
C O M P U T E R 0 0 1 8 - 9 1 6 2 / 2 0 © 2 0 2 0 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y F E B R U A R Y 2 0 2 0 83

In earlier articles in this column, we learned that open
source is used in most of the current software pro-
duced as well as proprietary license code.1 Being used
either as stand-alone components or subcomponents

within software, it is an important part of the software
development lifecycle. Managing these dependencies is
critical for the long-term maintenance of a product. We
previously read about managing dependencies from a li-
censing and compliance perspective,2 and in this article,

we will look at managing the depen-
dency from a technical perspective.

Clearly, managing software de-
pendencies is not specific to open
source software and is always an
important thing to consider. Open
source dependencies bring several
advantages over proprietary licensed
dependencies, such as easy access,
new versions direct from the devel-
opment team, and unlimited usage.
Regardless of the ease of use, there
are some specifics that are import-
ant to manage in the long-term soft-
ware lifecycle.

WHAT IS AN OPEN SOURCE DEPENDENCY?
When talking about an open source dependency, it is im-
portant to first define what that means. Although this
sounds simple, different people will have different inter-
pretations, and when digging a little deeper, the meaning
is not as simple as it may seem.

What is different about an open source dependency
compared with other dependencies? A frequent miscon-
ception about open source software is that when it is free,
it does not come with support. Managing an open source
dependency where there is a business relationship with
a vendor, such as a support subscription, is not much

Managing the Open
Source Dependency
Tomas Gustavsson, PrimeKey

Organizations use open source software in a

majority of computer application programs.

Here we describe some of the technical

challenges and offer recommendations

about how to manage open source software

dependencies and avoid the most common

pitfalls that might be encountered through

decision-making, automated scanning,

upgrading, and strategic contributions.

Digital Object Identifier 10.1109/MC.2019.2955869
Date of current version: 12 February 2020

OPEN SOURCE EXPANDED
EDITOR DIRK RIEHLE

Friedrich Alexander-University of Erlangen Nürnberg;
dirk.riehle@fau.de

84 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE EXPANDED

different from managing any other
dependencies apart from possible exit
costs (which may be a topic for another
article). Therefore, we will focus on the
open source dependency, which can
best be characterized by using an open
source licensed subcomponent with-
out a contractual relationship with a
vendor, without warranties, and with-
out a service-level agreement.

DEPENDENCY DEPLOYMENT
FORMS
An open source dependency can be used
in different deployment forms:

1. It can be employed in an open
source library (for exam-
ple, Apache Commons Java
libraries) when developing
another application (propri-
etary or open source licensed).
The open source library is
then bundled inside the new
application.

2. An open source component
can be added as part of a larger
solution where the component
is used as is but bundled in
the complete solution. One
example is using the MariaDB
open source database to run an
application where the MariaDB
database is bundled in a larger
solution installation package.

3. An open source component can
be implemented as part of a
larger solution where the open
source component is installed

separately. An example is
using the Nginx open source
webserver for running a web
application, where the web
application requires install-
ing Nginx separately as a
prerequisite.

Managing dependencies in these
three cases has some similarities; but
in the third case, the dependency lies
outside the developer’s control and
is controlled by the end user. In this
instance, the responsibility for man-
aging the lifecycle of the dependency
lies with the user of the open source
application and, thus, falls outside the
scope of this article.

COMMON DEPENDENCY
PITFALLS
There are several best practices to fol-
low in dependency management to
avoid pitfalls. Common pitfalls are
as follows:

 › Security vulnerabilities: Vulner-
abilities in subcomponents,
which most often occur when
using outdated versions, may
cause security problems and
breaches in the delivered solu-
tion. This has been proved, in
many occasions, for example,
the Equifax breach.4 “Using
Components With Known
Vulnerabilities” is now on the
Open Web Application Security
Project (OWASP) top 10 list of

the most critical web application
security risks.5

 › Delayed and costly upgrade cycles:
When dependencies have not
been upgraded for an extended
period, sometimes for years,
the process can become very
resource consuming when an
upgrade is finally required. This
can be avoided if the dependency
is maintained continuously or at
an adequate frequency.

 › Interoperability problems: Com-
plex solutions often consist
of many different parts that
interact. When integrating the
solution, different versions of
the same open source depen-
dency can cause interoperability
problems, which then have to
be solved during deployment
instead of earlier.

 › Breaking functionality: Often,
open source components are
used as building blocks of un-
derlying abstraction layers, such
as network communication and
encryption. The principles and
algorithms of the Internet infra-
structure can, however, change,
and if dependencies are not
upgraded, critical functionality
may stop working. A simple ex-
ample includes the deprecation
of insecure versions of the Trans-
port Layer Security protocol.

GOOD DEPENDENCY
MAINTENANCE PRACTICES
Because of the open nature of open
source components, such dependencies
have a tendency to appear in code as a re-
sult of the pressure on developers to get
the job done and deliver at a fast pace.
There is not always a rigorously vetted
decision behind every dependency that
gets included. Maintaining dependen-
cies, whether open source or proprietary
licensed, requires resources and adds to
the technical debt of software, which is
why managing this is an important part
of the development process. By follow-
ing a few best practices that can easily be
integrated into a modern development

FROM THE EDITOR

Welcome back! In our article series, taking the perspective of a software de-
veloper, we have warmed up to using open source in products. After learning
how to select the right components for our needs in the last installment of this
column, we will now look at how to manage the resulting dependency. Expert
Tomas Gustavsson takes us through an analysis of various aspects of this de-
pendency and how to manage it. Security looms large, as it often does, but
next to assurances, he also looks to more actively engage with an open source
component’s development community, often called contributing to upstream.
Viewing open source communities as suppliers to your product is a helpful
perspective, of which we will learn more in future columns. As always, happy
hacking! — Dirk Riehle

 F E B R U A R Y 2 0 2 0 85

process, most dependency problems can
be managed without difficulty.

A summary of practical best prac-
tices is

 › establish a forum for conscious
decisions on open source
dependencies

 › maintain a dependency list
 › scan for security issues
 › verify the integrity of downloads
 › upgrade continuously
 › contribute upstream
 › support open source projects
 › document the process.

Depending on your organization’s
development maturity, size, and pro-
cesses, different levels of automation
can be applied to all of these practices.
If there are three words that would de-
scribe these practices in summary, they
would be consciousness, security, and
automation.

Conscious decisions
There are huge savings to be gained
from using open source components,
but there are also maintenance costs.
Some dependencies are brought in for
short-term gains, but in the long term,
they cause great costs. Careful and de-
liberate decisions are key to success.

Limit your open source dependen-
cies to deliberate decisions. Just because
there is an open source implementation
available does not mean you have to
use it. If you use a single function from
a library, the maintenance of this de-
pendency may be greater than imple-
menting this specific method yourself.
On the other hand, if multiple methods
from this library are used, the burden
of maintaining your own implementa-
tions is often much higher than using
the library. There is a balance, as always.

One important factor to consider
when taking on a dependency is
whether the project is actively devel-
oped. Many popular open source proj-
ects are very active and will release new
versions when bugs are discovered,
whereas other open source projects are
created without either active users or

active developers or have been aban-
doned. It may be wise to avoid non-
active projects because maintenance
costs should be expected in practice, as
if it was your own code.

Three good processes for deciding
when to add a dependency are the
following:

 › Establish a group that decides on
common dependencies across
your products and projects, with
members from different product
teams who are aware of the
organization’s strategy for open
source dependencies.

 › Develop criteria for evaluating
open source projects to aid in the
decision to adopt.

 › Automate detection of open
source dependencies.

Maintain a dependency list
Maintaining a list of dependencies has
multiple benefits. Some benefits have
been described in earlier articles1,2 re-
lated to licensing and compliance. The
dependency list also comes in handy
when maintaining the technical depen-
dency. Maintaining lists makes it easier
for developers to know the function of a
certain dependency, something that is
not always obvious in a large product.
A well-structured list should contain
pointers and URLs to indicate where the
latest versions of the software can be
obtained. This enables developers to get
new versions of dependencies from the
official source, avoids unverified code
(see later), and enables quality assur-
ance to identify the functions to test af-
ter dependencies have been upgraded.

When maintaining the technical
dependencies, we use some of the same
results as from earlier articles, like
the bill of materials over open source
components. Reflecting on the depen-
dency maintenance should be a part of
maintaining the bill of materials. With
multiple solutions in an organization,
it is also a good idea to look at the bills
of material for all of the various compo-
nents that make up a complete solution
to remediate interoperability concerns.

Naturally, the work involved in
maintaining dependency lists varies
depending on the size of the organiza-
tion and its products. Smaller product
teams may be able to start manually,
whereas larger product teams will need
a high level of automation to be able to
even determine the dependencies.3

Scan for security issues
With using subcomponents with known
vulnerabilities that are on the OWASP
top 10 list of most critical web appli-
cation security risks, it is a signal that
security issues need to be handled.
Security issues arise in almost all soft-
ware, be it proprietary or open source
licensed. Larger software components
(both open source and proprietary) file
what is called common vulnerabilities
and exposures when security issues are
discovered. There are tools that can
help you automatically scan for known
vulnerabilities in subcomponents you
depend on; when these are integrated
in the development process, managing
this risk becomes much easier.

Verify integrity
When software is retrieved from the In-
ternet, it is important to verify its integ-
rity. Malicious versions of software are
sometimes placed on download sites,
compromising systems where these ver-
sions are installed. In addition, download
servers are sometimes breached so that
the correct version of software is replaced
by a malicious one. This happens to both
open source software and non–open
source software; because open source de-
pendencies in our definition are always
downloaded from the Internet, without
specific contact with the vendor, it is very
important to verify integrity.

There are two methods that are the
most common to verify the integrity of
open source dependencies:

 › verifying a hash (checksum) of
the downloaded software with a
hash obtained from a trusted (or
at least another) source

 › verifying a digital signature of
the downloaded software where

86 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE EXPANDED

the verification key has been
obtained from a trusted (or at
least another) source.

The process can be either manual or
automated, depending on how depen-
dencies are managed and retrieved in
your organization. The most import-
ant issue is that you know if and how
integrity verification is performed.

Upgrade continuously
To avoid many of the common pitfalls,
dependencies should be upgraded reg-
ularly. This is a maintenance burden in
the short term, but it will save large costs

over time. If development processes are
designed to consider dependency main-
tenance, the costs can be kept down, and
many of the costly pitfall issues avoided.
To be able to upgrade continuously with-
out spending an unreasonable amount of
time, there are some basic development
hygiene factors that you should have in
place. One is the use of primarily auto-
mated testing that verifies that upgrades
work as expected. Today, this practice is
commonplace and implemented as part
of a continuous integration pipeline,
where automated tests are executed as
soon as changes are made to the source
code of a product. Another good prac-
tice is to have a process step to verify and
upgrade external dependencies for each
larger feature release of the product.

Recently, tools have become avail-
able to address the complexity of main-
taining dependencies. These tools can
assist in automating everything from
detecting reported security vulnerabil-
ities early to automating the upgrade of
dependencies.

Contribute upstream
One thing that is different when using
open source dependencies is that every

user has the ability to contribute devel-
opment upstream. Upstream denotes the
open source project that you rely on in
your solution. You do not have to con-
tribute to the open source dependency in
code, but these contributions can occur
in many ways using different work prac-
tices,6 such as

 › bug reports and bug fix code
 › feature requests and
feature code

 › support for other users and
 participation in forums

 › documentation and
translations.

Making this investment in strategic
open source projects may have great
benefits for the organization, and the
reasons to do it can be different among
organizations.7 Apart from strate-
gic benefits, there are many practical
maintenance benefits:

 › not having to maintain your
own code changes separately
from the main project

 › making upgrades easier, as
changes are already part of the
main project

 › receiving community support
as helping others makes them
willing to help you

 › limiting dependency on specific
persons in your organization

 › the potential to receive improve-
ments and additional testing (for
example, on a different scale) on
contributed features

 › knowledge sharing within your
organization.

In the long term, contributing upstream
can save large amounts of time for your
organization even if there is a short-
term perceived cost.

In practice, contributing upstream
involves the tasks of locating the project
website and finding out from that site
which communication mechanisms are
available. In most cases, there are email
lists and web forums and, commonly, an
issue tracker for bug reports and feature
requests. For projects hosted on popular
open source collaboration platforms,
such as GitHub (https://github.com/),
there are standard tools available that
are the same for all projects, making it
easy to incorporate new projects once
you are familiar with the platform.

Support open source projects
Depending on the criticality of depen-
dencies, you will want to limit the risk
that a dependency is abandoned. Some
open source projects are run by com-
mercial organizations, whereas others
are run by individual volunteers. Re-
gardless of how the open source project
is run, if you depend on a subcomponent
for the medium or long term, it needs to
be sustainable. Sustainability should be
one of the criteria used when selecting
open source subcomponents. There are
many ways to improve the sustainabil-
ity of open source projects, ensuring
that there are developers able and will-
ing to work on the project. If the project
has commercial backing, purchasing a
support contract is one way. Financial
contributions can also be given if the
project is managed by a foundation. If
financial contributions are not possible,
other contributions should be consid-
ered; one example is sponsoring with
infrastructure (such as test servers).
Remember, subcomponents that are
not sustainable may end up being main-
tained by yourself in the long term. It is
more cost-effective to do it right from
the start than to simply assume that
open source is without cost.

Document the process
When working in an organization, the
process of interacting with open source
projects and managing open source
dependencies should be documented
and become part of the development
process. If not well documented, the

The process of interacting with open source
projects and managing open source dependencies

should be documented.

F E B R U A R Y 2 0 2 0 87

dependency management may become
dependent on specific individuals, and
they might leave the organization.

The described practices can be
seen as a base level on your way
to mastering open source de-

pendencies. There are many additional
practices, which we may count as ad-
vanced best practices, that you will dis-
cover as your processes evolve. Some
lessons will always be learned the hard
way, but applying some best practices
will help you from getting into trouble
too early. If these are done with con-
sideration, there are fantastic benefits
of open source software dependencies
that you can reap on the way to open
source engagement proficiency.3

REFERENCES
1. M. Ballhausen, “Free and open

source software licenses explained,”
Bird & Bird LLP, Hamburg, Germany,

June 17, 2019. [Online]. https://
dirkriehle.com/2019/06/17/free-and
-open-source-software-licenses
-explained-miriam-ballhausen-ieee
-computer-column/

2. H. Schöttle, “Open source license
compliance—Why and how?” Osborne
Clarke, Munich, Germany, Aug. 8,
2019. [Online]. https://dirkriehle.
com/2019/08/08/open-source-license
-compliance-why-and-how-hendrik
-schoettle-ieee-computer-column/

3. J. McAffer, “Getting started with open
source governance,” GitHub, Oct. 8,
2019. [Online]. https://dirkriehle
.com/2019/10/08/getting-started
-with-open-source-governance-jeff
-mcaffer-ieee-computer-column/

4. M. Varmazis, “Equifax felled by a
months-old Apache Struts vulnera-
bility,” Sophos, Abingdon, UK, Sept.
14, 2017. [Online]. https://naked-
security.sophos.com/2017/09/14/
equifax-felled-by-a-months-old
-apache-struts-vulnerability/

5. OWASP, “OWASP Top 10—2017: The
ten most critical web application
security risks.” Accessed on: Jan. 8,
2020. [Online]. Available: https://
www.owasp.org/images/7/72/
OWASP_Top_10-2017_%28en%29
.pdf.pdf

6. S. Butler et al., “On company contri-
butions to community open source
software projects,” IEEE Trans. Softw.
Eng., to be published. doi: 10.1109/
TSE.2019.2919305.

7. S. Butler et al., “Maintaining interop-
erability in open source software:
A case study of the Apache PDFBox
project,” J. Syst. Softw., vol. 159,
p. 110,452, Jan. 2020. doi: https://doi.
org/10.1016/j.jss.2019.110452.

 TOMAS GUSTAVSSON is the chief
technology officer at PrimeKey,
Solna, Sweden. Contact him at
tomas.gustavsson@primekey.com.

IEEE TRANSACTIONS ON

BIG DATA

For more information on paper submission, featured articles, calls for papers,
and subscription links visit: www.computer.org/tbd

TBD is financially cosponsored by IEEE Computer Society, IEEE Communications Society, IEEE Computational Intelligence
Society, IEEE Sensors Council, IEEE Consumer Electronics Society, IEEE Signal Processing Society, IEEE Systems, Man &
Cybernetics Society, IEEE Systems Council, and IEEE Vehicular Technology Society

TBD is technically cosponsored by IEEE Control Systems Society, IEEE Photonics Society, IEEE Engineering in Medicine &
Biology Society, IEEE Power & Energy Society, and IEEE Biometrics Council

SUBSCRIBE AND SUBMIT

SUBMIT
TODAY

Digital Object Identifier 10.1109/MC.2020.2967208

