–[12],
[23], [30], [37],
[43], [54]

Prove fulfillment of stakeholder needs: This code is strongly related to the
code fulfillment of regulatory/compliance/norms. Especial for pre-RS traceability,
it proves the right to exist of each requirement based on the stakeholder needs.
Furthermore, it is possible to uncover needs that are not satisfied by the RS.

10 [3], [10], [12],
[20], [37], [42]

Coverage analysis: This analysis is a valuable tool general for RT. The coverage
analysis allows an impression of the status of the RS. Enthusiastic traceability
users see it as important, but with less priority.

4 [12], [43]

Get the state of the RS: Knowing the state of an RS is a necessary part of
the overall software project process tracking. Questions like, "Which stakeholder
needs are satisfied by requirements?" and "How many stakeholder needs are not
considered inside the RS?" can be answered. This code is related to the coverage
analysis

. 10 [3], [10]–[12],
[24], [41], [43]

Change-Management: This code represents an important use case for RT. Pre-RS
traceability support the integration of a new decision into the RS by analyzing
the impact and localizing necessary updates. The following child codes provide
more specific use cases. Change-Management is related to the codes requirements
prioritization and finding the source (support understanding). The benefits are
satisfaction of stakeholder, supporting reusability of requirements and improving
product/software quality.

8 [3], [12], [20],
[24], [46]

Impact Analysis: Performing an impact analysis is a general RT use case. It is
especially used in lager projects where many different persons and roles are
involved. Existing pre-RS trace links improves the impact analysis.

15 [3], [7], [10], [11],
[19], [20], [31],
[41], [42], [47],
[48]

Capture & support decisions: This code is pre-RS traceability specific. Capture
decisions and their results support negotiations and future decision-making.
Repeating errors can be prevented for example by analyzing decisions in the
past.

14 [2], [3], [7], [9],
[12], [13], [36],
[47], [49], [55],
[56]

Track history/relationships: Tracking the history and relationships of require-
ments becomes more important the bigger a project is. This code is strongly
related to the code find source (support understanding) and has two more
relationships to the codes requirements negotiations and management of system
evolution (maintaining). This tracking supports the gathering of knowledge for
the future, reusability, communication, and collaboration within the team and to
the stakeholder.

9 [11], [12], [28],
[48], [49]

7

Manage system evolution (maintaining):Nearly every project has to handle the
system evolution. RT including pre-RS traceability provides valuable support for
maintenance. Obviously, this code is related to the codes track history/relationships
and finding the source (support understanding). The benefits are to monitor &
gain knowledge for the future, supporting reusability, improving communication
& collaboration, reducing maintenance costs, and improving product/software
quality.

10 [5], [10], [12],
[27], [35], [51]

Knowledge management system: Collecting knowledge and experiences by a
knowledge management system supports planning, avoids later mistakes and
conflicts, and supports the reusability of requirements.

7 [12], [35]

Requirements negotiations: Pre-RS traceability is valuable for negotiations
because it provides comprehensive background information about requirements
creation and knowledge to find arguments and to discover potential conflicts and
solutions. This code is related to the use case codes track history/relationships,
capture & support decisions, find source (support understanding), and manage
system evolution (maintaining). The benefits are to monitor & gain knowledge for
the future, support reusability of requirements, and improve communication &
collaboration.

5 [12], [14]

Requirements prioritization: Knowing the context and rationals behind require-
ments supports requirements prioritization. This code is related to the codes change-
management, proving fulfillment of stakeholder needs, and find source (support
understanding). The benefit is reusability of requirements.

5 [3], [20]

Benefits: This code just groups all identified benefits. GC

Monitor & gain knowledge for future: This code describes a general benefit of
RT. The monitoring of the pre-RS traces provides an overview of the status of the
RS. Especially high-end users said it is important to gain knowledge for future
improvements.

16 [3], [12], [28],
[41], [49]

Improve product/software quality: This code describes a general benefit of RT.
Keeping the RS updated and on high quality is essential for all artifacts based
on it, especially if the system becomes more complex. Reduction of maintenance
costs, reusability of requirements, and improvement of product/software quality
are related to each other.

10 [3], [5], [10], [12],
[28], [35], [54],
[56]

Support reusability of requirements and traces: Reuseability is a benefit of RT
including pre-RS traceability, by saving time and cost. This code is related to the
other benefits monitoring & gaining knowledge and improving communication &
collaboration.

10 [3], [10], [12],
[20], [41]

Improve communication & collaboration: Pre-RS trace links clarify responsibili-
ties and provide transparent documentation. This improves communication within
the team and to the stakeholders, especially in distributed work environments.
The code is related to monitoring and reusability of requirements and trace
information.

7 [4], [12], [13], [35]

Reveal tacit knowledge: On the one hand, tacit knowledge is the knowledge that
is only in the mind of a stakeholder and remains unspoken. On the other hand,
it can be knowledge of the requirements engineer that flows into the RS. Some
literature uncovered that requirements, without traces to their origin artifacts,
may be based on such tacit knowledge.

4 [2], [57], [58]

Satisfaction of stakeholder: An option to satisfy stakeholders is to provide them
the opportunity to follow the project progress. In the case of pre-RS traceability,
the stakeholder can understand and see which needs are satisfied by which
requirements.

2 [11], [20]

Finding missing requirements: According to the above benefit satisfaction of
stakeholder it is possible to uncover stakeholder needs not included in the RS.

1 [10]

Reduction of maintenance costs: In the case of rewriting and refinement of
requirements, pre-RS traceability provides additional background information,
refinement history, or persons in charge.

1 [10]

8

Finding unnecessary requirements: Pre-RS traceability uncover requirements
that do not have a trace back to their origin. These requirements need further
observations and if they are not based on tacit knowledge they may be unnecessary
requirements.

1 [10]

Consequences of poor pre-RS traceability: Studies uncovered that the main reason
for poor RT is a lack of pre-RS traceability even before post-RS traceability, especially
for long-term projects. Missing documentation about the building process or the
context leads to "back box" requirements. "Black box" requirements prevent adequate
requirements evolution.

4 [4], [9], [21], [24]

3.4 Problems & Challenges
One part of the answer to RQ2 about current problems and challenges in pre-RS traceability is presented in table 5.
To structure this part of the code system all codes and their child codes are ordered by descending number of codings.
That identifies the person-related problems including all child codes as the most frequently used code under the problems
& challenges code. According to the literature, this also proves that the human factor is one of the most critical points
in pre-RS traceability. Different roles and different interests are always involved in a project. Therefore, providing an
appropriate pre-RS traceability strategy supporting all the different interests is a big challenge. Different interests of different
roles is the most coded person-related problem followed by the known problem code too much work for unseen benefits.

TABLE 5: Child codes of the problems & challenges code

Problems & Challenges: This code contains overviews of problems. The child codes
represent special problems and challenges.

4 [3], [8], [41], [49]

Person-related problems: Much research was done in the area of tools and
techniques to achieve traceability, but not so much about the influence of the
human factor and their social aspects. The human factor is one important part
of the multifaceted RT problem. The child codes summarize the most frequently
mentioned problems.

4 [8], [21], [59]

Different interests of different roles: The involvement of different project
members or parties and their individual knowledge and viewpoints leads to
varying traceability usage, interest, and need. An often mentioned conflict
exists between providers and end-users because end-users can not predefine
every traceability need beforehand. The challenge is to satisfy both parties at
the beginning and during the project period

23 [1], [3], [8],
[9], [18], [24],
[26], [40], [41],
[44]–[46], [51],
[59]

Too much work for unseen benefits: Too much effort for too few benefits
is a significant problem in establishing pre-RS traceability. The benefits are
often not clearly explained to all involved especially, for the providers. This
additional time effort impacts the individual productivity. "if nobody pays you
to document trace, then you don’t do it" is the argument of low-end users [41].
Only superficially implemented traceability is hard or not possible to maintain,
too. The causes of this problem are no/few or bad (semi-)automation of trace
links and missing trace usage goals.

18 [1], [3], [9]–[12],
[24], [26], [37],
[41], [60], [61]

No trust in traces: No trust in trace links is caused among others by no/few
or bad (semi-)automation, a lack of verifying correctness & completeness, and
no/poor maintenance of trace information. Finally, the time wast of following a
wrong trace link down the system and not satisfied trace expectations leads to
no trust in traces and the used tool.

7 [3], [6], [8], [10],
[13], [26], [37]

Responsibility problem: Ad-hoc effort, no guidelines, bad automation, or too
much work causes a responsibility problem to find the person in charge of
general traceability topics or particular requirements. Additionally, the larger
the project becomes, the more people are involved. Without a responsible
person, the maintenance of the links is also at risk.

7 [1], [8], [21], [36],
[52]

9

No immediate benefit seen: No immediate benefits demotivate all users, but
especially trace providers. The benefits do not occur where the effort (cost) is. In
the field of post-RS traceability, there was much done for visualization of trace
information to improve accessibility. But still, there is a lack of visualizations
for pre-RS traceability. This code is related to the problem of low priority and
bad information access/presentation.

3 [11], [12], [47]

Subjective/idealized traces: Compared to the code different inter-
ests/knowledge of different roles, this code distinguishes between the under-
standing of different individuals their subjective and idealized assessment of
traces. The challenge is to build a common, objective knowledge base.

2 [1], [51]

Inadequate documentation of trace information: Losing requirement produc-
tion information leads to "black box" requirements. Later it is nearly impossible
to retrace the production process. Missing information leads to incomplete trace
documentation then the documentation becomes unstructured and unmanaged
and hard to maintain. Missing trace information harbors the dangers of excusing
a product that does not satisfy the stakeholder.

6 [5], [14], [21],
[33], [62]

Tacit knowledge/unnoticed links: Tacit knowledge is a common phenomenon
during information gathering and RS creation. It describes knowledge that is
only in mind, but no one speaks about it. A stakeholder didn’t speak about,
and an analyst includes their tacit knowledge into the RS. Tacit knowledge
makes pre-RS traceability difficult. But a pre-RS traceability analysis potentially
uncovers such tacit knowledge. Another related problem is unnoticed links
often due to an insufficient presentation of trace information.

11 [2], [3], [9], [37],
[46], [57], [58]

Ad-hoc effort: Establishing traceability by individual motivated persons, only
locally on some project parts, or at the beginning of the project until the first
version of the RS finished, is a common phenomenon. No responsible person
is defined, and the workload is too high for continuous traceability. Often the
ad-hoc effort is to satisfy the stakeholder or to achieve required audit results.
Studies observed that the argument for no maintenance is that all traceability
benefits are already achieved.

8 [1], [9], [10], [46],
[54]

Lack of verifying correctness & completeness: Until now, there exist no
mechanisms for verifying completeness and correctness of trace information
to establish high trace quality. This can lead to loss of trust. Especially for
(semi-)automated trace generation approaches control mechanisms are essential
for trustworthy trace links.

3 [7], [26]

No documentation of verbal communication/interaction: A significant
aspect that leads to incomplete requirements sources lies in not record-
ing/documenting verbal communications. Especially in agile projects where
discussions about requirements are an essential part.

5 [1], [3], [5], [21]

No/poor maintenance of trace information (during evaluation): If a project
becomes more complex and more durable, it gets more difficult to keep all living
traceability documents up to date. Only a few outdated trace links can cause many
time-consuming problems. A study uncovered that only seven out of ten analysts
maintain trace information [12]. So the challenge is to handle this information
and to establish continuous maintenance to avoid "back-boxed" requirements,
time-consuming maintenance, and to support validation and verification of
requirements.

15 [8]–[10], [12],
[19], [21], [24],
[36], [41], [46],
[61]

Path ephemerality problem: During software evolution, it gets difficult to keep
all trace links up to date, especially for long-term projects. Often this is caused
by a lack of change culture and inadequate support by tools or organization.
The information has been lost or deleted. For example, an existing trace link
pointed to a non-reachable target.

10 [1], [3], [5], [8],
[9], [21], [41], [54]

10

No generalizations/standards: The lack of guidelines, best practice, and stan-
dards (company-intern or general) leads to more individual effort. For example, the
creation and improvement of best practices for adapting traceability strategies need
active feedback loops. High-end users recognized the absence of guidelines and
well-defined methodologies as a problem. The lack of standards leads to inadequate
or no exchange of traceability documents between different environments. An
adequate set of guidelines and standards can guide the traceability process,
including all necessary artifacts.

22 [1], [3], [8], [9],
[21], [26], [28],
[34], [38], [41],
[43], [45], [56],
[63]

Organizational problems: The lack of commitment and support by the company
are organizational problems. Among others, this leads to no or poor technology
transfers and knowledge sharing between different companies or projects within
a company. Studies pointed out that the problems of traceability are more
organizational than technical.

5 [1], [6], [8], [59]

Collaboration across boundaries: The exchange of traceability information
across internal or external organizational boundaries is difficult, if not impossi-
ble, due to different environments (different tools, languages, terminologies).
This leads to maintenance problems. Studies revealed that the problem of
collaboration across boundaries was caused by a lack of communication.

8 [8], [13], [41],
[43], [61]

Low priority of traceability: Post-RS traceability has a higher priority as
pre-RS traceability. Often, pre-RS traceability is seen as optional extra or
side activity. Therefore, not enough resources are available to establish and
maintain trace information. This leads to no or poor adaptation of traceability
to project-specific needs.

7 [1], [7], [9], [11],
[26], [36]

Tooling problems: Tool support is necessary to handle the amount of traceability
data. But still, a lack of adequate tool support exists. Different tools were
developed, but many of them only address limited parts of the development
life cycle or do not support all types of artifacts. Therefore, customizable tools
are necessary. Companies often complain about high maintenance and adoption
costs for traceability tools.

8 [3], [4], [8], [11],
[26], [41], [43]

Exchange between tools: A software project usually consists of many tools to
perform different project tasks. Communication between different traceability
tools is essential for the exchange of traceability information. Without standards,
however, it will be difficult, if not impossible, to find a common exchange
format.

3 [3], [26], [43]

Limited support for interaction/collaboration: Existing tools can not fully
track collaboration and interaction during information gathering or later
discussions. Especially to handle information from many stakeholders, it
is necessary to keep an overview. However, without tracking collaboration
and interaction important information got lost. This leads to unclear pre-RS
traceability and incomplete documentation.

2 [62]

Bad access/presentation of trace information: Valuable visualizations and
presentations of pre-RS traceability information are noticeable rare. One challenge
is to predefine all visualization types fitting for different use cases. For pre-RS
traceability, it is an often referenced problem to access the sources of requirements.
An adequate visualization can process a large amount of trace information, avoids
problems with unnoticed links, and provides immediate benefits.

11 [1], [3], [9], [12],
[33], [37], [43]

Missing usage goals for traces: The identification of a clear trace link usage
goal is necessary to drive the trace activities. If usage goals of trace links are
missing, no one will understand the need for the trace links. Studies identified
missing trace link usage goals in many cases or the mismatch between reported
trace link goals and the current existing trace links.

5 [3], [54]

Trace Path suitability problem: The usage of trace links differs depending
on activity and user. If the trace link did not fit the use case, it can only be
queried selective.

3 [51], [54]

11

No/poor identification of trace artifacts: Establishing and using a pre-RS
traceability strategy needs previous definitions of trace links and their artifacts, to
know what is relevant to trace. Therefore, a trace link has to be registered to get
more information, to prove their existence, and to use it. A non-registered link
can not be found. The identification of correct trace links and trace artifacts
also needs a definition of trace information granularity. Choosing the right
granularity is challenging because wrong granularity leads to over-complexity or
little information. Another challenge is to avoid ambiguity trace artifacts by using
a unique identifier.

8 [6], [7], [43], [46],
[54]

No/poor connection of different object types: The characteristic of an origin
artifact can be of different types like text documents or media objects. The
challenge for pre-RS traceability is to support trace links that can trace between
these different artifact types and the requirements.

2 [45], [49]

Organize unstructured information: Especially pre-RS traceability have to
connect different widely varying artifacts with the RS. These artifacts are mostly
different types of unstructured documents (in natural language or formal) or
media objects. They must be stored in such a way that traceability is guaranteed.
Managing a large amount of source data is still a challenge.

8 [1], [3], [6], [9],
[12], [46], [61]

No/few or bad (semi-)automation: A wide variety of different automation or
semi-automation approaches exist to generate or recover trace links. But still,
no solution does not create erroneous trace links. Combined with the lack of
mechanisms to verify correctness and completeness, the manual effort to check
the candidate links is high. Keeping wrong links in a trace set can lead to loss of
user trust.

9 [3], [8], [24], [26],
[37], [64]

No/few support managing of large/distributed amount of trace data: Many
case studies have only been done with small data sets or small projects. Therefore,
the knowledge about pre-RS traceability techniques working for large and scaled
projects is rare. Mostly pre-RS traceability is done manually and becomes too
time-consuming or impossible in real projects.

5 [2], [7], [37], [56],
[61]

Poor adaptability for project specific needs: Different projects have different
strong varying characteristics. Therefore, the adoption of the traceability strategy
is a critical issue. Adopting a traceability strategy depends on time effort and
organizational support.

5 [1], [6], [26], [60]

No/poor versioning support of traces: Trace links are evolving. Therefore,
storing and managing different versions of trace links is still a challenge. Losing
trace links means also losing requirements building information.

4 [3], [43]

No/poor reusability: The reusability of trace information is still a challenge but
has the potential to save time. Only a few studies have been carried out in this
area. They uncovered that only content oriented traces are the most promising
basis for reusability.

2 [33], [51]

3.5 Solutions & Suggestions
Table 6 delivers the answers to RQ2 about the current state of problems and solutions in pre-RS traceability. The codings
are based on general suggestions and applied techniques described in the literature. As for the previous table 5 the codes
are ordered by descending number of codings, too.

Interestingly, the person-related solutions code is not the most frequently used code even though the person-related
problems were identified as the most used code in the previous problem and challenges section 3.4. That aligns with
suggestions in the literature to focus more on the human factor.

A lot of literature references solutions regarding specific trace link specifications. Figure 1 presents a simple model of a trace
link including possible link and object types written in blue. The code solutions regarding specific trace link specifications,
including child codes, consists of codings that developed a general model or slightly adapt it to meet project-specific needs.
The literature presents varying task-related trace link types or solutions to support different origin object types like media
data. Media data can be records, photos of sketches, or prototypes.

12

Fig. 1: Simple trace link model

Trace Link
Origin Object Target Object

RequirementText Segment
Text Document

Media Data

satisfaction link types
evolution link types

dependency link types
etc.

Model

Types

TABLE 6: Child codes of the solutions & suggestions code

Solutions & Suggestions: This code contains overviews of solutions. The child codes
represent particular solutions.

1 [1]

Solutions regarding trace link specifications: This code summarizes solutions
that define and use trace link specific information to trace between requirements
and their origin.

GC

Distinction of different trace link types: The usage of different trace link
types is a common practice in RT in general and also in pre-RS traceability. But
still, there is no common ground on a selection of trace link types. Distinguish
between different trace link types supports filtering, querying, and analyzing
for specific traces. Some mentioned trace link types can be used for pre- and
post-RS traceability, like satisfaction link types, evolution link types, dependency
link types, etc. Typical pre-RS traceability links are rationals link types and
contribution links. The link type can also be an indicator of the persistence or
volatility of trace links.

45 [1], [3], [7], [10],
[18], [20], [21],
[24], [26], [29],
[30], [38], [45],
[50], [51], [54],
[60]

Support of non-functional requirements trace types: Frequently liter-
ature defines trace link types without focusing on functional or non-
functional requirements. But still, some articles do handle non-functional
trace links separately, for example, by special tags.

2 [3], [61]

Support different object types: The origin artifacts of requirements can be
of different types like media objects (records from meetings or photos from
sketches) or text documents. Supporting trace links to these different artifact
types avoids transformations or transcriptions of media objects into one specific
format. Tracing to such media types is also called extended pre-traceability and
has the potential to support different project roles and increases the awareness
of traceability needs.

6 [6], [12], [20],
[33], [36]

Define trace link attributes: Trace links contain information like origin
ID/name, target ID/name, and further attributes like link author, creation- and
edit date, link version, artifact size, etc.

4 [3], [12], [51]

Person-related solutions: This code just groups all person-related solutions. GC
Support collaborative work & communication: Supporting collaboration and
communication between project participants, including stakeholders, avoids the
usage of other collaboration tools and therefore avoids the loss of requirements-
specific information. Such a tool has to be easy-to-use for all users. Examples
are web-based or community-centered applications. Also, tagging mechanisms
to realize pre-RS traceability were mentioned in the literature to support
collaboration.

8 [42], [51], [61],
[62]

Support different involved (social) roles: Pre-RS traceability links
artifacts created by different users with roles. Understanding these roles,
their needs, and how they work with trace links and the artifacts is essential
to find an appropriate pre-RS traceability strategy. The roles and their
dependencies can be modeled and integrated into a tool. Taking care of
these roles adds more information to trace links, and it simplifies the
handling, accessing, and visualizing of the trace link information.

11 [4], [7], [9], [13],
[19], [36], [62],
[65]

13

Provide contact information: Providing contact information, including the
job position or the project-related role is valuable. It potentially increases
the awareness and importance of pre-RS traceability.

2 [9], [20]

Increase awareness of traceability need: Increasing the awareness of pre-RS
traceability is essential and related to many other solution codes. Especially low-
end users need more education in the needs and benefits of pre-RS traceability.
Training or workshops should involve all project-related roles, including
management roles. Furthermore, a well predefined traceability strategy and
valuable information presentations support awareness. An additional solution
is to establish a traceability responsibility role.

10 [1], [9], [10], [12],
[24], [41], [43],
[50]

Establish a new trace responsibility role: It is recommended to create
a dedicated role for establishing, predefining, and managing traceability
within a project or across different projects. This role has a managerial
character. The role’s focus is on process supervision and training of
employees.

5 [1], [9], [10]

Provide immediate benefits to increase motivation: Immediate benefits
can be realized through valuable feedback. Examples for valuable feedback
are: doing peer reviews or providing access to organizational memory of
traceability information to extract knowledge.

2 [3], [41]

Provide usage goal for traceability: Identifying goals and needs for
traceability and trace links increases the awareness of pre-RS traceability.
It is all about answering the question: "Why?".

2 [38]

Guide user to create trace link: Guiding the user creating a trace link can
be achieved by rules about allowed link types for particular artifact types.
Also, tagging mechanisms support users to create trace links because of their
flexibility and lightweight. It is necessary to make it as easy as possible for the
user.

7 [24], [34], [40],
[50]

Support of flexible use: Flexible usage means letting the user access, filter, or
create trace links and information in one or many ways to provide an optimal
integration in the workflow of each individual user.

1 [1]

Need understanding by stakeholder: Especially high-end users realized that
understanding by stakeholders supports the implementation and maintenance
of pre-RS traceability. The understanding by stakeholders can be improved by
training and workshops.

1 [41]

Obtain & record trace links/information: Obtaining and record trace informa-
tion is a large amount of work. Therefore, creating trace links as a by-product is
a popular approach. Further support can be provided by obtaining documents in
the original format, obtaining trace links at the time of production (online), and
providing tool support.

5 [1], [9], [36]

Recording types: The literature mentioned different types of how to obtain
trace links. The child codes summarize these different approaches.

GC

Record all available information: To avoid a lack of requirement origin
information literature mentioned the recording of everything. Verbal
communication should be recorded to keep track of it. Tool support is
required to achieve this.

8 [1], [5], [33], [51],
[53]

Priority traceability: The opposite approach to the code above record
all available information suggests it is better to define what to trace and
what not to trace. It prevents being overwhelmed by information. But this
approach requires predefined rules or structures (models, ontologies, etc.).

2 [10], [28]

Support (semi-)automatic trace link capturing: The benefits of automation
are obvious: the reduction of extra work-load. But still there exists no error-free
(semi-)automatic trace capturing solution. For example, current solutions create
candidate lists of trace links. These lists must be examined by analysts. The
feedback of the analysts is used as input to improves the tracing algorithm.
Ontologies or information retrieval methods can improve trace algorithms, too.
Some approaches capture trace links in real-time and other approaches recover
trace links.

9 [6], [12], [26],
[37], [38], [51],
[66]

14

Support large trace sets: The creation and maintenance of RS lead to a large
amount of data that has to be traceable. Handling this growing amount of
requirements, trace links, and origin artifacts is an essential task of a scalable
traceability strategy. The relevance and priority of trace links and artifacts can be
used to structure the data. The capability-based traceability approach or tagging
mechanisms are examples of well scalable strategies.

5 [1], [24], [34],
[37], [50]

Predefined trace information: Predefine what and how to trace answers pro-
vides clarifications, for example, about trace link granularity. The predefinitions
can also be reused and shared with other projects.

5 [10], [19], [24],
[38], [51]

Description-fields on requirement: The so-called "rationale" is added to
a requirement to clarify the reason behind it. The rationale-attribute is
requirement-specific and has to be maintained.

2 [42]

Create/improve the structure of RS: Structuring the RS supports the under-
standing, searching, and managing of requirements. It supports pre-RS traceability
by restricting traceability to a subset of high-level or business-critical requirements.

1 [42]

Hierarchical structuring of requirements: The refinement hierarchy unites
all requirements for one functionality on different levels of detail. The aspect
hierarchy unites requirements involved in one particular relationship and
therefore supports different viewpoints. So one requirement can belong to
more than one aspect.

6 [33], [42], [46],
[67]

Classification/categorization of requirements: Classifications or categoriza-
tions of requirements can be used by single assignments or by adding them
into multiple orthogonal categories.

3 [68], [69]

Highlight of key requirements: The concept of key requirements used on
the stakeholder level is also called KURs (“Key User Requirements”) or KPIs
(“Key Performance Indicators”). Key requirements are a small set of abstract
requirements that describe the essence of the system. They contain the reason
why the stakeholder wants to buy the system/application.

3 [42]

Grading of requirements according to importance: Requirements can be
graded in different ways. One approach grades and prioritizes requirements
concerning the stakeholder requirements. Another approach describes the
usage of a platform for discussing and rating requirements. The distinction of
requirements based on the level of importance supports selective traceability.
For example, high-end users only trace mission-critical requirements to keep
costs under control.

3 [41], [62], [69]

Provide flexible tools/support: Tool support is necessary to handle a large
amount of data and to support traceability activities. A tool has to be customizable
for different project environments. Often the integration of more project-specific
tools is necessary. To ensure the usage of the tool by the user, a simple and
understandable user interface must be available. Further characteristics of a
tool-support are important like flexibility, accessibility for all involved, etc.

16 [1], [3], [37],
[39]–[41], [43],
[48], [51]

Enable valuable visualizations & presentations: The advantages of data
visualizations and presentations are well known and also valuable for pre-RS
traceability. Visualizing and presenting trace links support analyzing, browsing, and
filtering of information. Furthermore, traceability information is better accessible
and understandable.

16 [1], [3], [7], [9],
[12], [33], [37],
[40], [46]

Improve generic trace model: Providing and sharing a traceability model avoids
extra effort and guidance to the user. To support the reusability of the generic
model it is conductive to store it separately.

4 [6], [38]

Define a traceability schema: Establishing a traceability schema as early as
possible improves long-term traceability. Such a schema should contain defined
trace link types, linkage rules, permissions about accessibility and security,
guidelines for maintenance, levels of trace granularity, etc.

8 [3], [5], [7], [38],
[56]

Define trace preconditions: To successfully establish traceability following
preconditions have to be defined: one or more responsible persons, traceability
rules, and training to increase the awareness.

3 [10], [38], [49]

15

Provide fitting storage for trace links and artifacts: An often-used approach
describes the separate storing of trace links and artifacts. This separate traceability
storage needs unique identifiers to manage links and artifacts.

4 [26], [42]

Establish central storage/repository: Many tools use an underpinned central
storage and a generic interface. This central storage provides persistence as a
single point of truth. A traceability repository is one example of central storage
that also supports the versioning of traces.

9 [1], [5], [26], [43],
[51], [67]

Organize individual (origin) artifacts: Various approaches exist to organize
different origin artifacts like documents, media objects, etc. One solution uses
a wiki-based tool to store the artifacts. Another solution creates formalized
or semi-formalized representations. They are better to process but are not
or poorly understandable for stakeholders. The literature also mentions a
combination of different integrated tools or the provision of a generic interface
for accessing the artifacts. Organizing all these origin artifacts is related to code
obtaining & recording of trace information and enables of valuable visualizations
& presentations.

10 [1], [12], [33], [55]

Maintain trace links & artifacts: The maintenance of artifacts and their trace links
is essential for further usage. The literature recommends to provide tool support
and to define maintenance activities by methods or guidelines. Furthermore,
establishing new responsibility roles is also recommended.

2 [1], [9]

Design a modular viable (traceability)system: Supporting an evolving system
can be achieved by modular architecture. The same applies to artifacts and
their trace links.

3 [1], [24]

Establish periodically audits/quality checks: Establishing regular audits
keeps the completeness and consistency of artifacts and their trace links on a
high enough level.

1 [10]

Notify responsible persons in case of changes: Notify one responsible person
or all involved persons in case of changes is a recommended practice to keep
artifacts and trace links up-to-date.

1 [13]

Establish templates & guidelines: The literature recommends establishing
standards, guidelines, and best practices. They are used for different purposes
like formulating requirements, defining traceable artifacts, or the management of
individual artifacts.

7 [1], [3], [9], [34],
[41], [42]

Configurable traceability strategies: Each project is unique in collaboration,
artifacts, participants, project type, etc. Therefore, it is necessary to customize
the pre-RS traceability strategy.

3 [1], [51]

Analyse & consider special attributes: The RS and most of the origin documents
are written in natural language. Therefore, natural language processing can be
used to uncover trace links and relationships. Language-specific characteristics
like synonyms are typical pre-RS traceability problems. This must be taken into
account when finding a suitable natural language processing (NLP) technique.

2 [2]

Support information transfer: It is valuable to make the work process and its
responsibilities visible and to write explicit and shared RS to achieve a smooth
information transfer (internal and external). Pre-RS traceability supports visibility
and transparency and potentially can support information transfer.

1 [1]

3.6 Tools & Techniques
Table 7 presents the codes related to RQ3 about existing tools and techniques to support pre-RS traceability. The main
codes traceability tools and traceability techniques are used to reference literature presenting overviews or comparisons.

The code traceability tools summarizes tools that support pre-RS traceability in any way. We do not provide a short
description of each tool here, as this can be found in the referenced literature. The referenced tools are ordered by
descending number of codings. This code order identifies DOORS from IBM as the most referenced tool. DOORS is known
for managing requirements, including RT, and is well established in the industry. Another tool like Pro-ART focuses on
pre-RS traceability. This tool is well known in science but to the best of our knowledge not used in the industry. We
observe that tools established in the industry are either (a) very adaptable and support many tasks of the development
process (like DOORS) or (b) are implemented specifically for the project environment, including the integration into the
existing tooling landscape (like MARS). For the child codes of traceability techniques, we used the order according to a

16

logical sequence. The first child code trace model aspects refers to the general required activities that have to be considered
in each tool and technique: definition, production, and extraction of trace links.

The distinction based on traceability types code consists of frequently mentioned traceability types ordered by descending
codings. We identified personnel-based RT as a type referenced more often. Many pre-RS traceability techniques based on
more than one traceability type. They often use one predominant type and at least one subordinate type. The next five
codes connection by codes/words/tags, model driven development (MDD), natural language processing (NLP), ontology and
graphs are reference to further techniques which can be combined with each other or with child codes of the traceability
types code.

TABLE 7: Sub codes of the tools and Traceability models/techniques codes

Traceability tools: 3 [8], [11]

Tools from IBM: GC
DOORS [3], [11], [18], [37], [42], [43]; Rational RequisitePro [11], [37]; MARS based on Focal Point the
Main Requirement Specification (MRS) [11]

Requirements tracing on-target (RETRO) [11], [22], [37]; Traceability of 0bject-0riented Requirements (TOOR)
[18], [53]; Business Insight Toolkit (BITKit) [39], [40]; Advanced Multimedia Organizer for Requirements Elicitation
(AMORE) [33]; Echo [5]; Pro-ART [18], [51]; Information Engineering Facility (IEF) [1]; Requirements Traceability
Manager (RTM) [1]; Integrated System Design TOOL (ISDT) [7]; SuperTracePlus (STP) [37]; TRAM [11];
DesignTrack [11]; Teamcenter Systems Engineering tool (TcSE) [46]; Tool combinations [61]

Traceability techniques: This code contains overviews of traceability types. The
child codes represent particular traceability techniques.

3 [8], [25]

Trace model aspects: Each traceability model or technique has to consider the
three aspects covered by the child codes: trace definition, trace production, and
trace extraction.

1 [6]

Definition of trace links: A trace link definition contains all elements to
include in a link like an origin artifact, target artifact, and trace link. It also
includes the different types of these elements and how they will be stored and
used.

3 [6]

Production of trace links: The link production contains information about
how and when capturing a trace link, how to precept and register it, and how
to maintain it.

5 [3], [6], [41]

On-line: Capturing trace links on-line means storing links automatically
during creation or changing artifacts as a by-product. In the case of pre-RS
traceability, the trace link to the origin document will be stored during
creating or maintaining a requirement.

4 [3], [43]

Off-line: Recording a trace link off-line means storing the link automatically
or manually after the origin and target artifact was produced.

1 [3]

Extraction of trace links: A traceability model should support flexible and
varying use cases. Extraction mechanisms are selective tracing (filtering traces
by selected patterns or characteristics), interactive tracing (browsing, guiding
and navigating through a set of trace links), and non-guided tracing (going
from one artifact or a trace link to another at will).

2 [6]

Distinction based on traceability types: This code contains different traceability
types also used for pre-RS traceability. The distinction between these types does
not mean that specific techniques do not combine different types. But at least
one traceability type is mostly predominant.

GC

Personnel-based RT (PBRT): According to the frequently used person-related
problem code, varying PBRT techniques exist. These techniques focus on person-
related behavior and individual intentions.

5 [4], [19]

17

Contribution structure: The contribution structure is a common and
frequently referenced technique that focuses on pre-RS traceability. The
contribution structure combines personnel-based and artifact-based RT. This
technique distinguishes between three agent types (principal agent, author
agent, and the documentor agent) to capture them for each artifact. The
artifact-base RT is realized by three relations: temporal relations (provides
chronological order and requirements history), developmental relations
(provides logical order), and auxiliary relations (provides additional types
of order).

14 [4], [6], [21], [44],
[47], [52]

Agent-based knowledge: This solution supports both, pre- and post-RS
traceability. The technique supports organizational changes by analyzing
and tracking agent’s interventions. It combines personnel-based and goal-
based RT.

9 [27]

Usage-centered technique approach: Constructing a system based on the
usage pattern is called a usage-centered design technique. One approach
uses this technique to build a system that can trace user interface design
decisions and tasks.

3 [36]

Simple traceability links: Simple linking techniques store the trace links
between artifacts explicitly. The child codes present two examples.

2 [31], [42]

RT matrix: The RT matrix is a common approach to trace between artifacts.
It is a simple option to visualize many-to-many relationships. But the RT
matrix becomes confusing and hard to maintain in large projects.

5 [10], [37], [42],
[47]

Hyper-linked documents: Highlighted statements in documents can be
traced by hyper-links. Traversing these links physically to see all information
can be time-consuming. Additionally, it is hard to recognize broken links
with already deleted start or target items.

1 [42]

Goal-centric traceability (GCT): It is also called goal-oriented requirements
engineering (GORE). In the case of pre-RS traceability, it supports trace links
between requirements, stakeholders, and project goals. GCT can realize the
tracing of functional and non-functional requirements. Much further research is
possible in analyzing social issues and the interaction of social roles to uncover
goals.

8 [11], [27], [44],
[54]

Feature-oriented RT (FORT): FORT is used for tracing functional requirements.
It is a type of selective traceability based on feature prioritization. FORT caused
a reduction of trace link generation effort with 24-72% [11].

5 [11], [68]

Value-based RT (VBRT): Like FORT, VBRT is used for functional traceability.
This technique distinguish between requirements that are valuable to trace and
requirements with less value to trace. This type of selective tracing reduces
the effort with 35% compared to full tracing.

5 [11]

Event-based RT (EBT): EBT is based on the "publish-subscribe" mechanism and
handles functional and non-functional requirements. This technique supports
maintenance by creating links after a change request executed.

5 [11], [31]

Rule-based approaches (RB): Reducing cost and increasing efficiency can be
achieved by using RB approaches. RB support functional and non-functional
requirements. It is based on predefined rules on structures, classifications, and
natural language processing.

3 [3], [11]

Artifact-based RT: This RT technique is based on existing relationships between
artifacts or different versions of artifacts.

3 [4]

Knowledge-based techniques: Knowledge-based traceability uncovered rela-
tionships and potential change impacts based on historical changes.

1 [31]

Connection by codes/words/tags: This technique consists of origin and target
artifacts or statements linked by one word, code, or tag. This technique has
become particularly popular in recent times, as it is a lightweight and well
scalable approach.

GC

18

Qualitative data analysis (QDA): QDA is a common scientific theory
building method to analyze unstructured qualitative data. QDA results
in a code system that structures uncovered concepts. Techniques using
QDA link statements inside origin artifacts with domain model elements
or requirements by codes of the code system.

19 [34], [70]

Tagging: This technique allows the tagging of artifacts. The relationships
between two or more artifacts are created by using the same tag or defined
relationships between particular tags.

10 [37], [40], [50],
[65]

Capabilities-based development: This technique links statements inside
artifacts of the problem space and requirements of the solution space by
capabilities.

7 [11], [24]

Model driven development (MDD): Using MDD is a popular solution to support
traceability, including pre- and post-RS traceability. The literature presents different
varying modeling solutions, like modeling goals, domains, or roles. The MDD
can be combined with other techniques like information retrieval (IR). The child
codes present different MDD solutions.

1 [23]

Meta models: Traceability meta-models often supporting both pre- and
post-RS traceability. Meta-models are a way to provide automatization for
trace link capturing. Particular types of meta-models are design-centered
models (modeling a framework) or database guided models (modeling
how to register a trace in a database).

24 [3], [6], [18], [19],
[26], [29], [30],
[38], [51], [60]

Concept models: A concept model links different concepts or entities like
roles, requirements, or product lines.

8 [3], [67]

Hypertext models: These models are created to capture informal or
unstructured information, particularly in source documents.

1 [6]

Richer traceability model: This technique traces RE artifacts back to social
interactions based on a graph like representation.

1 [44]

Natural language processing (NLP): NLP is suitable for processing unstructured
information like interviews, protocols, or requests. Therefore, it is useful to support
pre-RS traceability. The child codes present explicit information retrieval (IR) and
NLP techniques.

16 [3], [11], [12],
[22], [23], [28],
[31], [37], [55],
[58], [66]

Latent semantic analysis (LSA): The specialty of LSA is to determine
semantic equivalence between synonyms and whole documents.

3 [2]

Shallow natural language processing: This technique is based on
statistical properties of language structure rather than models or absolute
logical rules.

1 [22]

Ontology: Ontologies are a common technique to represent knowledge by
modeling requirements, goals, tags, etc. Traceability taxonomies can be derived
from ontologies. They are suitable for large and complex systems.

9 [11], [23], [28],
[61]

Graphs: Graphs are used for pre-RS traceability in different variants and by
different techniques and tools, for example, to link different levels of abstraction,
interactions, or dependencies.

5 [19], [23], [28],
[44]

4 Discussion

This technical report presents the resulting code system of the qualitative data analysis (QDA) on pre-requirements
specification (pre-RS) traceability based on three research questions.

The four most used main codes that emerged in the code system mirror the objectives of the three research questions,
with problems and solutions (Q2) being split into two categories. The least used category, however, was surprising. We
considered ”consequences of poor pre-RS traceability important enough to warrant it being one of the nine main categories.
Yet, in the literature, we reviewed we only found evidence in four instances of codings. This suggests that the consequences
of neglecting this part of requirements traceability (RT) may need more explicit study.

Previous systematic literature reviews (SLR) focus on RT and merely mentioned pre-RS traceability as a sub-topic. Other
literature consists of specially developed solutions to solve the pre-RS traceability problem. But still, there is no general
solution. To get an overview of the state-of-the-art in pre-RS traceability we conducted a SLR. We present the whole
code system of the QDA in this technical report. The main goal of this report is to provide related literature to pre-RS
traceability related topics for researchers who want to know more about particular codes of the code system. Additionally,

19

we are working on a separate SLR paper to provide a comprehensive overview of the state-of-the-art of pre-RS traceability
including all findings of our analysis and detailed answers to our research questions.

Pre- and post-RS traceability as parts of RT are strongly related to each other. Therefore, it was difficult to extract
only pre-RS traceability related information. Finally, the information included in the code system is either explicitly about
pre-RS traceability or applies to this topic in particular as well as to RT in general.

During our analysis, we uncovered 26 techniques and ideas supporting pre-RS traceability (section 3.6) which are
evaluated by single case-, field study, or a demonstration. Three techniques are evaluated by multiple case case studies or
multiple data sets [37], [53], [55]. Only two papers reported on elaborate evaluations [24], [52]. Excluding non-evaluated
literature would, therefore, lead to a significant loss of information. To provide a comprehensive overview of pre-RS
traceability we include this information. Our following SLR will also refer to this problem in detail. We are working on an
overview to present these different evaluation states.

Even though we have found plenty of benefits and use cases laid out repeatedly in the literature (section 3.3) still
there exists a large gap between scientific solutions and industry practice for pre-RS traceability [3], [37]. With respect
to all research in the area of pre-RS traceability, not enough evaluation of developed solutions is seen as one reason.
Furthermore, most case studies do not correspond to the size of real projects [3], [37]. Much more research has to be
done in analyzing current industry practices and how new solutions can be applied. However, it is not only science that
should be accommodating to the industry, but the industry must also be open to new approaches and the corresponding
additional effort to apply them.

5 Conclusion
Pre-requirements specification (pre-RS) traceability links requirements with their origin. The knowledge about requirements
creation and who is involved in it has a significant impact on project success. Compared to post-RS traceability significantly
less research was done on pre-RS traceability. Pre-RS traceability is frequently mentioned as a sub-topics in previous
systematic literature reviews (SLR) about requirements traceability (RT). Therefore, we will conduct a SLR about pre-RS
traceability to provide an overview of the state-of-the-art. This technical report is the first step in presenting our results.

To structure our research we developed three research questions to capture information about the main categories of
relevance, problems, and current solutions. Analyzing the relevance of pre-RS traceability is important to motivate this
topic because it is often seen just as a RT activity with high effort and comparatively small benefits.

We used qualitative data analysis (QDA) to process 67 relevant papers. This technical report presents the resulting code
system of our analysis. The code system contains information and related references to the literature about use cases,
benefits, problems, solutions, and current pre-RS traceability tools and techniques. This technical report serves researches
who want to dive into more details of the pre-RS traceability topic. We provide a comprehensive overview of the related
work in the field of pre-RS traceability, mapped to the focus of our research questions. We point out potential areas of
future research where we found gaps in the analysis of recent scientific literature. To present a comprehensive overview of
the topic we are working on the SLR paper. This SLR paper will present all findings and explicit answers to our research
questions.

References
[1] O. C. Z. Gotel, “Requirements Traceability,” Oxford, Main Report, 1992.
[2] A. Stone and P. Sawyer, “Identifying tacit knowledge-based requirements,” IEE Proceedings - Software, vol. 153, no. 6, pp. 211–218, Dec. 2006.
[3] S. Winkler and J. von Pilgrim, “A survey of traceability in requirements engineering and model-driven development,” Software & Systems Modeling,

vol. 9, no. 4, pp. 529–565, Sep. 2010.
[4] O. Gotel and A. Finkelstein, “Revisiting requirements production,” Software Engineering Journal, vol. 11, no. 3, pp. 166–182, May 1996.
[5] C. Lee, L. Guadagno, and X. Jia, “An agile approach to capturing requirements and traceability,” in Proceedings of the 2nd International Workshop on

Traceability in Emerging Forms of Software Engineering (TEFSE 2003), vol. 20, 2003.
[6] F. A. C. Pinheiro, “Requirements Traceability,” in Perspectives on Software Requirements, ser. The Springer International Series in Engineering and

Computer Science, J. C. S. do Prado Leite and J. H. Doorn, Eds. Boston, MA: Springer US, 2004, pp. 91–113.
[7] V. Shukla, G. Auriol, and C. Baron, “Integrated requirement traceability, multiview modeling, and decision-making: A systems engineering approach

for integrating processes and product,” in 2012 IEEE International Systems Conference SysCon 2012. Vancouver, BC, Canada: IEEE, Mar. 2012, pp.
1–5.

[8] H. Tufail, M. F. Masood, B. Zeb, F. Azam, and M. W. Anwar, “A systematic review of requirement traceability techniques and tools,” in 2017 2nd
International Conference on System Reliability and Safety (ICSRS). Milan, Italy: IEEE, 2017.

[9] O. C. Z. Gotel and C. W. Finkelstein, “An analysis of the requirements traceability problem,” in Proceedings of IEEE International Conference on
Requirements Engineering, Apr. 1994, pp. 94–101.

[10] K. E. Wiegers and J. Beatty, Software Requirements. Redmond: Microsoft Press, 2013.
[11] R. Torkar, T. Gorschek, R. Feldt, M. Svahnberg, R. Uzair Akbar, and K. Kamran, “Requirements Traceability : A Systematic Review and Industry Case

Study,” International Journal of Software Engineering and Knowledge Engineering, vol. 22, no. 3, pp. 385–433, 2012.
[12] S. Altaf, A. Shah, N. Imtiaz, A. S. Shah, and S. F. Ahmed, “Visualization representing benefits of pre-requirement specification traceability,”

International Journal of Engineering & Technology, vol. 7, p. 44, 2018.
[13] R. Wohlrab, J.-P. Steghöfer, E. Knauss, S. Maro, and A. Anjorin, “Collaborative Traceability Management: Challenges and Opportunities,” in 2016

IEEE 24th International Requirements Engineering Conference (RE), Sep. 2016, pp. 216–225.
[14] P. Grunbacher, M. Halling, S. Biffl, H. Kitapci, and B. Boehm, “Repeatable quality assurance techniques for requirements negotiations,” in 36th

Annual Hawaii International Conference on System Sciences, 2003. Proceedings of the. Big Island, HI, USA, USA: IEEE, Jan. 2003, pp. 9 pp.–.

20

[15] B. Kitchenham, “Procedures for Performing Systematic Reviews,” Keele, Technical Report 1.0, Jul. 2004.
[16] A. Strauss and J. Corbin, Basics of qualitative research. Sage publications, 1990.
[17] S. Spall, “Peer Debriefing in Qualitative Research: Emerging Operational Models,” Qualitative Inquiry, vol. 4, no. 2, pp. 280–292, Jun. 1998.
[18] B. Ramesh, C. Stubbs, T. Powers, and M. Edwards, “Requirements traceability: Theory and practice,” Annals of Software Engineering, vol. 3, no.

1-2-3-4, pp. 397–415, 1997.
[19] J. Castro, R. Pinto, A. Castor, and J. Mylopoulos, “Requirements Traceability in Agent Oriented Development,” in Software Engineering for Large-Scale

Multi-Agent Systems, ser. Lecture Notes in Computer Science, A. Garcia, C. Lucena, F. Zambonelli, A. Omicini, and J. Castro, Eds. Berlin, Heidelberg:
Springer, 2002, pp. 57–72.

[20] A. Ahmad and M. A. Ghazali, “Documenting Requirements Traceability Information for Small Projects,” in 2007 IEEE International Multitopic
Conference. Lahore, Pakistan: IEEE, Dec. 2007, pp. 1–5.

[21] O. Gotel and A. Finkelstein, “Contribution structures [Requirements artifacts],” in Proceedings of 1995 IEEE International Symposium on Requirements
Engineering (RE’95). York, UK, UK: IEEE, Mar. 1995, pp. 100–107.

[22] P. Sawyer, R. Gacitua, and A. Stone, “Profiling and Tracing Stakeholder Needs,” in Innovations for Requirement Analysis. From Stakeholders’ Needs to
Formal Designs, ser. Lecture Notes in Computer Science, B. Paech and C. Martell, Eds. Monterey, CA, USA: Springer, 2007, pp. 196–213.

[23] K. Souali, O. Rahmaoui, and M. Ouzzif, “An overview of traceability: Definitions and techniques,” in 2016 4th IEEE International Colloquium on
Information Science and Technology (CiSt), Oct. 2016, pp. 789–793.

[24] R. Ravichandar, J. D. Arthur, and M. Pérez-Quiñones, “Pre-Requirement Specification Traceability: Bridging the Complexity Gap through Capabilities,”
International Symposium on Grand Challenges in Traceability, TEFSE/GCT 2007, p. 10, Mar. 2007.

[25] M. F. Bashir and M. A. Qadir, “Traceability Techniques: A Critical Study,” in 2006 IEEE International Multitopic Conference, Dec. 2006, pp. 265–268.
[26] G. Spanoudakis and A. Zisman, “Software traceability: a roadmap,” in Handbook of Software Engineering and Knowledge Engineering. WORLD

SCIENTIFIC, Aug. 2005, pp. 395–428.
[27] G. Urrego-Giraldo, “Agent-based knowledge keep tracking,” in Proceedings Fifth IEEE Workshop on Mobile Computing Systems and Applications. Las

Vegas, NV, USA, USA: IEEE, Oct. 2003, pp. 8–16.
[28] K. Souali, O. Rahmaoui, and M. Ouzzif, “An Overview of Traceability: Towards a general multi-domain model,” Advances in Science, Technology and

Engineering Systems Journal (ASTES), vol. 2, no. 3, pp. 356–361, 2017.
[29] Y. He and X. Li, “RE_prov: Modeling Requirement Provenance with PROV,” in 2016 23rd Asia-Pacific Software Engineering Conference (APSEC).

Hamilton, New Zealand: IEEE, Dec. 2016, pp. 397–400.
[30] H. Dubois, M.-A. Peraldi-Frati, and F. Lakhal, “A Model for Requirements Traceability in a Heterogeneous Model-Based Design Process: Application

to Automotive Embedded Systems,” in 2010 15th IEEE International Conference on Engineering of Complex Computer Systems. Oxford, UK: IEEE,
Mar. 2010, pp. 233–242.

[31] S. Imtiaz, N. Ikram, and S. Imtiaz, “Impact Analysis from Multiple Perspectives: Evaluation of Traceability Techniques,” in 2008 The Third International
Conference on Software Engineering Advances. Sliema, Malta: IEEE, Oct. 2008, pp. 457–464.

[32] A. Ferrari, F. dell’Orletta, G. O. Spagnolo, and S. Gnesi, “Measuring and Improving the Completeness of Natural Language Requirements,” in
Requirements Engineering: Foundation for Software Quality, ser. Lecture Notes in Computer Science, C. Salinesi and I. van de Weerd, Eds. Springer
International Publishing, 2014, pp. 23–38.

[33] D. Wood, M. Christel, and S. Stevens, “A multimedia approach to requirements capture and modeling,” in Proceedings of IEEE International Conference
on Requirements Engineering. Colorado Springs, CO, USA, USA: IEEE, Apr. 1994, pp. 53–56.

[34] A. Kaufmann and D. Riehle, “Improving Traceability of Requirements Through Qualitative Data Analysis,” in Proceedings of the Software Engineering
2015, 2015.

[35] K. Mohan and B. Ramesh, “Managing variability with traceability in product and service families,” in Proceedings of the 35th Annual Hawaii
International Conference on System Sciences. Big Island, HI, USA: IEEE, Jan. 2002, pp. 1309–1317.

[36] H. M. Hao and A. Jaafar, “Tracing user interface design pre-requirement to generate interface design specification,” in 2009 International Conference
on Electrical Engineering and Informatics, vol. 01. Selangor, Malaysia: IEEE, Aug. 2009, pp. 287–292.

[37] J. Hayes, A. Dekhtyar, and S. Sundaram, “Advancing candidate link generation for requirements tracing: the study of methods,” IEEE Transactions
on Software Engineering, vol. 32, no. 1, pp. 4–19, Jan. 2006.

[38] S. Haidrar, A. Anwar, and O. Roudies, “Towards a generic framework for requirements traceability management for SysML language,” in 2016 4th
IEEE International Colloquium on Information Science and Technology (CiSt). Tangier, Morocco: IEEE, Oct. 2016, pp. 210–215.

[39] H. Ossher, R. Bellamy, I. Simmonds, D. Amid, A. Anaby-Tavor, M. Callery, M. Desmond, J. de Vries, A. Fisher, and S. Krasikov, “Flexible modeling
tools for pre-requirements analysis: conceptual architecture and research challenges,” in Proceedings of the ACM international conference on Object
oriented programming systems languages and applications, ser. OOPSLA ’10. Reno/Tahoe, Nevada, USA: Association for Computing Machinery, Oct.
2010, pp. 848–864.

[40] H. Ossher, R. Bellamy, D. Amid, A. Anaby-Tavor, M. Callery, M. Desmond, J. de Vries, A. Fisher, T. Frauenhofer, S. Krasikov, I. Simmonds, and
C. Swart, “Business insight toolkit: Flexible pre-requirements modeling,” in 2009 31st International Conference on Software Engineering - Companion
Volume. Vancouver, BC, Canada: IEEE, May 2009, pp. 423–424.

[41] B. Ramesh, “Factors Influencing Requirements Traceability Practice,” Communications of the ACM, vol. 41, no. 12, pp. 37–44, 1998.
[42] J. Dick, E. Hull, and K. Jackson, Requirements Engineering, 4th ed. Switzerland: Springer International Publishing, 2017.
[43] P. Mader, O. Gotel, and I. Philippow, “Motivation Matters in the Traceability Trenches,” in 2009 17th IEEE International Requirements Engineering

Conference, Aug. 2009, pp. 143–148.
[44] M. Serrano and J. C. S. do Prado Leite, “A Rich Traceability Model for Social Interactions,” in Proceedings of the 6th International Workshop on

Traceability in Emerging Forms of Software Engineering, ser. TEFSE ’11. New York, NY, USA: ACM, 2011, pp. 63–66.
[45] B. Ramesh and M. Jarke, “Toward reference models for requirements traceability,” IEEE Transactions on Software Engineering, vol. 27, no. 1, pp.

58–93, Jan. 2001.
[46] M. C. Panis, “Successful Deployment of Requirements Traceability in a Commercial Engineering Organization...Really,” in Proceedings of the 2010

18th IEEE International Requirements Engineering Conference, ser. RE ’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 303–307.
[47] S. Jayatilleke and R. Lai, “A systematic review of requirements change management,” Information and Software Technology, vol. 93, pp. 163–185,

Jan. 2018.
[48] E. Bouillon, P. Mäder, and I. Philippow, “A Survey on Usage Scenarios for Requirements Traceability in Practice,” in Requirements Engineering:

Foundation for Software Quality, ser. Lecture Notes in Computer Science, J. Doerr and A. L. Opdahl, Eds. Berlin, Heidelberg: Springer, 2013, pp.
158–173.

[49] A. Finkelstein, “Requirements engineering: a review and research agenda,” in Proceedings of 1st Asia-Pacific Software Engineering Conference. Tokyo,
Japan, Japan: IEEE, Dec. 1994, pp. 10–19.

[50] H. Ossher, D. Amid, A. Anaby-Tavor, R. Bellamy, M. Callery, M. Desmond, J. De Vries, A. Fisher, S. Krasikov, I. Simmonds, and C. Swart, “Using
tagging to identify and organize concerns during pre-requirements analysis,” in 2009 ICSE Workshop on Aspect-Oriented Requirements Engineering
and Architecture Design. Vancouver, BC, Canada: IEEE, May 2009, pp. 25–30.

[51] K. Pohl, “PRO-ART: enabling requirements pre-traceability,” in Proceedings of the Second International Conference on Requirements Engineering, Apr.
1996, pp. 76–84.

21

[52] O. Gotel and A. Finkelstein, “Extended requirements traceability: results of an industrial case study,” in Proceedings of ISRE ’97: 3rd IEEE International
Symposium on Requirements Engineering. Annapolis, MD, USA, USA: IEEE, Jan. 1997, pp. 169–178.

[53] F. Pinheiro and J. Goguen, “An object-oriented tool for tracing requirements,” IEEE Software, vol. 13, no. 2, pp. 52–64, Mar. 1996.
[54] P. Rempel, P. Mäder, and T. Kuschke, “An empirical study on project-specific traceability strategies,” in 2013 21st IEEE International Requirements

Engineering Conference (RE). Rio de Janeiro, Brazil: IEEE, Jul. 2013, pp. 195–204.
[55] H. Kitapci and B. W. Boehm, “Formalizing Informal Stakeholder Decisions–A Hybrid Method Approach,” in 2007 40th Annual Hawaii International

Conference on System Sciences (HICSS’07). Waikoloa, HI, USA: IEEE, Jan. 2007, pp. 283c–283c.
[56] A. Espinoza, P. P. Alarcon, and J. Garbajosa, “Analyzing and Systematizing Current Traceability Schemas,” in 2006 30th Annual IEEE/NASA Software

Engineering Workshop, Apr. 2006, pp. 21–32.
[57] G. R., M. L., N. B., P. P., d. R. A. N., R. M., S. P., W. A., and Y. H., “Making Tacit Requirements Explicit,” in 2009 Second International Workshop on

Managing Requirements Knowledge. Atlanta, GA, USA: IEEE, Sep. 2009, pp. 40–44.
[58] A. Stone and P. Sawyer, “Exposing Tacit Knowledge via Pre-Requirements Tracing,” in 14th IEEE International Requirements Engineering Conference

(RE’06). Minneapolis/St. Paul, MN, USA: IEEE, Sep. 2006, pp. 353–354.
[59] J. Leite and A. Oliveira, “A client oriented requirements baseline,” in Proceedings of 1995 IEEE International Symposium on Requirements Engineering

(RE’95). York, UK, UK: IEEE, Mar. 1995, pp. 108–115.
[60] H. El Ghazi and S. Assar, “A multi view based traceability management method,” in 2008 Second International Conference on Research Challenges in

Information Science. Marrakech, Morocco: IEEE, Jun. 2008, pp. 393–400.
[61] P. Liang, P. Avgeriou, K. He, and L. Xu, “From collective knowledge to intelligence: pre-requirements analysis of large and complex systems,” in In:

Proceedings of the 1st Workshop on Web 2.0 for Software Engineering (Web2SE), ACM, 2010, pp. 26–30.
[62] S. Lohmann, S. Dietzold, P. Heim, and N. Heino, “A web platform for social requirements engineering,” in Software Engineering 2009 - Workshopband.

Gesellschaft für Informatik e.V., 2009, accepted: 2019-02-20T10:13:00Z ISSN: 1617-5468.
[63] O. C. Z. Gotel and S. J. Morris, “Out of the labyrinth: Leveraging other disciplines for requirements traceability,” in 2011 IEEE 19th International

Requirements Engineering Conference. Trento, Italy: IEEE, Aug. 2011, pp. 121–130.
[64] H. Kitapci and B. W. Boehm, “Using a Hybrid Method for Formalizing Informal Stakeholder Requirements Inputs,” in Fourth International Workshop

on Comparative Evaluation in Requirements Engineering (CERE’06 - RE’06 Workshop). Minneapolis, MN, USA: IEEE, Sep. 2006, pp. 48–59.
[65] J. H. Weber-Jahnke and A. Onabajo, “Finding Defects in Natural Language Confidentiality Requirements,” in 2009 17th IEEE International

Requirements Engineering Conference. Atlanta, GA, USA: IEEE, Aug. 2009, pp. 213–222.
[66] J. Hayes, A. Dekhtyar, and J. Osborne, “Improving requirements tracing via information retrieval,” in Proceedings. 11th IEEE International Requirements

Engineering Conference, 2003. Monterey Bay, CA, USA, USA: IEEE, Sep. 2003, pp. 138–147.
[67] J. Botaschanjan, A. Fleischmann, and M. Pister, “A Conceptual Model for Requirements Engineering and Management for Change-intensive Software.”

ACTA Press, Feb. 2004.
[68] P. Laurent, J. Cleland-Huang, and C. Duan, “Towards Automated Requirements Triage,” in 15th IEEE International Requirements Engineering

Conference (RE 2007). Delhi, India: IEEE, Oct. 2007, pp. 131–140.
[69] J. R. Jiao and C.-H. Chen, “Customer Requirement Management in Product Development: A Review of Research Issues,” Concurrent Engineering,

vol. 14, no. 3, pp. 173–185, Sep. 2006.
[70] A. Kaufmann and D. Riehle, “The QDAcity-RE method for structural domain modeling using qualitative data analysis,” Requirements Engineering,

vol. 24, no. 1, pp. 85–102, Mar. 2019.

	Introduction
	Research Method
	Code System
	Requirements traceability & pre-RS traceability general
	Traceability users
	Use cases, benefits & consequences
	Problems & Challenges
	Solutions & Suggestions
	Tools & Techniques

	Discussion
	Conclusion
	References

