
OPEN SOURCE EXPANDED
EDITOR DIRK RIEHLE

Friedrich Alexander-University of Erlangen Nürnberg;
dirk.riehle@fau.de

C O M P U T E R 0 0 1 8 - 9 1 6 2 / 1 9 © 2 0 1 9 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y A P R I L 2 0 1 9 59

T he main innovations of
open source can be grouped
into four categories: legal,
process, tool, and business

models. Probably the best known
innovations are open source licenses,
which also define the concept. Soft-

ware becomes open source if users re-
ceive it under an open source license.
To be an open source license, it must
fulfill 10 requirements set forth by
the Open Source Initiative, the pro-
tector and arbiter of what constitutes
open source.1 Most notably, the license
must allow

 › free-of-charge use of the
software

 › access to and modification of the
source code

 › the ability to pass on the source
code and a binary copy.

Before there was open source soft-
ware, there was free software. Richard Stallman defined
the four freedoms of software that make it “free” as:2

The Innovations
of Open Source
Dirk Riehle, Friedrich-Alexander-Universität, Erlangen-Nürnberg

Open source has given us many innovations.

This article provides an overview of the most

important innovations and illustrates the impact

that open source is having on the software

industry and beyond.

Digital Object Identifier 10.1109/MC.2019.2898163
Date of publication: 16 April 2019

FROM THE EDITOR

Welcome to this new column on open source! The “Open Source Expand-
ed” column will aim to provide an insightful article every two months.
These articles will be written for the software practitioner by authors from
both academia and industry. Articles will be grouped by theme rather than
appearing in arbitrary order. Our first theme is about open source licenses
and license compliance. Even decades after open source was created, it is
still a hot topic and unknown territory for many. Later themes will focus
on using open source, project communities, business models, interesting
cases, and what might come after open source. This issue’s article, the first
in its series, provides an overview of what is to come by reviewing the most
important innovations that open source has provided for the software in-
dustry and beyond. If you have comments or would like to suggest future
themes and articles, feel free to contact me at dirk@riehle.org. Computer
will provide a discussion board for articles as well. — D. Riehle

60 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE EXPANDED

the freedom to run the program
as you wish, for any purpose
[…], the freedom to study how
the program works, and change
it so it does your computing as
you wish […], the freedom to
redistribute copies so you can
help others […], the freedom
to distribute copies of your
modified versions to others […].

Open source software and free
sof tware, and the people behind
them, have struggled with each other
at times. For all practical purposes,
however, the difference is irrelevant
to users. What matters is the license
under which a user receives a partic-
ular software.

LEGAL INNOVATION
Licenses can be structured into per-
missions (the rights granted to a user),
obligations (what is required to receive
these rights), and prohibitions (what
may not be done; for example, claim-
ing that using the software implies an
endorsement by its creator). The two
legal innovations are

1. the rights grant as introduced
earlier

2. a particular obligation called
copyleft.

The rights grant helped open source
spread and succeed. As research has
shown, it taps into the human desire
to help each other and collaborate on
interesting projects.

People sometimes ask why de-
velopers do not put their work into
the public domain. This misses the
point: by putting something into the
public domain, an author typically
waives his or her rights, and most
authors do not want that. Rather,
they want to be specific about which
rights they grant and which obliga-
tions they require.

The most famous license obligation
is probably the copyleft clause. Stall-
man invented this clause, and it became
popular through GNU General Public Li-
cense v2 in 1991. It states that if you pass
on copyleft-licensed code, such as part
of a product that you sell, you must also
pass on your own source code if it mod-
ifies the copyleft-licensed code. The spe-
cifics of this can get complicated quickly,
and they will be discussed in more detail
in future columns. Many companies
worry that if their source code is mixed
with copyleft-licensed code, they will
lose their intellectual property and,
hence, their competitive advantage in
the marketplace.

In the past, companies have used
this clause to incorrectly discredit
open source software as “a virus” or
“cancer” and a “communist” or “hippie
undertaking.” However, nobody forces
anyone to use open source software.
In an amazing about-face, some of
the most well-known companies that
fought open source only 15 years ago
are now among its biggest support-
ers. The “Business Model Innovation”
section of this article explains some
of this.

PROCESS INNOVATION
The next innovation open source has
brought us is engineering process in-
novation.3 The open source initiative
has this to say about open source soft-
ware development:1

Open source is a development
method for software that har-
nesses the power of distributed
peer review and transparency
of process. The promise of
open source is better quality,
higher reliability, more f lexi-
bility, lower cost, and an end
to predatory vendor lock-in.

This is the other definition of
open source, which does not focus on

licenses and intellectual property but,
rather, on collaborative development.
There is no single open source software
engineering process because each open
source community defines its own.

Through his development of the
Linux kernel, Linus Torvalds was the
first to explore, at scale, a truly col-
laborative open source process. His
approach has no particular name but
is often identified with his moniker,
BDFL (which stands for “benevolent
dictator for life”), implying a hierarchi-
cal structure. A core benefit of an open
collaboration process was named after
Torvalds and is called Linus’ law, which
states, “Given enough eyeballs, all bugs
are shallow.”4 The idea is that more
broadly used software matures more
quickly since problems are found and
solved more quickly.

The collaborative peer group, as
explored by the original Apache web
server team (httpd) and codified as The
Apache Way (of open source software
development), is a similar but different
approach that may be more popular to-
day.5 The software industry owes this
group of developers as much as it owes
Torvalds, if not more.

The Apache Way is a consensus-based,
community driven governance ap-
proach to collaboration in open source
projects. The Apache Software Founda-
tion’s website explains it in detail. An
important aspect is the distinction be-
tween contributors, who submit work
for inclusion in an open source project,
and committers, who review and inte-
grate the work. Committers are called
maintainers in a Linux context, and they
usually are developers, too, not just re-
viewers. Using this contributor–com-
mitter interplay, nearly all open source
projects practice precommit code re-
view to ensure the quality of the soft-
ware under development.

The principles of open source soft -
ware development can be summarized as
three principles of open collaboration.6

 A P R I L 2 0 1 9 61

 › In open collaboration, participa-
tion is egalitarian (nobody is a
priori excluded).

 › Decision making is meritocratic
(based on the merits of argu-
ments rather than status in a
corporate hierarchy).

 › People are self-organizing (they
choose projects, processes, and
tasks rather than being assigned
to them).

Similarly, open source projects
practice open communication. This
form of communication is public (ev-
eryone can see it), written (so you
don’t have to be there when words are
spoken), complete (if it wasn’t written
down, it wasn’t said), and archived (so
that people can look up and review dis-
cussions later).

Such open collaborative processes,
which are not dominated by any single
entity, lead to community open source
software, which is collectively owned,
managed, and developed by a diverse
set of stakeholders. These collabora-
tion processes are not limited to soft-
ware but spill over into adjacent areas.
For example, they have brought for-
ward many formal and de facto stan-
dards that the software industry re-
lies on.3 The methods for open source
software development have also taken
root inside companies, where they are
called inner source.7,8

TOOL INNOVATION
Most of the tools used in open source
software development are familiar to
closed source programmers as well.
However, the needs of open source
processes have led to two major tool in-
novations that have since become an
important part of corporate software
development as well: software forges
and distributed version control.

A software forge is a website that
allows the creation of new projects and
provides developers with all of the

tools needed for software development,
such as a home page, an issue tracker,
and version control. What makes soft-
ware forges special is that they faci l-
itate match ma k i ng bet ween those
who are looking to find a useful soft-
ware component and those who are
offering one. They are an enterprise
software product category because,
even within one company, you want
to have one place for all software be-
ing developed.

Distributed version control is version
control in which you copy the original re-
pository and work with your copy. Thus,
you do not need commit rights or ask for
permission to start work. Git and Mer-
curial are the two best-known examples
of such software. Some may argue that
distributed version control is not an open
source innovation because some of its
roots are in proprietary software. How-
ever, the open source community devel-
oped and refined its own solutions, which
work well with how open source software
is developed, and thereby popularized
the concept.

Comparing distributed version con-
trol with branching misses the point.
Having your own repository allows de-
velopers to work using their own style,
free of any centralized decisions on
how to use branches.

Distributed version control was
popularized by being the main version
control software underlying a new
generation of software forges, most
notably Github and Gitlab. As such,
companies are adopting both forges
and distributed version control at a
rapid pace.

BUSINESS MODEL
INNOVATION
Open source is changing the soft-
ware industry by how it makes new
business models and breaks old ones.
For instance, it lays the legal foun-
dation for open collaboration be-
tween individuals and companies,

defines more effective collabora-
tion pr o cesses with higher pro-
ductivity than closed-source ap-
proaches, and invents the tools to
support it. Open source itself may not
be a business model, but it is a potent
strategy and a tool to use in competi-
tive environments.

For-profit models
There are different approaches for clas-
sifying business models enabled by
open source, but I like to put them into
five categories. Three are for-profit busi-
ness models, and two are nonprofit mod-
els. The for-profit business models are
as follows.

1. Consulting and support business
models: In this conventional
model, a company earns money
by providing consulting and
support services for existing
open source software. They
do not sell a license, but they
service the software anyway.
The original open source service
company was Cygnus Solutions,
which serviced the GNU set of
tools. More recent examples
are Cloudera and Hortonworks,
which service Hadoop.

2. Distributor business model: In
this business model unique to
open source, a company sells
subscriptions to software and
associated services that are
partly or completely based on
open source software. This
model only works for complex
software that consists of tens or
hundreds and sometimes thou-
sands of possibly incompatible
components that a customer
wants to use.

The most well-known ex-
amples are Linux distributors
like Red Hat and Suse, but many
other smaller companies provide
distributions of other kinds. The

62 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE EXPANDED

competitively differentiating in-
tellectual properties of a distrib-
utor are its test suites, configura-
tion databases, and compatibility
matrices, which they typically do
not open source.

3. Single-vendor open source
business model: In this model, a
company goes to market by pro-
viding a sometimes reduced,
sometimes complete, version
of its product as open source.
The company never lets go of
full ownership of the software
and sets up various incentives
for users to move from the
free open source version to a
paid-for, commercially licensed
version. The most common
incentives are support and up-
date services, but it often also
includes a copyleft license that
users would like to replace with
a proprietary one.

If done correctly, both the
company and its products benefit
from the help of the commu-
nity of nonpaying users. The
company typically does not get
code contributions, but it does
get lively discussion forums,
bug reports, feature ideas, and
word-of-mouth marketing. The
most well-known example of this
model was MySQL, the database

company, but there are many
more recent ones, such as Sugar-
CRM, MongoDB, and Redis Labs.

The distributor and single-vendor
models are especially important be-
cause they enable returns on invest-
ment that are attractive to venture
capitalists. Thus, they are the main
conduit through which billions of
dollars have been invested into open
source software.

Open source foundations
There are two more models that de-
termine how the development of open
source software is being funded. They
are actually two variants of the same
idea: the open source foundation.

An open source foundation is a non-
profit organization tasked with govern-
ing one or more open source projects,
representing them legally, and ensuring
their future. In the past, open source
foundations were set up to ensure the
survival of unsupported community
open source projects, but companies are
increasingly coming together to set up a
foundation with the goal of developing
new open source software.

The two variants of open source
foundations are as follows.

1. Developer foundations: This type
of nonprofit foundation is run

by software vendors (develop-
ers) who decide to join forces to
ensure the survival and health
of the open source software they
depend on. By ensuring broadly
shared ownership of the soft-
ware, the vendors make certain
that no one can monopolize
this particular type of compo-
nent and reap all of the profits
from software products that
rely on it. This is why Linux
was supported against Micro-
soft Windows, Eclipse against
Microsoft Visual Studio, and,
more recently, OpenStack
against Amazon Web Services.

2. User foundations: This type of
nonprofit is predominantly
run by companies that are not
software vendors but rely on
the software managed by the
foundation, either as part of
their operations or directly as
part of a product that is only
partly software. Examples are
the Kuali Foundation for soft-
ware to run universities, the
GENIVI foundation for auto-
motive infotainment software,
and the openKONSEQUENZ
foundation for software for
the (German) smart energy
grid (the last of which I
helped create).

Figure 1 shows how replacing a
closed source component in a product
with an open source component shifts
profits between the different compo-
nent suppliers and generally leaves
more profit for the vendor, which inte-
grates the components and sells the fi-
nal product. Because of this economic
logic, I expect to see more product
vendors and service suppliers from
outside the software industry get in
on the game. They will fund the de-
velopment of open source compo-
nents they need, taking money out
of the market for such components
and moving it to places where they
can more easily appropriate it. There-
fore, in the future, we can expect

M
on

ey
 S

pe
nt

 o
n

P
ro

du
ct

/S
ol

ut
io

n

(Cost of)
Closed Source
Components

(Cost of)
Other Product
Components

Closed Source
Components Are
Replaced With
Open Source
Components

Potential
Added Revenues

(Cost of) Open
Source Components

(Cost of)
Other Product
Components

Product/Solution
With Open Source

$$$$

$$$$ $$$$

$$

$$

Product/Solution
Without Open Source

FIGURE 1. The economic logic of community open source software.

 A P R I L 2 0 1 9 63

funding for open source software
development to increase by a couple
of orders of magnitude.

REFERENCES
1. Open Source Initiative. 2018. [On-

line]. Available: https://opensource
.org

2. Free Software Foundation, “GNU
operating system.” 2018. [Online].
Available: https://www.gnu.org
/ philosophy/free-sw.en.html

3. C. Ebert, “Open source drives innova-
tion,” IEEE Softw., vol. 24, no. 3, pp.
105–109, 2007.

4. E. Raymond, “The cathedral and the
bazaar,” Knowledge, Technol. Policy,
vol. 12, no. 3, pp. 23–49, 1999.

5. The Apache Software Foundation.
2018. [Online]. Available: https://www
.apache.org/foundation/how-it-works
.html

6. D. Riehle, “The five stages of open
source volunteering,” in Crowd-
sourcing, W. Li, M. N. Huhns,
W.-T. Tsai, and W. Wu, Eds. New
York: Springer-Verlag, 2015,
pp. 25–38.

7. J. Dinkelacker, P. K. Garg, R.
Miller, and D. Nelson, “Progressive
open source,” in Proc. 24th Int.
Conf. Software Engineering, 2002,
pp. 177–184.

8. D. Riehle, M. Capraro, D. Kips, and
L. Horn, “Inner source in plat-
form-based product engineering,”

IEEE Trans. Softw. Eng., vol. 42, no. 12,
pp. 1162–1177, Dec. 2016.

Access all your IEEE Computer
Society subscriptions at

computer.org/mysubscriptions

DIRK RIEHLE is the professor for
open source software at the Fried-
rich Alexander-University of Erlan-
gen Nürnberg. Contact him at dirk@
riehle.org.

CALL FOR ARTICLES
IT Professional seeks original submissions on technology
solutions for the enterprise. Topics include

•	 emerging technologies,
•	 cloud computing,
•	 Web 2.0 and services,
•	 cybersecurity,
•	 mobile computing,
•	 green IT,
•	 RFID,

•	 social software,
•	 data management and mining,
•	 systems integration,
•	 communication networks,
•	 datacenter operations,
•	 IT asset management, and
•	 health information technology.

We welcome articles accompanied by web-based demos.
For more information, see our author guidelines at
www.computer.org/itpro/author.htm.

WWW.COMPUTER.ORG/ITPRO

Digital Object Identifier 10.1109/MC.2019.2906962

