
C O M P U T E R 0 0 1 8 - 9 1 6 2 / 1 9 © 2 0 1 9 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y D E C E M B E R 2 0 1 9 103

OPEN SOURCE EXPANDED
EDITOR DIRK RIEHLE

Friedrich Alexander-University of Erlangen Nürnberg;
dirk.riehle@fau.de

If most of the code comprising your product or ser-
vice isn’t open source software, it’s highly likely that
you’re wasting effort and cash reinventing the wheel.
Yet with millions of open source projects available on

forges such as GitHub, it may be difficult to select those
that best match your requirements. Examining two fac-
ets of each candidate project, the product and its develop-
ment process (see Table 1), can help you select with con-
fidence the open source projects required for your work.

PRODUCT

Functionality
Begin by assessing the functionality of the project
under consideration and determine whether it covers

b o t h c u r r e n t ne e d s a n d f ut u r e
strategic directions. For instance,
i f you a re se lec t i ng a mess a ge
queue, consider whether the un-
d e r l y i n g m e s s a g i n g p r o t o c o l
matches the one prevalent in your
industry and whether the system
can scale in the future to cover

your projected needs. It is equally important to eval-
uate whether the project’s functionality is egregiously
excessive compared to your needs. For example, if you
simply want to compress data that you store in a file,
you may not want to use a multiformat data archiving
library. Selecting a small, focused project over a larger
one has many advantages. In typical cases, such a
choice will offer a reduced storage footprint for your
system, fewer transitive third-party dependencies, a
lower installation complexity, and a smaller surface
vulnerable to malicious attacks.

If an open source project’s functionality nearly fits your
organization’s needs and no other project can satisfy them
completely, you can still use it and make the required
changes on your own. However, under this scenario, you
must more stringently evaluate the elements I outline
later on regarding source code changes and contributions.
See the last column in Table 1.

Digital Object Identifier 10.1109/MC.2019.2940809
Date of current version: 22 November 2019

How to Select Open
Source Components
Diomidis Spinellis, Athens University of Economics and Business

 With millions of open source projects available

on forges such as GitHub, it may be difficult to

select those that best match your requirements.

Examining each project’s product and development

process can help you confidently select the open

source projects required for your work.

104 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE EXPANDED

Licensing
Narrow down your search by examin-
ing whether the project’s licensing1 is
compatible with your business model,
mission, or other software you are us-
ing. Within your project’s source code,
if you directly incorporate elements
licensed under the GNU General Pub-
lic License, then you also must distrib-
ute your code under the same license.
This may be undesirable if your busi-
ness model depends on keeping your
product’s source code under wraps; in
this case, you should be looking for
projects that use more permissive li-
censes, such as the Berkeley Software
Distribution and Apache ones. Simi-
lar concerns apply if you are offering
software as a service, and you plan to
use software licensed under the Affero
General Public License. As another

example, software released under ver-
sion 1.1 of the Mozilla Public License
cannot be linked together with code
licensed under the GNU General Pub-
lic License.

Nonfunctional properties
Evaluate the project’s fit with your re-
quirements by also looking at its non-
functional properties. Is it compatible
with your product’s processor archi-
tecture, operating system, and mid-
dleware? Will it accommodate your fu-
ture expansion plans and directions?
For example, if your product works on
macOS but you’re also eyeing the Win-
dows market, then you should be us-
ing open source libraries supported on
both systems. Is the product’s perfor-
mance compatible with your require-
ments? This is especially important

when selecting a database or a big data
analytics infrastructure. If perfor-
mance is critical, do not assume par-
ticular performance outcomes; rather,
benchmark with realistic workloads.

Popularity
Then consider the project’s popular-
ity. Popularity is important because it
can determine how likely it will be for
your questions to receive answers on
public forums, for volunteers to con-
tribute fixes and enhancements, and
for the project to continue to evolve if
its original developers veer off course
(namely, losing interest or steering the
project toward an undesirable direc-
tion). Simple metrics, such as GitHub
stars, the number of StackOverflow
questions with the corresponding tag,
the download count, and the number
of Google query results are all usually
sufficient to discern the cases that re-
ally matter.

Documentation
The project’s documentation is an-
other aspect that should be examined.
Although most answers regarding a
software’s operation ultimately lie
in the source code, resorting to such
digging for everyday operations is un-
desirable. Therefore, judge how well
the software is documented, both at
the technical (installation and main-
tenance procedures) and user levels
(tutorials and reference manuals).
Although nearly all mature open
source software projects are well doc-
umented, some smaller ones suffer in
this dimension. There are Unix com-
mand-line utilities, for example, that
lack the traditional manual page. I try
to avoid such projects, both to keep
my sanity (life is too short to waste on
hunting down command-line options)
and because such a level of indiffer-
ence toward the end user is often a sign
of deeper problems.

Source code
This brings me to another product
ch a rac ter i s t ic you shou ld check ,
namely the project’s source code and

TABLE 1. Judging the open source project selection criteria.

Attribute Deal breaker

Areas that
may require
investment

Areas
important
for in-house
development

Pr
od

uc
t

Functionality
Licensing
Nonfunctional properties
Popularity
Documentation
Code quality
Build system

Partial
Full

Partial

Pr
oc

es
s

Development process
Code commits
Project releases
Support
Issue management
Acceptance of contributions

FROM THE EDITOR

Welcome back! Open source gives you high-quality software for free. What’s
not to like about this? But wait a second: You need to choose the right open
source component. Making a poor choice for using an open source component
in your products or projects can create serious problems. In this article, well-
known open source expert Diomidis Spinellis takes us through the process of
selecting the right open source component for your needs. Significant thought
should be spent on such a decision, because using an open source component
creates a dependency that needs to be managed, and some dependencies are
easier to manage than others. But more on this topic in one of the next col-
umns. As always, happy hacking! — Dirk Riehle

 D E C E M B E R 2 0 1 9 105

the code’s quality. If you anticipate ad-
justing the project to your needs, then
select projects written in program-
ming languages with which you are fa-
miliar. Even if you don’t plan to touch
the project’s source code, low code
quality can affect you through bugs,
security vulnerabilities, poor perfor-
mance, and maintenance problems.
Again, there’s no need to dig deeply to
form a useful opinion. In most cases,
your objective is to avoid problem-
atic projects, not to perform thorough
due diligence of the code. Look at the
project’s source code files. Are they
named and organized into directories
following the conventions of the proj-
ect’s programming language? Is there
evidence of unit testing? Does the re-
pository also contain elements that it
shouldn’t, such as object and execut-
able files? Open and browse a few files.
Are methods or functions short and
readable? Are identifiers well chosen?
Is the code reasonably commented? Is
the formatting consistent with the lan-
guage’s coding conventions? Again,
serious deviations are often indicators
of more important hidden flaws.

Build process
The quality of a project’s build process
is important for two reasons. Some
organizations reuse open source code
projects through binary distributions,
as libraries, that they link with their
other code or as components that run
on their infrastructure. If your orga-
nization works like this, at some point
you may need to build the binary from
source code to fix a bug or add a feature
required by your organization. Other
organizations (mostly larger ones)
have strict rules against using random
binaries off the Internet and have pro-
cesses for building everything inter-
nally from source (at least once).

Whatever the case, it’s sensible to
check how easy it is to perform a project
build. Is the procedure documented?
Does it work in your environment? Will
you need some rarely used build tools,
an unsupported integrated develop-
ment environment, or a compiler for

an exotic programming language? For
critical dependencies, evaluate these
requirements in the same way that
you’re evaluating the primary open
source project under consideration.

PROCESS
No matter how shiny the open source
project appears to your eyes, you also
should invest some time to examine
how it is produced and managed. This
will affect your experience with it in

the long term and also may uncover
potential pitfalls that weren’t discern-
ible from the product’s examination.

Development process
Start by evaluating the quality of the
project’s development process. Does
the project practice continuous inte-
gration? You can easily determine this
by looking for corresponding configu-
ration files (for example, .travis.yml
or Jenkinsfile) in the project’s root di-
rectory. Examine what the continuous
integration pipeline exercises. Does
it, for example, include static analy-
sis of the code as well as unit testing?
Does it build and spell-check the doc-
umentation? Does it calculate testing
code coverage? Does it enforce coding
standards? Does it check for up-to-date
dependencies? A shor tc ut for a n-
swering these questions are badges
appearing in the project’s GitHub page,
though their significance is not always
a given.2

Code commits
Then look at code commits to the proj-
ect’s revision management repository.
Are commits regularly made by a di-
verse group of committers? Unless the
project is very stable and likely to re-
main so (consider a numerical library),
a lack of fresh commits may imply that

nobody will step in to address new
requirements or bugs. Similarly, com-
mits by a single author or very few sig-
nal that the project suffers from a key
person risk. Also known as a bus factor,
this identifies the danger the project
faces if, for example, a lead developer
is hit by a bus.3 Also, look at the details
of a few commits. Are they clearly la-
beled and appropriately described?
Do they reference any documented
issues that they have addressed using

a standard convention? Is there evi-
dence that code changes and additions
have been reviewed and discussed?

Project releases
Down the road, see how these com-
mits translate into complete project
releases. Are these sufficiently re-
cent and frequent? For cutting-edge
projects (say, a deep-learning library),
you want to see regular updates; for
more stable ones, you’re looking for
evidence of maintenance releases. In
some cases, frequently integrating
new releases of an open source com-
ponent into your code base can be
disruptive, due to the risks and addi-
tional work of this process. To avoid
these problems, check for a separate
release channel for obtaining only
security and other critical fixes. Addi-
tionally, to minimize the disturbance
associated with bringing in major up-
dates, see if there are so-called long-
term support releases and determine
whether their time horizon matches
your project’s pace.

Support channels
Source code availability is an excellent
insurance policy for obtaining support
because it allows you to resolve issues
and fix bugs within your organization;
“Use the source, Luke,” to paraphrase

Software released under version 1.1 of the Mozilla
Public License cannot be linked together with code

licensed under the GNU General Public License.

106 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE EXPANDED

a line from Star Wars. Such measures,
however, are typically extreme. When
using open source software, a help-
ful support forum is usually the most
practical way to resolve such problems.
Consequently, look for the project’s
available support channels. Is there an
online forum, a mailing list, or a chat
group where you can ask questions?
Do useful answers arrive quickly? Are
respondents supportive and friendly?

In my experience, the quality of a
project’s technology and its support
are orthogonal. Some projects with
mediocre quality code offer excellent
support and vice versa. For enterprise
scenarios where it’s not prudent to rely
on volunteer help for resolving critical
issues, you may also wish to examine
the quality of paid support options of-
fered through specialized companies,
consultants, or products.

Handling issues
Inevitably, at some point, you’re likely
to encounter a bug in the open source
project you’re using. Therefore, it’s
worth examining how the project’s
volunteers handle issues.4 Many open
source projects offer access to their
issue management platform, such as
GitHub Issues, Bugzilla, or Jira, which
allows you to look under the hood of
issue handling. Are issues resolved
quickly? How many issues have been
left rotting open for ages? Does the
ratio between open and closed is-
sues appear to be under control, that
is, in line with the number of project
contributors?

Contributing fixes
and enhancements
Another scenario down the road con-
cerns the case where you make some
changes to the project’s source code,

either to fix a bug or add a new fea-
ture that your organization requires.
Although you can keep your changes
to yourself, integrating them into the
upstream project safeguards their con-
tinued availability and maintenance
alongside new releases (in addition to
it being the proper thing to do).

Evaluate how you’ll fare in this case
by examining how easy it is to con-
tribute fixes and enhancements. Is

there a contributor’s guide? If you’re
using the project as a binary package,
is it easy to build and test the project
from its source code? Through what
hoops do you have to jump to get your
contribution accepted? Is there an ef-
ficient method by which to submit
your changes, for example, through a
GitHub pull request? Does the project
regularly accept third-party contribu-
tions? Note that some organizations re-
lease projects with an open source code
license but allow little or no code to be
contributed back to their code base.

A ll 13 evaluation criteria I’ve
outlined in Table 1 are im-
por ta nt, a nd ta k i ng t hem

into account can spare you unpleasant
surprises and the cost of switching
from one project to another. Further-
more, you can use Table 1 as guidance
on how crucial some criteria are in
specific contexts. Specifically, those
identified in the first colored column
can be deal breakers. In addition, if
you identify problems with the yel-
low-marked criteria in the second
column, this means that you’ll need
to build in-house capacity to support
the corresponding open source proj-
ect. Finally, if you decide to support
the project with in-house resources,
then the green-marked components

in the third column become more im-
portant. Ultimately, all of these checks
will help to ensure a long, happy, and
prosperous relationship with the open
source components you’re selecting
for your work.

ACKNOWLEDGMENTS
I thank Zoe Kotti and Alexios Zavras, who
made many helpful suggestions in an
earlier version of this article.

REFERENCES
1. A. Morin, J. Urban, and P. Sliz, “A

quick guide to software licensing
for the scientist-programmer,” PLOS
Comput. Biol., vol. 8, no. 7, pp. 1–7, 2012.

2. A. Trockman, S. Zhou, C. Kästner,
and B. Vasilescu, “Adding sparkle to
social coding: An empirical study of
repository badges in the npm ecosys-
tem,” in Proc. 40th Int. Conf. Software
Engineering, 2018, pp. 511–522.

3. K. Yamashita, S. McIntosh, Y. Kamei,
A. E. Hassan, and N. Ubayashi,
“Revisiting the applicability of the
Pareto principle to core develop-
ment teams in open source software
projects,” in Proc. 14th Int. Workshop
Principles of Software Evolution, 2015,
pp. 46–55.

4. T. F. Bissyandé, D. Lo, L. Jiang, L.
Réveillère, J. Klein, and Y. L. Traon,
“Got issues? Who cares about it?
A large scale investigation of issue
trackers from GitHub,” in Proc.
IEEE 24th Int. Symp. Software Reliabil-
ity Engineering (ISSRE), 2013,
pp. 188–197.

DIOMIDIS SPINELLIS is a professor
of software engineering and head
of the Department of Management
Science and Technology, Athens
University of Economics and
Business. His most recent book is
Effective Debugging: 66 Specific
Ways to Debug Software and
Systems. He is a Senior Member of
the IEEE and ACM. Contact him at
dds@aueb.gr.

A lack of fresh commits may imply that nobody will
step in to address new requirements or bugs.

