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Abstract

Continuous deployment can reduce the time from a
source code change to a newly deployed application
significantly. Increased innovation speed can make all
the difference in a competitive market situation. How-
ever, deploying at high frequency requires high speeds
of  discovering bugs in  the deployed  software.  Using
the JDownloader file download manager as our exam-
ple, we present a fitness model to evaluate a continu-
ously deployed software during operation for expected
behavior, present the design and implementation of a
monitoring component, and evaluate the model and its
implementation using data from JDownloader’s multi-
million member strong user base. Our evaluation finds
that there had been thousands of undetected bugs, and
that newly created bugs can be detected and reported
16 times faster than before.

1. Introduction

Continuous deployment (CD) is the process of de-
ploying software continuously and automatically into
production. JDownloader (JD) is a file download man-
ager with more than 20 million users. Since 2012, the
JD development team has been using CD to roll  out
new features, bug fixes, and other changes to applica-
tion users at high frequency. In 2013, a custom build
system  and  an  incremental  update  service  launched.
These  services  are  able to  build,  test,  and  deploy to
production  a  change  to  the  version  control  system
(VCS) within 5-10 minutes. It then can take less than
20 minutes until an end-user benefits from a bug fix
committed to the VCS. 

The code of the JD application can be split into a
core, developed and maintained by company Appwork
GmbH,  and  more  than  thousand  plugins,  developed
and maintained by an open source community.  Only
Appwork employees can build the core system. 

The plugins give JD its main functionality. A plugin
parses a website to find a download link. If something
changes on the website,  a  plugin may stop working.
CD is used to run a fully automated plugin build, test,
and  deploy  cycle  whenever  a  developer  commits
changes to the VCS. Until 2012, detecting a malfunc-

tioning plugin,  generating a bug report  and notifying
the developer was a slow and manual procedure. 

For CD to work, it is paramount that bugs put into
production are recognized as fast as possible. The old
mechanism of determining and reporting bugs was un-
suited to the fast development cycle that the new build
system enabled. This article therefore presents the JD
“immune system”, a monitoring system and its under-
lying concepts that drastically cuts the time needed to
detect anomalous behavior in production. The contri-
butions of this article are the following:

1. Presentation of a fitness model to evaluate the cur-
rent state of a system

2. Design and implementation of a software that im-
plements this model

3. Evaluation of  the model usin  g  data from JD’s
multi-million user base

After reviewing related work in Section 2, in Sec-
tion 3 we present a mathematical model for a fitness
time series that can be used to detect anomalous behav-
ior. Section 4 then details the design and implementa-
tion of this model in the JD application. Section 5 eval-
uates this model using data gathered from operating it
with real users for several months. Finally, Section 6
presents conclusions and outlines future work.

2. Related Work

2.1. Continuous Deployment

Continuous deployment (CD) emerged in the web
application domain. Changes can be made without user
interaction. Companies like Amazon measure time be-
tween deployments in seconds [29]. The impact of con-
tinuous delivery on web applications has been analyzed
at Rally Software [17], Facebook and OANDA [22].

The increased  frequency of  software  releases  en-
abled by continuous deployment methods has sparked
broad interest. Systematic literature reviews have been
published on the topic [13] [19] [10]. Regarding soft-
ware quality, these reviews report mixed results.

Mobile applications, notably Android applications,
deal with a multitude of hardware devices,  operating
system  versions,  geographic  differences,  network
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providers, and network failures. The application testing
scenario is comparably complex. In contrast to web- or
cloud-based  solutions,  updates  cannot  be  deployed
without the user’s explicit permission leading to multi-
ple versions installed on customer  devices  that  must
continue to work as intended. Also, updates can only
be distributed via the operating system provider’s tools
(iOS App Store, Android Play store). This makes the
update frequency not  only dependent  on user  accep-
tance but also on the diligence of those providers. 

In a case study of mobile software deployment at
Facebook, Rossi et al. confirm that CD practices do not
negatively  impact  software  quality  [20].  Crash  rates,
the number of identified critical issues and the number
of fixes necessary after the creation of a release branch
have remained constant or decreasing despite shorten-
ing release cycles from four weeks to two weeks (iOS)
or one week (Android). Other studies [14] suggest that
more frequently updated apps correlate with higher rat-
ings in Google’s Play store.

We found little research on continuous deployment
in open source projects, perhaps because most projects
have a clear separation between the source code and
any (of many) deployed versions of the software. One
survey by da  Silva  et  al.  [25] finds that  while  open
source projects frequently release, in there large sample
of projects there was only one with “continuous flow”,
which is similar to continuous deployment.

Most non-open-source examples emphasize the im-
portance  of  testing  through  automated  pipelines  and
manual tests. Facebook contracts a manual test team of
roughly 100 people [20]. This approach is not feasible
for many types of projects and companies. Some apply
methods  to  test  applications  with  real  users  either
through opt-in  alpha  and  beta  programs or  by  using
techniques like canary releases or dark launches [22]
[3]. Jiang et al.’s work on the economics of public beta
testing shows beta tests have a positive impact on soft-
ware quality as well as market success through word-
of-mouth effects [9]. Rodriguez et al. identify user in-
volvement through canary releases and dark launches
as an area with a distinct lack of research [19]. 

2.2. System health monitoring

Ghosh et al. define self-healing as “[…] the prop-
erty that enables a system to perceive that it is not op-
erating correctly and, without (or with)  human inter-
vention, make the necessary adjustments to restore it-
self to normalcy. Healing systems that require human
intervention or intervention of an agent external to the
system can be categorized as assisted-healing systems”
[4]. Following this, we consider the JD immune system
to be an assisted self-healing system. 

For JD, system recovery requires human interven-
tion, which is why we focus on literature on failure de-

tection. Early research includes a statistical model for
predictive  failure  detection  [7]  and  a  proposal  for
anomaly  detection  through gradually relaxing  invari-
ants [6]. Gross et al. provide a framework for detecting
software anomalies; they identify four crucial aspects
for such a system: Data management libraries, statistic
modeling  tools,  corrective  action  strategy  support
tools, and an adequate software architecture [5]. Ivan et
al. describe a self-healing system for a mobile applica-
tion where the architecture is similar to the one we de-
signed  for  JD [8],  while  Kumar  & Naik  extend  the
model towards autonomic computing [11]. Moran et al.
continue the research on self-healing for mobile sys-
tems and  provides  strategies  for  monitoring  Android
applications to discover and report application crashes
[16].  Sahasrabudhe et  al. describe application perfor-
mance monitoring as a sequence of four steps: Moni-
tor, analysis, recommendations, and action [21]. They
present a case study of their model showcasing the use
of dashboards showing information to application de-
velopers. Their notion of availability as a metric corre-
sponds well to the notion of “application fitness” we
apply to the JD example. Chen et al. and Ye at al. pro-
vide  a  more  recent  application  of  self-healing  tech-
niques in cloud software [2] [31]. 

Suonsyrjä  et  al.  point  out  that  collected  post-de-
ployment data can not only be used for error detection
but  also for  creating a feedback  loop regarding cus-
tomer satisfaction with the software [27].

Silva describes four approaches to detect errors in
deployed software systems [26].  Systems-level  moni-
toring, failure detection at the application layer, error
detection by log analysis, and remote detection of user
failures. However, no consistent definition of abnormal
behavior is given. In this paper, we build on techniques
originally  developed for  network  monitoring by J.D.
Brutlag [1] and Evan Miller [15] using the Holt-Win-
ters Forecasting algorithm. Szmit & Szmit summarize
more applications of this algorithm for anomaly detec-
tion  in  network  monitoring  [28].  Sharifi  et  al.  show
how neural networks can be used to predict failures in
web applications [24].  Wang & Wan develop a  self-
healing model for systems of systems using stochastic
differential equations and Brownian Motion [30].

3. A Fitness Model

This  section  introduces  a  mathematical  model  to
track JD plugin behavior over time and to assess it. De-
tails beyond this section can be found in our technical
report [18].

3.1. Anomalous Behavior

JD consists  of  a  software  core  that  is  extend  by
about 1,230 so-called “hoster plugins”. A hoster plugin
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is a software extension (of the core) that can download
files from one or  more specific  hosting service.  The
core does most of the work, but for downloading from
a  given  website,  the  core  calls  out  to  the  matching
hoster plugin. Some hoster plugins are able to down-
load  from multiple  web  services.  To  date,  there  are
roughly 2,800 different variants. The interface between
the core and the plugins is always the same.

A JD hoster plugin exhibits anomalous behavior, if
the plugin does not work as intended. Usually, the file
download  does  not  work.  To a  certain  extent  this  is
normal.  Many  external  issues  may  lead  to  a  failed
download.  Web servers  may be down,  firewalls  may
block requests,  Internet  Service Providers  (ISP)  may
block  access,  man-in-the-middle  applications  may
modify the loaded resource and thus break the plugin’s
parser, or the requested resources may not be available
in the region they were requested from. 

However, a plugin may also stop to work due to a
bug, for example, in the plugin’s parsing function for a
website. This can happen, for example, if an external
website changes or if a developer commits faulty code.
Many of these plugin issues cannot be found by auto-
mated tests:

• Many plugins require user interaction (e.g. solving
a CAPTCHA challenge, or entering a password)

• About  40-50%  of  all  downloads  require  a  paid
premium account.  Buying all  these  accounts  for
testing reasons would be too expensive.

• Downloads in free (not paid for) mode are often
restricted. For some services, the user has to wait
for up to 24 hours between two downloads.

3.2. Fitness function

Tracking anomalous behavior (logging plugin fail-
ures), creates a time series of successful and failed file
download attempts. A time series can be split into in-
tervals of different length. We use an observation inter-
val of 1 hour. By tracking each download attempt and
its result, usage and error values can be calculated for
each interval.

(1)
usage=∑

t=0

1hour

download _ attempt t

(2)
errors=∑

t=0

1hour

failed _ download _ attempt t

Captured as a time series, both values show typical
network metrics regularities: A trend over time, a sea-
sonal cycle, a seasonal variability, and a gradual evolu-
tion of these regularities [1]. We next merge the usage
and  errors value to a single fitness value. The fitness
values are calculated by dividing the amount of  error
events by the usage events at the given point in time t.

If there is no known usage at point t, the fitness func-
tion is undefined and its calculation is skipped.

(3)
fitness(t)=1−

errors( t)
usage(t )

This does not only reduce the metrics to a single
value, but also eliminates all of the regularities above.
The resulting time series has the following properties:

• The value is a percentage between 0% (worst) and
100% (perfect): A perfect fitness series has a con-
stant fitness of 100%. 

• General high variability.  The usage may change
spontaneously due to external influences like net-
work problems.

• Higher variability for unpopular plugins. Some
plugins are rarely used. The volume might be too
small for a stable series.

3.3. Threshold Considerations

Detecting  an  error  means  detecting  a  significant
drop of the fitness value. Brutlag’s approach [1] of pre-
dicting a confidence band estimates an upper and lower
boundary of acceptable fitness values for each point in
time. This is not necessary, because there is only an er-
ror  if  the fitness value is  below the lower boundary.
Therefore, we do not use a confidence band, but rather
a threshold that defines the lowest acceptable value.

We found that a static threshold is impracticable. If
a plugin detects that its parser is out of date, it should
throw a “Plugin Defect Exception”. If there is a net-
work issue, the plugin should terminate with a different
error  type.  Unfortunately,  plugins  often  don’t  do  so,
resulting in tracking the wrong error code. This is why
there are plugins that work perfectly well at an average
fitness value of 50%, and others that have a “perfect
level” of 90%. As described in Section 3.1, errors are
normal up to a plugin-specific value,  and thus affect
the “perfect level”. We therefore need automated  de-
tection of the “perfect-level” for each plugin. 

If we were to rely on the “perfect level” as a thresh-
old, we would get many false positives caused by ex-
ternal problems. An unstable web service interface, for
example, often results in short-time drops of the fitness
metrics. To avoid false positives, a second threshold is
used.  It’s  based  on  an  Exponential  Moving  Average
(EMA)  trend  line.  In  contrast  to  the  “perfect-level”,
this “trend indicator” slowly follows a long-term trend
and is able to detect sudden trend changes even if we
are already below the “perfect level”. 

This leads to three states: 

 Normal.  The plugin works well. Fitness is above
“perfect level” and the trend indicator.

 Problematic. There might be a problem. Fitness is
below the “perfect level” or the trend indicator.
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 Anomalous. There is a problem. Fitness is below
the “perfect  level” and the trend indicator.  If  an
anomalous  state  is  ignored  for  a  long  time,  the
state  will  change  to  “Problematic”,  because  the
trend indicator will handle the error as a trend in-
stead of an exception.

3.4. Algorithm definitions

Several algorithms are required for the model.

3.4.1. Moving Average (MA)
The MA algorithm in Equation 4 is the simplest al-

gorithm to smooth a data series. It assigns each point in
time t the average of all values in a time range of tMA.
toffset can be used to shift the range in time. A toffset of 0
means that all points are before or equal to  t.  x is the
time series to smooth, e.g. fitness(t), usage(t), errors(t).

(4)
mat MA

toffset ( t )=
1

tMA
∑

t rel=−t MA

0

x (t+t rel+ toffset)

3.4.2. Moving Variability (MV)
The MV algorithm in Equation 5 extends the MA.

It generates the MA for each point in time, and the av-
erage relative deviation of the current value to the MA
over the time frame tMA.

3.4.3. Exponential Moving Average (EMA)
The EMA algorithm is  used  several  times  in  the

model. In contrast to the simple MA, the EMA can be
considered as a weighted moving average that uses an
exponential function to give higher relevance to newer
events. Because the calculation of ema(t+1) always re-
quires  ema(t),  this  is  an  incremental  algorithm.  The
model parameter  β  defines how fast the relevance of
old values decay. Again, x is the time series to smooth,
e.g. fitness(t), usage(t), errors(t).

(6) ema (t+1 )=β ∙ x (t )+(1−β ) ∙ ema (t )

(7)
β=

2
tEMA+1

Like in Equation 4, tEMA can be seen as the number
of hours passed, which are used to calculate the next
prediction. This leads to the formula in Equation 8.

Because  the  EMA algorithm  is  incremental,  we
need a start condition for ema(t-1). Thus, we simply de-
fine  ema(t-1)=x(t0),  and  decrease  β  in  each  round  r,
leading to Equation 9. The downside of this start condi-
tion handling is that smoothing slowly gets better from
0% for r=1 to 100% for r >= tEMA.

(9)
β=

2
min  ( tEMA ,r )+1

An example is shown as Equation 10.

3.5. Trend Indicator Line

Several steps are required to get a trend indicator
line  (TIL).  This  section  introduces  the  underlying
model. It consists of the following steps:  f(t) → ma(t)
→ ema(t) → til(t). 

1. Starting with the fitness time series  f(t),  we first
use the MA algorithm from Equation 4 to smooth
the time series ma(0, tMA, t). The model parameter
tMA  has  to  be  defined  empirically  and  should  be
higher for low usage values to increase smoothing,
if there is not enough data to get a stable series. 

2. Afterwards, the EMA algorithm from Equation 8
performs another  smoothing  round,  giving  more
weight on the latest fitness values series ema(tEMA,
t).  Like  before,  the  smoothing  model  parameter
tEMA should be derived from the average usage of
the plugin. Because this EMA-step is a long-term
trend line, tEMA should cover several days. 

3. Finally, the allowed deviation from the  ema(tEMA,
t) trend line is subtracted from the trend line. This
deviation should be derived from the average fit-
ness value and the variability at that point in time.
This approach tries to eliminate the high variance
in the variability described in Section 3.2. Fitness
values above 90% are considered as fine, and val-
ues below 55% indicate an error.

3.6. Perfect Level Detection

Figure  1  shows  the  fitness  time  series  during  a
three-month measurement period in 2014. 

The Perfect Level Detection (PLL) algorithm finds
the highest density of fitness values. Figure 1 shows a
high density of fitness values between 6,000 (60%) and
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(5)
mv tVA

toffset (t )=
1

tVA
∑

trel=−tVA

0

|x (t+t rel+ toffset )−mat VA

t offset(t+ trel)|

(8)
emat EMA

(t+1 )=
2

tEMA+1
∙ x (t )+(1−

2
tEMA+1 ) ∙ ematEMA

(t )

(10)
β0=

2
1+1

=1; β1=
2
3

; β2=
1
2

; β3=
2
5

;…; β t EMA
=

2
tEMA+1



7,500 (75%). The PPL then is derived from the lower
edge of this band. It consists of the following steps: f(t)
→ ema(t) → DF(ema(t)) → ma(t) → til(t).

1. At  first,  the  raw  fitness  series  is  smoothed.  An
EMA with a dynamic model  parameter  prepares
the series for the next steps.

2. Based on  ema(t), a Frequency Distribution Func-
tion (DF, Equation 11) is aggregated.

(11)
DF (ema(t))=∑

i=1

n

1 {x i=ema(t)}

This is best explained with an example: The goal
is to get a function DF(f) for 0% <= f <= 100%.
DF(0) is the count of all intervals in which ema(t)
= 0. If there are 10 intervals with a fitness value of
10,  then  DF(0) = 10.  To simplify the following
“hill” detection,  DF(f)  should get smoothed radi-
cally. An  MA with a model parameter of 4% and
an offset of 2% is used. Without the offset, the MA
would  shift  the  “hill”.  Figure  2  presents  the
smoothed DF(f) of Figure 1.

3. Thanks to the smoothing, it is now easy to find the
“hills” (level bands) by looking at the gradient of
DF(f). To get sharper edges to the next level band,
we cut all DF(f) <= 15% of DF(f).

4. The perfect level threshold is defined as the lower
boundary of the perfect level band - 5%. The pll(t)
function is the perfect  level  threshold over time.
Again, pll(t) is limited to 55% <= pll(t) <= 90%.

3.7. Anomalous Behavior Trigger

To throw an event as soon as there is a problem,
and as soon as the problem is fixed, an emadynamic(t) se-
ries is derived from the raw f(t) series. The model pa-
rameter for the EMA algorithm has to grow the lower
the  average  usage  of  the  plugin  is.  This  results  in
higher smoothing if the variability is high due to too
few events. The  emadynamic(t)  is compared to the  pll(t)
and the  til(t).  Figure 3 shows a trigger point that trig-
gered an “error occurred” event on March 20th, and a
“bug fixed” event on March 8th,, 2014.

4. Design and Implementation

The model was implemented as the “StatServ Sys-
tem”  for  the  JDownloader  2  BETA version.  During
data collection, there was an average of about 850,000
logged events per hour. StatServ is written in Java. De-
tails beyond this section can be found in our technical
report [18].

4.1. Old Feedback Loop

Before StatServ, a user had several options to report
problems: A community board, a live chat, and a sup-

port desk. All these are either managed by moderators
from the support community or by Appwork employ-
ees. They read the posts, emails and chats, and try to
gather as much information as possible about a bug. In
most  cases,  the  user  is  asked  to  provide  a  “JDown-
loader Application Log”, a stack trace, test URLs, envi-
ronment details, or any further bug related information.

As soon as  a  supporter  validated  a  bug and  col-
lected enough information, they submit a bug to the JD
bug tracker. Developers are meant to find all relevant
information in the bug report. It often happens that a
developer has to track down the bug report to the user
in  order  to  get  more  information.  This  process  was
slow and needed to be improved. The goal of the im-
plementation is not only to find bugs, but also to pro-
vide full bug reports to the developer community.

4.2. The New “StatServ” Approach

The new design can roughly be separated into six
components. Each JD installation sends log entries and
error details to the “StatServ Collector” (SSC) service
hosted by Appwork. The SSC service saves the data to
a storage device. The “StatServ Evaluator” (SSE) ap-
plication  reads  the  data  from  storage,  calculates  the
charts according to the model and maintains an issue
for each found problem in the bug tracker.

4.3. Data Sources

A “StatsManager” module sends all log messages
to the SSC service.  Two types of data collection ap-
proaches are implemented: (1) Manual user reports and
(2) fully automated reports.

4.3.1. Manual User Reports
A user can click a “Report a Problem” menu button

whenever they experience a download related problem
(Step 1). An overlay window will appear. This overlay
follows the mouse cursor and informs the user whether
they  can  report  the  currently  selected  item (Step  2).
Another click collects all information about the posi-
tion, and sends the resulting “Download Feedback Log
Entry” to the StatsManager (Step 3). 

4.3.2. Fully Automated Reports
In addition, the StatsManager logs every download

attempt and its result directly after the plugin’s routine
returned. In contrast to manual reports, which can be
initiated at any time, significantly more detailed infor-
mation is available at this point in time, because the
full plugin process is still in memory. Compared to the
manual  “Download  Feedback  Log  Entry”  attributes,
the “Download Log Entry” contains more information.

4.4. The “StatServ Collector” Service

The central “StatServ Collector” service (SSC) can
handle a large volume of Log Entries sent per second.

5



The user’s country and ISP are extracted from each IP
address, and added to the Log Entries. We do not store
any IPs for privacy reasons. 

If a Log Entry contains an error ID, the SSC service
performs a lookup to see if there is already a full stack
trace, and at least one “JDownloader Application Log”

for this error ID. In case either one is missing, the ser-
vice adds a “Send Stack Trace” or “Send Full Log” re-
quest to the HTTP response. If the user agrees, their JD
instance will then upload the requested information to
the service. This way, there is a stack trace and at least
one full application log for each error ID. 
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Figure 1. Fitness time series from measurement period in 2014.

Figure 2. Smoothed distribution function with “perfect level” threshold at 6,216.

Figure 3. Fitness time series with example trigger points.



4.5. The “StatServ Evaluator” service

The “StatServ Evaluator” service (SSE) is designed
as a separate process  so that  it  can be restarted,  up-
dated, or killed at any time. The SSC service continues
to receive and write data even if the SSE is not run-
ning. The SSE has three main modules: the “Aggrega-
tor”, the “Analyzer” and the “Reporter”.

4.5.1. The Aggregator 
The aggregator turns the raw data into the fitness

time  series.  The  SSE  looks  at  each  “Plugin”,  “Ac-
count”  (download  mode),  and  “Source“  (download
from) Combination (PASC) separately. Typical combi-
nations  are  “youtube.com”-“account.free”-“total”  for
all downloads done by the youtube.com plugin, with a
non-paid account, or “premiumize.me”-“account.multi-
.premium”-“rapidshare.com”  for  downloads  done  by
the premiumize.me plugin, using a paid premium ac-
count and downloading from rapidshare.com.

For each PASC, the SSE aggregates the Log Entries
to a fitness time series with an interval of 1 hour. The
latest entry in this series is aggregated in a 15 minute
interval. Thus, even if we use an overall interval of 1
hour, the latest entry is never older than 15 minutes.
This way, problems can be found earlier. The default
time frame that  is used to aggregate data is 2 hours.
However, there are many rarely used plugins that have
low usage. To get stable fitness values, we dynamically
increase the aggregation frame until the total usage is
at least 200, or the maximum time frame of 168 hours
(1  week)  is  reached.  This  corresponds  to  about  34
unique download attempts in 2 to 168 hours. A plugin
that is used less than 34 times in a week is ignored.

The aggregation creates a list of “Chart Data” ob-
jects.  All  values  are  average  values  normalized  to  a
time frame of 2 hours, and thus can be directly com-
pared. All percentage metrics are in the range from 0
(0%) to 10,000 (100.00%). All metrics are set in rela-
tion to its usage to eliminate seasonal characteristics.

Network Fitness, Equation 13, describes how many
connection problems occur in relation to total usage. A
perfect value of 10,000 represents zero problems.

Plugin Fitness,  Equation 14 shows the amount of
PLUGIN_DEFECT Download Results. JD plugins are
meant to throw a PLUGIN_DEFECT exception in case
of parser problems.

Finished Fitness, Equation 15, captures how many
download attempts finished successfully. 

Finished- and Plugin Fitness, Equations 16 and 17,
are merged to the General  Fitness value of  Equation
18, which will be subject of later chart analysis. The
equation is  a  weighted  average  of  both.  Low fitness
values get a higher relevance. The Plugin Fitness has a
general  9  times higher weight  than the Finished Fit-

ness. It turned out that the Plugin Fitness is a much bet-
ter error indicator, and therefore has higher relevance.

The manual user reports are grouped in an hourly
interval  and  divided  by  the  usage.  The  formulas  in
Equation 19 and 20 were developed in the first weeks
after launching the manual reports feature in JD based
on our experience with the system.

4.5.2. The Analyzer
After aggregation, there is a “Chart Data” list for

each PASC stored on hard disk or in memory. The Ana-
lyzer module loops through all combinations,  creates
the TIL and the PLL. The TIL/PLL analysis is not only
done for  the  General  Fitness  series,  but  also  for  the
Network  Fitness  and  the  Reports  Fitness  series.  The
Network Fitness brings out network problems like bad
connectivity to a web server. The User Reports Fitness
may detect problems, even if the plugin’s was imple-
mented poorly.  The model requires dynamic parame-
ters several times to achieve better smoothing for low
usage values (rarely used plugins).  Equations 21 and
22 are used for this purpose.

(21)
f (usage )=

2500
usage+5

(22) lim
usage →∞

f (usage )=0 ; f (0 )=500

TIL Model Parameter
The detailed description of the TIL algorithm can

be  found  in  Section  3.  This  section  concentrates  on
specifying the dynamic model parameters. 

First,  we need  to  determine  the  Moving  Average
model parameter. We dynamically increase the parame-
ter to get better smoothing for low usage values.

(23) tMA ( avgusage )=6+ f (avgusage)

Next, the second step in the TIL calculation is long-
term smoothing using an EMA algorithm. The base pa-
rameter is 180 (hours).

(24) tEMA ( avgusage )=180+2 ∙ f (avgusage)

The final step subtracts the allowed deviation from
the trend line. The deviation Δf is 10% of the average
fitness + 50% of the MV over 12 hours. The more un-
stable the series is, the higher the allowed deviation is.
Equation 25 captures this.

PLL Model Parameter
The detailed description of the PLL algorithm can

be found in Section 3. Except for the dynamic model
parameter for the EMA, all other parameters are static
and have been explained in the model section.

The PLL suffers from the EMA start condition. This
start  condition results  in  less  smoothing for  the first
tEMA(avgusage) values. Because this might result in a false

7



perfect  level  detection  we  simply  ignore  the  first
tEMA(avgusage)  values for the calculation of the distribu-
tion function DF(t).

(26) tEMA ( avgusage )=12+ f (avgusage)

EMA Model Parameter
To get the current state of the PASC, we need to

compare the TIL and the PLL to a short-time EMA. We
use the same model parameter  for  this smoothing as
shown in Equation 26.

User Reports
The User Reports series is different, because there

is significantly more automated data than manually re-
ported data. Users usually do not keep reporting a bug
as long as the bug exists. The average end-user may re-
port a bug once, and then wait for a solution. This is
probably why there are very distinct peaks. To fit the
model, the parameters need to be different. All Reports
Fitness values below 6,000 are seen as anomalous, and
all values above 9,800 are perfect. 

For TIL, we use the model parameters from Equa-
tions 27, 28, and 29:

(27) tMA ( avgusage )=20+ f (avgusage)

(28) tEMA ( avgusage )=24+2∙ f (avgusage )

For PLL and EMA, we use the model parameter
from Equation 30:

(30) tEMA ( avgusage )=3+ f (avgusage)

4.6. Reporting

The final job of the SSE service is to report the re-
sults of the chart analysis. There is a reporting system
for the developer community and a read-only front-end
for the end-users to check the plugins’ status. We use
the open source software Redmine for this.

8

(12) errorsnetwork=resultsCONNECTION ISSUES
+resultsC ONNECTION UNAVAILABLE

(13)
networkFitness=10000 ∙

usage−errorsnetwork

usage

(14)
pluginFitness=10000 ∙

usage−resultsPLUGIN DEFECT

usage

(15)
finishedFitness=10000 ∙

resultsFINISHED

usage

(16)
pluginFitnessFactor=

9
pluginFitness

2500
+0.5

(17)
finishedFitnessFactor=

1
finishedFitness

2500
+0.5

(18)
fitness=

pluginFitnessFactor ∙ pluginFitness+ finishedFitnessFactor ∙ finishedFitness
pluginFitnessFactor+ finishedFitnessFactor

(19)
reportsFitness=10000−

10000 ∙ reportCounter
0.86 % ∙usage

(20)

reportsFitness={
10000if reportsFitness>10000

reportsFitness if 0≤ reportsFitness
0if reportsFitness<0

≤10000

(25) ∆ f (avgusage , t )=10% ∙ avg fitness+50% ∙mv12 (t )

(29) ∆ f (avgusage , t )=3.3 % ∙ avg fitness+50 % ∙ mv12 (t )



5. Results Discussion

5.1. Data measurements

We measured data for three months in 2014. During
this  period,  the  JD  immune  system  observed  about
2,800 different PASCs and spotted more than 103,231
different error IDs. 560 PASCs and 3,500 related errors
were classified as relevant (by usage and occurrence
count) to report them to the Bugtracker. 109 PASCs are
about a problematic or anomalous state. 1,782 of all re-
ported Error Issues have been solved, identified as du-
plicates or rejected. Figure 4 shows the priority distri-
bution for all Error ID issues (open and closed). Only
1.4% has a priority of normal or higher. The issues pri-
ority is directly related to the number of incoming re-
lated error Log Entries.  This shows that  most of  the
found errors happen rarely. 

The PASC State Overview Issues in Figure 5 shows
almost the same distribution. This correlates with the
JD usage numbers. A few plugins are popular and fre-
quently used, others are hardly used. Figure 5 shows
109 PASCs marked as “anomalous” or “problematic”
by the system. They have either a very bad general fit-
ness (below 5,500), their current fitness is below the
PLL or  there  are  significant  more  user  reports  than
usual. It turned out that many of the rarely used plugins
are indeed damaged and require a review. Low volume
errors like this often stay undetected for a long time,
because there are no reports through the old feedback
loop. StatServ now revealed all these problems. 

5.2. Model Review

After  finding  the  model  parameters,  the  model
turned out to work fine. However there are a few re-
markable findings. First of all, it is important to notice,
that even though we eliminated seasonal cycles, some
plugins show distinct daily cycles in their fitness series.
An explanation may be that there might be problems,
which occur in certain time-zones only. In this case, the
seasonal cycle of the usage series, and the error series
would  be  phase  shifted.  The  resulting  fitness  series
would then still have seasonal cycles.

5.3. Automated Mode

The fully automated error collection mode delivers
fast and precise data. Moreover, it collects stack traces
and application logs for each error ID. This is a signifi-
cant benefit for developers. One drawback of the auto-
mated  data  collection  is  a  plugin’s  potentially  poor
code quality. Each plugin should throw correct Down-
load Results. However, some plugins may not do this.

5.4. Manual Data Provision

The downside of automated data collection can be
compensated by manual user reports. Users report er-
rors without knowing the exact reason. They just report
if  something does not work as expected. That’s why
the User Reports Fitness series can detect  a problem
even if there is not a single automated error report.

However, user motivation to report problems varies
significantly. The model parameters had to be adjusted
several  times because the amount of reports was not
stable. In addition to that, and compared to the auto-
mated mode, user reports tend to arrive with a time de-
lay. JD is an application that usually does its job in the
background. A user will report a problem as soon as he
or  she detects  that  there  is  a  problem. This  is  often
many hours after the actual problem occurred. More-
over, the user cannot decide why his downloads failed.
They will report if the problem is actually caused by
his firewall, antivirus system, or anything else. This is
probably the most severe drawback of the manual re-
ports approach. Although it can detect severe problems,
we just know that there is something wrong – nothing
more. This is a challenging situation for a developer,
because  they  require  as  detailed  bug  information  as
possible.  Therefore,  we  have  found the  manual  ap-
proach to be only a useful extension to the automated
mode, but not a replacement.

6. Conclusions

JDownloader (JD) is a file download manager that
utilizes a large set of open source plugins, which fre-
quently have bugs or get out of date. To improve inno-
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vation speed, we designed the JD immune system, a
system to more speedily identify malfunctioning plug-
ins in deployed applications. We can now, within hours
of the first occurrence of a plugin’s malfunction, iden-
tify the severity of the malfunction and react to it.

The  JD immune  system helped  us  identify  thou-
sands of previously unknown bugs. The new system
makes it possible to identify newly occurring bugs 16
times faster than before, and we show this by drawing
on  empirical  data  from  JD’s  multi-million  member
strong user base.
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