
92 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 9 © 2 0 1 9 I E E E

Open source continues to change the soft-
ware landscape. More and more parts of our
world are being driven (literally) by software,
and more and more of that software is open

source. This is fantastic in so many ways. In this article,
I focus on getting started with governing open source use
and contributions.

Governing your open source use is the right thing to do
for your company and for the open source community. Your
governance program will identify and mitigate security, le-
gal, and community risks. It will also build up your team’s
confidence, enabling them to be more productive. At the
same time, you will be more responsible about licensing

terms and more likely to participate
in the project communities.

CREATING AN
OPEN SOURCE PROGRAM
Adopting open source is a signifi-
cant initiative and should be struc-
tured as such. You need a champion
to drive the vision, an executive
sponsor for air cover and resourcing,

and an explicit set of people and resources to deliver the
effort. In short, you need an open source program.

The program’s role is to make explicit the goals, policies,
and mechanisms around open source. What are you trying
to accomplish with open source? What are your biggest op-
portunities? Risks? What kind of talent do you need? Who
makes the decisions? Setting up a program means answer-
ing those questions and more. Doing that in a coordinated
way avoids duplication and ensures a more coherent and
consistent approach across your organization. Such a pro-
gram may be concentrated in one team, based in an open
source programs office (OSPO), loosely structured as a
virtual team, or, on a smaller scale, made up of passion-
ate volunteers.

In many ways, open source adoption in an enterprise
setting is more about changing culture than it is about

Digital Object Identifier 10.1109/MC.2019.2929568
Date of publication: 24 September 2019

Getting Started
With Open Source
Governance
Jeff McAffer, GitHub

Using and managing open source is essential

in modern software development. Here we lay

out a framework for thinking about open source

engagement and highlight the key steps in

getting started.

OPEN SOURCE EXPANDED

O C T O B E R 2 0 1 9 93

technology or licensing. Interacting
with and depending on open source
communities is very different than in-
ternal development and affects nearly
every part of product development
from planning to delivery. The open
source program should identify where
the company is now and where it wants
to be, and it should plot a course to get
there. Websites of the TODO Group
(https://todogroup.org) and the Open
Source Guides (https://opensource
.guide) have many articles on how
to think about and engage with open
source from multiple points of view.

WHERE ARE YOU NOW?
To help structure your open source
journey, it’s useful to identify a few
m i lestones a long t he way. T here
are a few different open source “en-
gagement model” ta xonomies out
there. Allison Randal’s blog “Capa-
bilities for Open Source Innovation”
(https://allisonrandal.com/2017/11
/ 25/c apa bi l it ie s-f or- op e n-s ou rce
-innovation-background) is a good
e x a mple. I put toge t her a n open
source engagement model (https://
mcaffer.com/2019/02/Open-source
-engagement) based on the work I was
involved in while transforming Micro-
soft to be an open source enterprise.

T h is model, sum ma r ized ne x t ,
captures discrete states of open source

engagement. Most teams are simul-
taneously at multiple engagement
stages. That’s fine. There is also no
“best state.” Being proficient is more
than adequate for many, while others
seek to become masters. The point
of the model is to help understand
where you are and intentionally plot a
course to where you want to be.

A great way to use the model is to
test for each characteristic how the
following phrases feel when applied
in the context of your company:

› “My team’s approach to open
source is ”

› “The value of open source to my
team is ”

Open Source Engagement Model
› Denial

○ Denial: Somehow open source
does not apply to your domain
or is the wrong approach.

○ Prevention: Technical, legal/
process, or regulatory barri-
ers are put in place to block
consideration of open source.

○ Countering: Open source is at-
tacked with fear, uncertainty,
and doubt.

› Tolerant
○ Limited: Open source is used

grudgingly and allowed only
in pockets.

○ Experimental: Open source is
embraced by some early adopt-
ers deeply engaged in isolated
areas; some releasing occurs.

○ Ad hoc: Processes and policies
are localized; the environ-
ment ranges from Wild West
to locked down; outcomes are
inconsistent.

○ Fearful: Emphasis is placed
on limiting risks; sequester
teams are formed; engage-
ments are tightly scoped.

○ Not rewarded: No career in-
centives are offered for work
related to open source; disin-
centives discourage “risky”
behavior.

› Hype
○ Silver bullet: Open source is go-

ing to transform the company!
○ Marketing: All the cool kids are

doing it. We want to be cool, too.
○ Recruit/retain: Emphasis is

placed on high-profile, high-
volume “open source” hires.

○ Incoherent: Engagement is not
coordinated or localized, or
there are no policies/processes
put in place.

› Proficient
○ Systematic: Central policies

and processes are developed
around legal and security
topics.

○ Tooled: Tooling is in place to
track and guide open source
engagement.

○ Broad: All teams are free to
engage and understand the
“rules of the road.”

○ Engaging: Work with commu-
nities is encouraged; fixes/
features are contributed.

○ Efficient: Open source is seen
as a valuable tool to reduce
time to market.

› Fluent
○ Value: The business under-

stands the value that use/

FROM THE EDITOR

Welcome back to the world of open source! Previous articles in this column
reviewed open source licenses and obligations to observe when using open
source in products. Realizing the complexity of such undertaking typically
leads companies to the creation of an open source program office to govern
the use of open source. In this article, Jeff McAffer, who started and ran the
Microsoft Open Source Programs Office before recently moving on to work for
GitHub, helps us understand what to do when setting up shop: that is, getting
started with an open source program office. He provides both clear concepts
and practical advice, and I expect (well, I know) that the next articles in this
column will continue to help practitioners with putting open source to good
use. Happy hacking! — Dirk Riehle

EDITOR DIRK RIEHLE
Friedrich Alexander-University of Erlangen Nürnberg;

dirk.riehle@fau.de

94 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE EXPANDED

release does and does
not bring.

 ○ Fundamental: The company
bets on using or releasing
open source to support core
capabilities.

 ○ Rationalized: Policies and
processes are continually
reassessed and automated.

 ○ Open: Technical and process
discussions default to open.

 ○ Healthy: Engagement health is
integral to engineering/busi-
ness reporting.

 ○ Rewarded: Open source en-
gagement is explicitly recog-
nized as a valued activity.

 › Mastery
 ○ Integral: Open source is in-

tegral to the business model
from the beginning.

 ○ Liberating: The business under-
stands the true value it adds and
builds on that with open source.

 ○ Disruption: The business
recognizes open source as
a means of disrupting and
quantum innovation.

 ○ Shared control: The company
embraces the idea of open
source in “coopetition” and for
use in foundations, community
initiatives, and joint projects.

 ○ Proactive: The company sees
open source as a tool to engage
broadly for improving quality
and security.

WHERE DO YOU
WANT TO BE?
Using this model, you can both under-
stand where you are now in your open
source engagement and where you
want to be. What state matches your
business goals? Without matching
concrete, durable business goals, your
open source program will waver and

evaporate. Open source is a long-term
investment.

There isn’t a “best destination” here.
It all depends on your goals, and your
goals will change over time as will
your target engagement state. The key
is understanding the change and what
it means. What concrete steps will you
take to move from proficient to fluent
or to make your engagement more ra-
tionalized? The model is here to help
you choose your own adventure.

THE JOURNEY TO
PROFICIENCY
Since this article is mostly about getting
started, we’ll assume you are aspiring to

be proficient. Proficiency is all about set-
ting up the virtuous pair of tasks: smooth-
ing the path for open source engagement
and starting to change the culture.

You can tool open source engage-
ment all you want, but if your organi-
zation structure does not encourage
or recognize it, your teams will not
engage. Conversely, trying to get every-
one to engage won’t work if the policies
and mechanisms around engaging are
cumbersome.

Culture
Driving the change to open source
is like any other initiative: you need
to tell your team what it is and why
the change is needed, outline the op-
portunities and challenges that will
likely come with the change, and talk
about expectations. Investments here
will pay huge dividends later both in
satisfaction and in ease of adoption.
Your culture initiatives should reflect
where you are and where you want to
be on the engagement spectrum.

Make no mistake: changing the
culture will be one of the biggest chal-
lenges. Software is easy. People are
hard. Overcommunicate. Engage all

stakeholders and constituents. Rec-
ognize that open source engagement
goes far beyond libraries of code. For
developers, it can strike at the core of
their self-image as people who write
the code. For managers, you are asking
them to invite strangers into their sys-
tems and development processes. For
executives, this change relinquishes
some level of control over your busi-
ness and forces (enables really) you to
focus on your core business value.

Again, do not underestimate the
challenges here. Champions and exec-
utive support are key.

Policy
Tooling open source governance starts
with policy. Policy should be a reflec-
tion of the culture and operations you
want to have. Policy codifies the oppor-
tunities you want to enjoy and risks you
want to avoid. A good policy for open
source use should be the following:

 › Automatable. Automatable
policies focus on outcome or
end state and leave out process
and implementation details. A
policy that requires “suitable
confidence from legal” can be
automated whereas “legal must
sign off on uses” is not.

 › Minimal. Minimal policies avoid
the many hypothetical risks and
focus on what actually matters
to your situation.

 › Scenario driven. Open source
licensing terms vary by scenario
as does business risk. Take this
into account.

 › Uniform. Having many variations
across the company confuses the
teams, inhibits collaboration,
and frustrates tooling efforts.

 › Revised. The industry changes;
your business changes; your un-
derstanding changes. Iterate on
your policies to remove friction,
increase confidence, and main-
tain relevance.

Ensure the data your policy require
are widely available and unambiguous

Make no mistake: changing the culture
will be one of the biggest challenges.

 O C T O B E R 2 0 1 9 95

in both their definition and their use.
Avoid duplicating data requirements
and be sure to clearly identify plausi-
ble sources of the data needed. For ex-
ample, don’t ask developers to identify
licenses. Those data are readily avail-
able, and developers generally don’t
understand licensing.

When putting together the policies,
as with driving culture, include all of
the stakeholders. Once you all under-
stand you are on the same side, amaz-
ing things will happen. The key to that
is getting on the same terms. By far,
the most contentious and drawn-out
discussions will be due to differing as-
sumptions and terminology. After all,
you have lawyers, developers, security
folks, and businesspeople all trying to
get on the same page. Take the time to
nail down the nouns and verbs.

Inventory
Modern development involves using
hundreds, if not thousands, of open
source components. It’s trivial to type
“npm install” or “docker build” and get
all manner of open source in your sys-
tem, each with its own community, li-
cense(s), potential vulnerabilities, and
so on. Detecting, tracking, and manag-
ing your inventory of open source are
the core jobs of a governance system.

The automated detection of open
source is essential. Even the most dil-
igent development team will quickly
tire of manually listing all of the open
source they use. Keep in mind that it’s
not just your direct dependencies, it’s
all dependencies that you have to track
and manage. A vulnerability or unfor-
tunate license can appear anywhere in
the dependency graph.

Anecdotally, it appears that manual
reporting will track only 10–20% of com-
ponents overall. Even if your team does
manage to do the mind-numbing work
of manually listing out each version of
each component being used, as soon as
they finish, and with zero changes on
their side, a new “install/restore/update”
could change the graph significantly.

The mechanisms for detecting the open
source you use vary by ecosystem. NPM

users may be able to simply observe their
package-lock.json file. Maven, NuGet,
and Go users have a bit more work to do.
There are a number of open source and
commercial solutions for this. If you are
on GitHub, various types of dependen-
cies found in your repositories are de-
tected and surfaced for you. Either way,
get a tool/system and use it. Your devel-
opers will love you for it. Open source
governance tooling will be covered in a
future column.

Data and Insights
Knowing what open source you are us-
ing is half the battle. The other half is

understanding the nature of the com-
ponents. What licenses are involved?
Do they have security vulnerabilities?
Who’s behind the projects? Are the
communities healthy? These data en-
able you to make decisions about the
open source you use. Having quality,
machine-readable data enables auto-
mated policy evaluation.

Unfortunately, there is very little
consistency to the availability, accu-
racy, or form of the data today. Only
an estimated 60% of vulnerabili-
ties are noted in the common public
vulnerability databases (https://res
.cloudinary.com/snyk/image/upload
v1 55 117 2581/ T he -St ate - O f- O p e n/
-Source-Security-Report-2019-Snyk
.pdf). About 35% of Maven packages
have missing or ambiguous licensing
(https://clearlydefined.io/stats). Those
are pretty big gaps.

Often the toolset you use to get
i nventory will also have licensing
and vulnerability data that will, at
least partially, fill these gaps. That’s
great. There are other freely available
sources of data. For example, Clear-
lyDefined (https://clearlydefined.io),
a crowd-sourced effort to clarify open
source project data, is a good place

to get compliance and project infor-
mation. GitHub recently announced
support for maintainer security ad-
visories (https://help.github.com/en/
articles/about-maintainer-security
-advisories) in a bid to increase report-
ing on vulnerabilities.

Community health is a nascent
field with ongoing work best typified
by the CHAOSS project (https://chaoss
.community/). That project has identi-
fied metrics you can use to assess the
diversity, inclusivity, evolution, risk,
and value of open source projects. One
metric, for example, is the bus factor,
“the minimum number of team members

that have to suddenly disappear from
a project before the project stalls due
to lack of knowledgeable or compe-
tent personnel” (https://en.wikipedia
.org/wiki/Bus_factor).

These data and insights help you
make smar t choices and manage
ongoing engagement. They answer
questions about policies and help
identify areas were your program is
at risk and where you can best con-
tribute to the ecosystem on which
you depend.

Automation
The policy, inventory, and data dis-
cussed come together as the basis for
automation. Automation is the key to
smoothing the process and generating
the confidence you need to know you
are “doing it right” for the situation at
hand. That last part is important: the
situation at hand.

Many policy choices are highly de-
pendent on the scenario. For example,
different considerations are required
depending on whether you are contrib-
uting to a project with a contributor
license agreement or a developer cer-
tificate of origin, using certain licenses
in distributed versus cloud software,

Modern development involves using hundreds, if
not thousands, of open source components.

96 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE EXPANDED

or using vulnerable components inter-
nally rather than in a client application.
Your automation should apply your pol-
icy to the inventory using the data and
scenario to determine the outcome.

Done right, governance automa-
tion should be entirely invisible to
your teams until something unusual
happens. For example, with a pow-
erful policy, accurate inventory, and
high-quality data, the Microsoft OSPO
team manages millions of open source
uses with less than 1% requiring hu-
man interaction.

Many open source and commercial
tool sets are available to help you drive
this type of automation and become pro-
ficient. As with the inventory automa-
tion, get one and use it. You’ll be thankful.

BEYOND PROFICIENT
This discussion has largely focused on
open source use. With use naturally

comes the contribution of bug and
documentation fixes and new features
or design ideas. Treating the open
source you use as though it were your
own code is a sure sign of proficient
engagement.

Another way to start using open
source is through corporate acquisi-
tions. Just as your products are increas-
ingly based on open source, so too are
those of would-be acquisitions. When
you buy a company, you are buying its
governance. Use the model and con-
cepts here to compare the target’s gov-
ernance to yours and look at how its
policies were implemented. That will
tell you a lot about how well the com-
pany’s software fits into your world.
For potential targets, bear in mind
that acquiring companies will want to
know all this information and that ret-
roactive discovery is way more expen-
sive. Not only is proactive governance

the right thing to do, it will make you a
more attractive target.

Releasing your own code as open
source is also a natural progression.
The concerns here are somewhat dif-
ferent, but releasing too requires pol-
icies, tooling, and data. For example,
your policy should address processes
for approving the release of intellectual
property, managing patents, licensing,
handling community development and
governance, reviewing business goals,
and more. You should have tools that
manage the creation and structure of
public repositories, and insights that
measure community reach and en-
gagement. But these are topics for an-
other article.

JEFF MCAFFER is senior director
of product at GitHub. Contact him at
jeffmcaffer@github.com.

For more information on paper submission, featured articles, calls for papers,
and subscription links visit: www.computer.org/tsusc

SUBSCRIBE AND SUBMIT

IEEE TRANSACTIONS ON

SUSTAINABLE COMPUTING
SUBMIT
TODAY

Digital Object Identifier 10.1109/MC.2019.2937706

