
OPEN SOURCE EXPANDED
EDITOR DIRK RIEHLE

Friedrich Alexander-University of Erlangen Nürnberg;
dirk.riehle@fau.de

C O M P U T E R 0 0 1 8 - 9 1 6 2 / 2 0 © 2 0 2 0 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y O C T O B E R 2 0 2 0 105

In an ideal world, the provenance
and licensing of third-party soft-
ware components would be avail-
able as easy-to-discover struc-

tured data. But a recent study1 on
license documentation found that
fewer than 5% of approximately
5,000 popular free and open source
software (FOSS) packages contained
complete and unambiguous license
documentation. Modern software
products and applications are as-
sembled like LEGO blocks from FOSS
components because reusing exist-
ing code is a faster and more effi-
cient way to create solutions. Provi-
sioning FOSS components from the
Internet is frictionless since it takes
only a few seconds of a program-
mer’s time to download and install
a new element. Updated component
versions may be released several
times per year, and each version may
have a different provenance and var-
ious licenses and dependencies.

This means that a typical soft-
ware team needs to continuously

Digital Object Identifier 10.1109/MC.2020.3011082
Date of current version: 5 October 2020

Free and Open
Source Software
License Compliance:
Tools for Software
Composition Analysis
Philippe Ombredanne, nexB Inc.

 Modern software is assembled from thousands

of open source components, each with its own

provenance and license, meaning that automation

is the only practical way to comply with license

conditions. We review the domain of software

license compliance tools.

106 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE EXPANDED

track a very large number of prove-
nance and license combinations. Find-
ing thousands or tens of thousands of
FOSS components in a single applica-
tion code base is now commonplace.
Since a significant number of these
components may have poor or missing

license and provenance documentation,
software tools are essential to tackle the
data volume, fill the information gaps,
and automate most FOSS license com-
pliance activities. The focus of this arti-
cle is on tools and techniques for iden-
tifying FOSS components that you use
and how you use them because your
FOSS compliance obligations depend
on both.

There are very few FOSS license
conditions that apply when you only
use or run software “internally.” In
general, you are obliged only to pro-
vide attribution and redistribution for
FOSS components that you distribute.
In the FOSS license context, distribu-
tion means that you provide software
to a third party as a software package
(via a download or through a medium
such as a DVD) or deployed on a device
(a smartphone, computer, Internet of
Things device, and so forth).

If you build applications rather than
software products or deploy software

products in a hosted software-as-a-ser-
vice environment, you may think that
you do not distribute any code. But dis-
tribution occurs more often than you
may think. Do you publish a mobile
app? This is software distribution. Do
you publish a dynamic website? This

may include software distribution
if your website used client-side Java-
Script code that is downloaded to run
in a browser.

In a typical software development
environment, a significant proportion
of the FOSS components used by devel-
opers is for internal use only, for ex-
ample, compilers, integrated develop-
ment environments, build tools, test
tools, and so on. Therefore, if you dis-
tribute a product, it is critical to know
exactly which FOSS components (in-
cluding compiled binaries) you circu-
late so that you understand your attri-
bution and redistribution obligations.

SOFTWARE COMPOSITION
ANALYSIS TOOLS
There are several possible areas where
tools may help with license compli-
ance activities. In this article, we focus
on the compliance tools that are essen-
tial for identifying the provenance and
licenses of FOSS components as they

are used in running software. We are
providing only a limited summary for
important yet secondary activities,
such as interaction and binary analy-
sis, attribution notice generation, and
corresponding source code redistribu-
tion obligations.

Which FOSS components
do you use?
The first step for any FOSS compliance
program is to identify the FOSS com-
ponents you use. The current industry
analyst (for instance, Gartner or For-
rester) term for identifying third-party
software components is software com-
position analysis (SCA). SCA is broader
than FOSS license compliance because
it also includes the identification of
security vulnerabilities and quality
attributes, although those topics are
beyond the scope of this article. FOSS
component identification is a complex
and time-consuming activity, but
this is the area where you can get
t he big gest benef it s f rom tools
and automation.

Scanning versus matching
The set of techniques to identify which
FOSS components you use and their
provenance and licenses is generally
known as scanning. This term can be
confusing because there are actually
two different techniques to consider:

 › Scanning is when you directly
extract information from source
and binary files.

 › Matching is when you search
for the provenance of files based
on matching file content and
attributes to an external index
of FOSS components.

Scanning does not require an external
database. Matching requires a prein-
dexed database of known FOSS com-
ponents, including metadata and code
(source and binaries).

SCANNING
With scanning, you can detect mate-
rial that includes the following:

FROM THE EDITOR

This month’s column kicks off the license compliance tooling and standards
section of the “using open source” theme arc. Before you can deliver a soft-
ware product with correct legal notices to customers, you have to understand
what open source code is included in your software. You have to create the so-
called bill of materials. Does this sound simple? It is not. In this article, Philippe
Ombredanne, author of the widely used license text scanner ScanCode, intro-
duces us to the challenges of analyzing a software code base for all the open
source code that knowingly or unknowingly was added to it. More than ever,
happy hacking, and stay safe! —Dirk Riehle

Finding thousands or tens of thousands of FOSS
components in a single application code base is

now commonplace.

 O C T O B E R 2 0 2 0 107

 › structured information from pack-
age manifests and build scripts

 › explicit license notices, license
tags, license mentions, and
license texts

 › other provenance clues, includ-
ing emails, uniform resource
locators, and specific code
constructs, such as program-
ming language imports, include
statements, namespaces, and
code tree structures.

Parsing declared licenses
from a manifest
The simplest scanning technique is to
collect the data from a FOSS compo-
nent that comes with structured prov-
enance and license information. It is
important to consider the following:

 › When installed from a pack-
age repository, a package has a
manifest that contains struc-
tured provenance data (such as
Java with Apache Maven and
JavaScript with Node Package
Manager), including references
to source code and version con-
trol repositories.

 › Code and documentation files
may contain other structured
data, such as a Software Package
Data Exchange (SPDX)2 docu-
ment or a notice file.

In practice, only a subset of the pack-
ages may contain declared provenance
and license data.

For the ClearlyDefined project,7 we
evaluated the clarity of the license
documentation for roughly 5,000 of
the most popular FOSS packages. In
this study,1 a package with a high li-
cense clarity has a top-level declared
license (for example, in a package
manifest or a copying or readme file)
and consistent file-level license no-
tices in most of the code files where
the licenses are well-known FOSS
licenses listed by the SPDX project3
and where the package contains com-
plete license texts. The license clarity
scores achieved with these criteria

are lower than we expected. The over-
all median and average license clar-
ity scores are approximately 45/100.
Only 194 of the 4,892 packages had
a license clarity score of at least
80/100. While it is encouraging that
roughly 75% of these packages have

a “declared” top-level license, such a
declaration may be inconsistent with
file-level license notices. Fewer than
15% of the packages provided a top-
level license consistent with file-level
license notices.

FOSS package management tools and
some external tools (such as the Scan-
Code toolkit3) provide a way to collect
FOSS package data. Yet, providing a uni-
fied view of software metadata is chal-
lenging because each package manager
has its own unique way to deliver struc-
tured metadata. To better understand
the complexity of the problem, the Code-
Meta Project4 publishes evolving map-
pings and cross-references of the data at-
tributes, names, and definitions of more
than 10 different package ecosystems.
Yet for some package managers, such as
those for Go, the package manifest con-
tains no license information.

Scanning to detect license
texts, notices, and mentions
Because a license declaration may
not be present in a package manifest
or may be incomplete or ambiguous,
you also need to detect and normal-
ize other license references in text
and notice files in a code base. Before
some recent housekeeping, we found
that there were approximately 800
different ways to state that a file was
licensed under the GNU General Pub-
lic License (GPL) in the Linux kernel
sources. These license notices can be
short: a few words, such as “license:
MIT,” or one word, such as “GPLv2,”
are considered by some authors to
be a sufficient license declaration. A

notice can be very long, such as the
full text of the GNU Affero GPL 3.0 (ap-
proximately 37,000 characters). The
challenge is to account for thousands
of texts with many small and large
variations. Each variation can be de-
tected using different text and string

comparison techniques. There are
three main approaches used to detect
licenses:

1. pattern matching, where small
text patterns are handcrafted
and used as proxies to search
for licenses

2. probabilistic text matching,
where a similarity metric (typ-
ically the edit distance) is used
to find the closest matching
license or notice text

3. exhaustive pairwise compar-
isons to find similar licenses
using text sequence alignments
(which is also known as diff).

The most popular FOSS tools for li-
cense detection include Fossology5
(using approach 1), GitHub licensee6
(using approach 2), and ScanCode
Toolkit5 (using approaches 1 through 3).
Most tools use only the first and sec-
ond approaches, which are only ap-
proximate. For more details, a good
list of license detection tools is main-
tained by the Debian project.7

MATCHING
In contrast to scanning, the goal of
matching is to find code borrowed from
FOSS projects, based on the detection
of code similarities (for example, dupli-
cates, near duplicates, and clones).

Why matching?
Scanning will not help you if there is no
provenance and license information in
the code you analyze. Therefore, the pri-
mary use case for matching is to analyze

Scanning will not help you if there is no provenance
and license information in the code you analyze.

108 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE EXPANDED

code base files that do not have any clear
provenance and license information. A
secondary matching use case is to verify
that FOSS files identified from the scan-
ning data match the original files from
the corresponding FOSS project. For
matching, the basic approach is to find
textual similarities between the code
under analysis and other source and bi-
nary code files. If you think of matching
as a search problem, the search index

would be much smaller than a typical
Internet-scale search engine: several
terabytes for code matching are still
many orders of magnitude fewer than
the petabytes used by the search in-
dices of Google Search and Microsoft
Bing. Yet the size of the “query” to this
smaller index can be gigabyte-size, as a
whole code base is under analysis. This
is in contrast with a search on Google
Search, which is limited to a 32-word
query of only a few bytes.

How much FOSS code is there?
The volume of FOSS code to index in
a matching database is very large.
The Software Heritage project8 has
already archived more than 8 billion
unique source code files coming from
more than 120 million projects rep-
resenting several hundred terabytes
of code. A typical Linux distribution
maintains roughly 30,000 binary
packages. Libraries.io9 reports track-
ing more than 5 million FOSS pack-
ages (ignoring versions), and Clear-
lyDefined.io10 tracks 10 million-plus
FOSS pac k a ge ver sion s. Git Hub
claims to host more than 100 million
code repositories.

Finding similar code
T he s i mple a nd cor rec t solut ion
would be to perform an exhaus-
tive pairwise comparison between
a code base that is under analysis

and the indexed code. But the data
volume makes this approach im-
practical because it would take too
much time to compute or would be
too expensive when using cloud
computing resources. A solution is
to reduce the dimension of the prob-
lem to something smaller. Fixed-size
file and code snippet checksums
as well as “fuzzy” fingerprints and
sketches11 are used as smaller prox-

ies to search for file similarities in a
more cost- and time-ef fective way.
For instance, a 128-bit checksum
can be used to find code that is sev-
eral thousand times bigger than it is.
This reduced length helps keep the
index size smaller and the lookup
times and cost more practical with
minimal loss of accuracy.

The main weakness of the match-
ing approach is that with a large index,
matching tools tend to provide many
false positives that require expert
review. FOSS components tend to be
reused extensively by other FOSS proj-
ects, so any large FOSS index suffers
from the presence of many duplicates
and near duplicates. This duplication
introduces many ambiguities into the
match results.

Matching tool options
There are few FOSS tools available to-
day for code matching, making this an
attractive area for new development.
Existing tools have been primarily
provided by commercial companies,
such as BlackDuck Software (acquired
by Synopsys) and Palamida (acquired
by Flexera), and new entrants, such as
FOSSID. One emerging FOSS solution
may be the Software Heritage project,8
which provides a checksum lookup ap-
plication programming interface that
can be used for large-scale file match-
ing against open data.

Scanning and matching summary
At first glance, matching seems to be
a better way to detect code provenance
than scanning. In practice, however,
scanning is typically faster and more
accurate than matching. Scanning
and matching are ultimately comple-
mentary, but it is usually most effi-
cient to start with scanning. Beyond
choosing scanning and matching tools
and techniques, you need to plan your
SCA activities according to how you
use FOSS components, that is, which
components you distribute versus
those that you use only internally for
development, testing, and continuous
integration/continuous delivery.

Which FOSS components
do you really distribute?
Only a subset of all third-party pack-
ages that you identify may be used
when running a program. There could
be tools and testing utilities as well as
documentation that may not be part
of the code that is distributed and de-
ployed, and these often have a different
license than the code. Another factor is
that many dependent FOSS packages
(“dependencies”) are not part of the
source code stored in a version con-
trol system and used in development.
They are usually downloaded at build
time from a shared public or private
repository. If you apply only scanning
and matching techniques to the source
code base, you will usually miss the
dependencies, which may constitute
hundreds of packages. Overall, the dis-
tribution package (the “binaries”) for a
product is often the best place to iden-
tify the set of FOSS components that re-
quire attribution and redistribution. If
you do not do this, you need to “resolve”
the dependencies of FOSS packages, as
stated in the development code.

Resolving dependencies related
to third-party packages
When using an application package
repository (such as RubyGems and
NuGet), a software programmer will
state the direct dependencies in a de-
pendency manifest file. At software

There are few FOSS tools available today for code
matching, making this an attractive area for

new development.

 O C T O B E R 2 0 2 0 109

build time, these first-level depen-
dencies are fetched and installed by
a package manager or a build tool
(such as Python pip and Gradle). This
process applies, in turn, to each de-
pendency recursively and “all the way
down.” It is not uncommon to have
deeply nested package dependency hi-
erarchies that contain 1,000 packages
or more, even though only a few first-
level direct dependencies are stated
by the programmer. With a Docker
containers and virtual machine “im-
ages,” which are both popular formats
to deploy software in the cloud, an ap-
plication may routinely embed 10,000-
plus application packages and Linux
binary system packages, each with its
own provenance and license.

To identify resolved dependencies,
you need to perform one of the follow-
ing steps:

 › Collect a preresolved list of
package dependencies, which is
called a lockfile.

 › Run a software build to collect
the list of dependencies that are
or would be installed.

 › Analyze the set of dependen-
cies found in the software as
deployed or distributed.

FOSS tools, such as the Open Source Re-
view Toolkit,12 provide a way to resolve,
collect, and fetch the code of application de-
pendencies by imitating the build process.

Beyond
There are also other tools and tech-
niques that may be required to deter-
mine your FOSS compliance obliga-
tions, including the following:

 › Analyzing the content of
C/C++ and Go compiled binaries
involves reverse-engineering

techniques, such as symbol
parsing and decompilation,
and will require a tool such as
BANG (Binary Analysis Next
Generation).13

 › Analyzing the content of mobile
applications archives, such as an
Android .apk file and an iOS .ipa
file, also requires specialized tools.

After you have identified the FOSS
components that you use and how
you use them, you should be ready
to focus on the second stage of FOSS
compliance activities, where you
create the attribution and redistri-
bution artifacts. This part of com-
pliance is typically somewhat easier
than the SCA activities explained in
this article, but it merits a separate,
future article.

FOSS license compliance tools are
an emerging domain with sur-
prisingly complex requirements

and a wide range of options. The tools
that are FOSS themselves offer many
opportunities for community collabo-
ration and a foundation for an organi-
zation to assemble a bespoke and effi-
cient toolchain to support its needs.

REFERENCES
1. P. Ombredanne and D. Clark, “What

is the state of open source license
clarity?” ClearlyDefined, Apr. 26,
2019. [Online]. Available: https://
github.com/clearlydefined/license
-score/blob/master/ClearlyDefined%
20-%20ClearlyLicensed%20clarity%
20report-2019.pdf

2. SPDX. Accessed on: July 23, 2020.
[Online]. Available: https://spdx.org

3. AboutCode, “ScanCode,” 2020. [Online].
Available: https://www.aboutcode
.org/projects/scancode.html

4. The CodeMeta Project. Accessed on:
July 23, 2020. [Online]. Available:
https://codemeta.github.io

5. Fossology. Accessed on: July 23, 2020.
[Online]. Available: https://www
.fossology.org/

6. Licensee. Accessed on: July 23, 2020.
[Online]. Available: https://github
.com/licensee/licensee

7. Debian, “Copyright review
tools,” 2020. [Online]. Avail-
able: https://wiki.debian.org/
CopyrightReviewTools

8. Software Heritage. Accessed on: July
23, 2020. [Online]. Available: https://
www.softwareheritage.org/

9. Libraries.io. Accessed on: July 23,
2020. [Online]. Available: https://
libraries.io

10. ClearlyDefined, “Stats,” 2020. [On-
line]. Available: https://clearlydefined
.io/stats

11. Wikipedia, “Locality-sensitive
hashing,” 2020. [Online]. Available:
https://en.wikipedia.org/wiki/
Locality-sensitive_hashing

12. OSS Review Toolkit. Accessed on:
July 23, 2020. [Online]. Available:
https://github.com/heremaps/
oss-review-toolkit

13. Binary Analysis Next Generation.
Accessed on: July 23, 2020. [Online].
Available: https://github.com/
armijnhemel/binaryanalysis-ng

PHILIPPE OMBREDANNE is the
chief technology officer at nexB, San
Carlos, California; the maintainer of the
ScanCode toolkit project; and a lead
maintainer for AboutCode.org proj-
ects. Contact him at pombredanne
@nexb.com.

