
Industry Requirements for FLOSS Governance Tools to
Facilitate the Use of Open Source Software in

Commercial Products

Nikolay Harutyunyan∗, Andreas Bauer, Dirk Riehle

Friedrich-Alexander University Erlangen-Nuernberg, 91058 Erlangen, Germany

Abstract

Virtually all software products incorporate free/libre and open source software

(FLOSS) components. However, ungoverned use of FLOSS components can

result in legal and financial risks, and risks to a firm’s intellectual property. To

avoid these risks, companies must govern their FLOSS use through open source

governance processes and by following industry best practices. A particular

challenge is license compliance. To manage the complexity of governance and

compliance, companies should use tools and well-defined processes. This paper

investigates and presents industry requirements for FLOSS governance tools,

followed by an evaluation of the suggested requirements.

We chose eleven companies with an advanced understanding of open source

governance and interviewed their FLOSS governance experts to derive a theory

of industry requirements for tooling. We list tool requirements on tracking and

reuse of FLOSS components, license compliance, search and selection of com-

ponents, and architecture model for software products. For practical relevance,

we cast our theory as a requirements specification for FLOSS governance tools.

We then analyzed the features of leading governance tools and used this

analysis to evaluate two categories of our theory: FLOSS license scanning and

FLOSS components in product bills of materials.

∗Corresponding author
Email addresses: nikolay.harutyunyan@fau.de (Nikolay Harutyunyan),

andi.bauer@fau.de (Andreas Bauer), dirk@riehle.org (Dirk Riehle)

Preprint submitted to Journal of Systems and Software August 3, 2019

Keywords: Open Source Software, FLOSS, FOSS, Open Source Governance,

FLOSS governance tools, company requirements for FLOSS tools

2020 MSC: 00-01, 99-00

1. Introduction

In recent years more and more companies have been using open source com-

ponents into their products with an estimate of 95% of all commercial software

including open source software [1]. Companies increasingly realize the bene-

fits of using FLOSS components in their products, going beyond the common-5

place use of FLOSS development tools [2, 3, 4, 5, 6]. However, they need to

govern and regulate their use of FLOSS components to avoid common threats,

such as FLOSS license non-compliance leading to copyright and patent infringe-

ment, which can result in litigation, cease and desist claims or product recalls

[7, 8, 9, 10]. In the context of this paper, we define FLOSS governance as the10

set of processes, best practices, and tools employed by companies to use FLOSS

components as part of their commercial products while minimizing their risks

and maximizing their benefit from such use.

FLOSS governance processes and tools can apply to the commercial use,

contribution or leadership of FLOSS projects. We limited the scope of this15

paper to the commercial use of FLOSS components, intentionally excluding

governance considerations of FLOSS contribution or leadership by companies.

This is in line with our earlier definition of FLOSS governance. Such focus

allowed us to generate an in-depth theory covering the industry involvement

with open source that is of highest practical relevance to most companies today20

and novel to FLOSS research [11].

Despite the practical relevance of the issue, research has been slow to ad-

dress the use of FLOSS in products. The existing literature is limited to general

FLOSS governance research [12, 13, 14], to the research of the governance of

FLOSS communities and their development practices [15, 16, 17, 18], and to25

FLOSS license compliance related governance [19, 20, 21, 22]. However, past

2

research has not comprehensively addressed FLOSS governance requirements

and best practices in the industry. A particularly practical aspect of FLOSS

governance is its automation through tooling, which ensures increased efficiency

and better integration into the development process. Companies need tools to30

scan all the used open source files, because manual checks are time consuming

and virtually impossible for large systems. When talking about tools, we con-

sider requirements in the context of the both the explicit open source use (e.g.

with SPDX license declarations), and implicit one (e.g. unstructured license

statements). In our study we asked the following research question:35

RQ: What are the core industry requirements for FLOSS gov-

ernance tools needed to facilitate the use of FLOSS components in

commercial products?

The research method employed is an adaptation of the grounded theory

method [23, 24] called the QDAcityRE method for structural domain modeling40

using qualitative data analysis [25]. We chose this novel, yet promising research

method because it enables using qualitative data analysis (QDA) to develop a

theory that can be specifically cast as a requirements specification. Answering

our research question, we aimed to cast our theory as a list of common industry

requirements for FLOSS governance tools. This format is well-understood in45

the industry and can, therefore, ensure a high practical value of our research re-

sults. Data gathering and analysis were performed using formal semi-structured

interviews, researcher notes, and materials review. We interviewed 20 FLOSS

governance and compliance experts from 11 diverse companies chosen through

a theoretical sampling of more than 140 companies.50

There are few reports on the commercial adoption of FLOSS that are cast

as lists of requirements focusing on technical and managerial aspects of using

FLOSS in proprietary products [26]. However, neither academic nor practitioner

literature offers a detailed list of industry requirements for FLOSS governance

or its tooling that goes beyond a high-level of abstraction [27]. In this paper,55

we extended our previous research on the topic [28], addressing this research

gap with our main contribution the theory of industry requirements for FLOSS

3

governance tools. Our theory indicated five key categories of FLOSS governance

tool requirements in no particular order:

• Tracking and reuse of FLOSS components60

• License compliance of FLOSS components

• Search and selection of FLOSS components

• Architecture model for software products

• Other requirements (security, export restrictions etc.).

We then broke down each of these categories into detailed requirements and65

sub-requirements. These requirements are presented in the Tables 3, 4, 5, and

6.

Extending our previous research [28], we added one company (Company 11)

to our sample and interviewed 5 open source governance experts from Company

11. Adding the data into our qualitative data analysis, we derived an additional70

category of industry requirements for open source tooling, focused on the archi-

tecture model for software products. The latter is a novel contribution of this

paper.

To evaluate our theory, we analyzed marketing materials and demos of six

widely used and representative FLOSS governance tools. We compared the key75

tool features with our suggested theory and evaluated our proposed requirements

confirming many of them. In future publications, we also plan to address other

aspects of FLOSS governance in detail, including industry best practices for

FLOSS supply chain management and license compliance.

This paper is structured as follows. Section 2 gives an overview of related80

work detailing prior open source governance research, FLOSS governance tool-

ing, and industry requirements for governance tools. Section 3 outlines our

research method for conducting and analyzing expert interview in ten leading

companies in terms of open source governance. Section 4 presents our research

results including a theory of industry requirements for open source governance85

4

tools cast as a detailed list of requirements, specific requirement descriptions,

and corresponding traces in our data. Section 5 describes the evaluation of our

theory. Section 6 discusses the implications of our findings and presents ques-

tions for further research. Section 7 goes on to present the limitations of our

study. Section 8 concludes the paper.90

2. Related Work

Early research on FLOSS governance in companies was part of the broader

research on the commercial use of FLOSS development tools and components

[12, 11, 29]. In a systematic literature review on FLOSS adoption in industry,

Hauge et al. [11] identified a limited amount of research focusing on FLOSS95

component selection by companies [30, 31, 32, 33] and knowledge sharing within

FLOSS communities [34, 35, 36]. They did not identify any academic studies

focused on the actual industry practice of using FLOSS components in products,

thus suggesting that further research is needed on this topic. Our literature

review confirmed this research gap prompting us to conduct this study of 11100

industry-representative companies.

We set our research scope and that of the related work review to the com-

mercial use of FLOSS components in products and industry requirements for

FLOSS governance tooling. We employed snowballing as a search approach for

literature research. We explicitly excluded FLOSS governance related to in-105

dustry contribution to or leadership of FLOSS projects. We did not identify

literature explicitly focused on FLOSS governance tool requirements. However,

we found indirect references to the topic that we used as a starting point for our

research. We derived three key categories of FLOSS governance requirements

that can be addressed through tooling:110

• Tracking and Reuse of FLOSS components [37, 38, 39]

• License Compliance of FLOSS components [19, 20, 21, 40]

• Search and Selection of FLOSS components [31, 32, 41, 33]

5

Tracking and Reuse. With the growing availability of high-quality FLOSS

components, software developers increasingly use FLOSS components in com-115

mercial products. FLOSS governance policies in many companies require de-

velopers to track and document such FLOSS use [37, 38]. This enables the

well-structured management and reuse of FLOSS components that have been

added into product software. Umarji et al. [33] suggest using FLOSS governance

tools to create and maintain libraries of reusable FLOSS components. Our find-120

ings confirm this as one of the industry requirements for FLOSS governance

tools.

Other requirements focus on supply chain management [27], automated man-

agement of bill of materials [42], maintenance of FLOSS component metadata in

product architecture models [43], etc. Our theory confirms and captures these125

requirements.

License Compliance. Wang and Wang present a number of requirements for

industry adoption of FLOSS. Some of these requirements can be translated into

industry requirements for FLOSS governance tools. The authors suggest a man-

agerial requirement for license compliance that includes understanding different130

FLOSS licenses and documenting their terms [26]. Our theory suggests that

industry requires the use of FLOSS governance tools for documenting company

interpretation of most common and used FLOSS licenses and their implica-

tions. This requirement is also confirmed by industry associations, such as The

Open Source Automation Development Lab eG, which in 2017 attempted to135

standardize FLOSS license obligations through checklists and own license de-

scribing language that can eventually be used in a FLOSS governance tool [19].

Other industry requirements for compliance tools include automated FLOSS

license scanning [44, 45, 40], automated FLOSS code detection in companys

codebase and in its supply chain using source code and binary scans [46, 22,140

42], checking FLOSS license compatibility when mixing licenses [21] etc. We

confirm all these requirements through expert interviews and formalize them

in our theory, while recognizing the technological complexity of fulfilling these

6

requirements by the currently existing tooling.

Search and Selection. Umarji et al. [33] surveyed a sample of 69 program-145

mers. Their research suggested that software developers require and use tools

for the search and selection of FLOSS components. The majority of the survey

respondents said they used general-purpose search engines with some also using

project hosting sites and code-specific search engines. Our expert interviews

confirmed the requirement for search and selection of FLOSS components. A150

requirement in our proposed theory formalizes this industry need.

Other industry requirements for search and selection of FLOSS components

focus on the automated identification of software families and types of FLOSS

communities [18]. Our theory did not confirm the industry requirement for the

tool-assisted software family identification, but did confirm the need for the155

tool-assisted identification and evaluation of FLOSS communities. Many other

requirements are suggested in both academic literature and practitioner white

papers. However, in this section, we combined and presented the literature

related to only several key requirements due to our narrow scope.

Gonzalez-Barahona et al. [47] studied how companies interact with FLOSS160

communities by applying data analytic techniques on the software repositories.

In our theory, we did not identify industry requirements for FLOSS tools focused

on community management or engagement, which can be explained by our focus

on the use of open source components in companies, but not on the contribution

to FLOSS communities.165

Stol and Babar [48] did a systematically literature review on the challenges

in using FLOSS in product development. They identified several studies that

reported that organizations have an issue with the complex FLOSS licensing

situation and have concerns about intellectual properties and rights. Our re-

quirements on identification and interpretation of open source licenses address170

this issue.

7

3. Research Method

We conducted a two-step study that consists of:

1. Deriving a theory based on our understanding of key industry require-

ments for FLOSS governance tools through expert interviews.175

2. Evaluating our understanding of industry requirements through marketing

materials and demos of existing FLOSS governance tools.

Our research approach is represented in Figure 1 and explained below.

Industry Tool Vendor

Researcher

Request industry needs

Communicate their needs

Communicate
tool features

Request industry
requirements

Communicate
their

requirements
Request tool

features

Figure 1: Theory Building using Industry Requirements and Theory Evaluation using Tool

Features

For theory building, we conducted 20 interviews with eleven leading com-

panies to understand their requirements for FLOSS governance tools. We em-180

ployed a method for structural domain modeling using qualitative data analysis

called QDAcityRE [25], a method that builds on GT-based analysis techniques

[23, 24]. Corbin and Strauss [24] define grounded theory as a method that con-

sists of systematic, yet flexible guidelines for collecting and analyzing qualitative

data to construct a theory from that data. Kaufmann and Riehle [25] accept185

this definition, but extend the method to a more structured, traceable and iter-

ative one providing guidelines for data collection, creation and application of a

code system. This enabled us to use the QDAcity-RE method for requirements

8

engineering based on our industry expert interviews. The result is a theory

of industry requirements for FLOSS governance tools cast as a requirements190

specification.

For theory evaluation, we reviewed marketing materials and demos of

six widely used FLOSS governance tools. We used the QDAcityRE method

and qualitative data analysis to derive the common features they offer to meet

industry needs for automating FLOSS governance.195

Assuming that the tool vendors as a whole understand industry needs and

offer tools that address these needs, we compared the common tool features to

our theory of industry requirements. We evaluated which tool features match

the industry requirements in our proposed theory and which ones do not. We

used this evaluation to demonstrate that our theory represents the current state200

of industry requirements for FLOSS governance tools. To the extent that our

theory agrees with tool features, we put the work of industry product man-

agers onto a sound scientific base of theory development based on the users

perspective.

3.1. Theoretical Sampling205

For theory building, we chose eleven companies sampled from our indus-

try network of about 140 companies with advanced FLOSS governance practices.

The companies in our sample have an advanced understanding of FLOSS gov-

ernance and use internal and/or external governance tools. We conducted polar

theoretical sampling to cover a diverse and representative set of companies.210

Polar sampling aims to choose companies with highly varying characteristics.

We considered diverse dimensions including types of business models, customer

types, company size, market position, and company maturity. The resulting

sample of companies includes small, medium and large companies with both

enterprise and retail customers and varying business models. The list of com-215

panies and their essential characteristics are presented in Table 1. Company

names are anonymized per their request.

For theory evaluation, we chose six widely used and prominent FLOSS

9

Table 1: Theoretical sample of companies.

Company Company

domain

By busi-

ness model

By type of

customer

By size

(employees)

Company 1 Consulting SP-OS, SDS Enterprise Medium

Company 2 Automotive SDS Enterprise Small

Company 3 Automotive SDS Enterprise Large

Company 4 Enterprise

Software

SP-OS Enterprise,

retail

Medium

Company 5 Enterprise

Software

SP-CS Enterprise,

retail

Medium

Company 6 Enterprise

Software

SP-OS, SP-

CS, OP, GT

Enterprise,

retail

Large

Company 7 Enterprise

Software

SP-OS, MC,

GT

Enterprise,

retail

Medium

Company 8 FLOSS Foun-

dation

OSF Enterprise,

retail

Small

Company 9 Hardware and

Software

OP Enterprise Large

Company 10 Legal MC Enterprise,

government

Large

Company 11 Enterprise

Software

SP-OS, SP-

CS, MC, GT

Enterprise,

retail

Large

Table Legend: SDS = Software development service, SP-OS = Software product vendor for

open source software, SP-CS = Software product vendor for closed source software, GT =

Governance tool providers, MC = Management consulting, OSF = Open source foundation,

OP = Other products incorporating software.

governance tools that represent the broader spectrum of FLOSS governance

tools [39]. Not all tools compete but have some overlap in their functionalities,220

like support for license scanning or component repository management. To

10

reduce bias, we made sure that our selection differs in these dimensions:

• By the license under which a vendor makes its tool available. The sam-

pling contains tools that are licensed under permissive and copyleft type

open source licenses, and proprietary closed source licenses.225

• By the delivery model of a tool. A critical factor for companies is the

ability to choose whether a software tool is available as a cloud-based

service or can be used on-premise, depending on aspects like costs, cus-

tomization, and security.

• By the scannable artifacts. For scanning of license information, tools230

can analyze source code or binary artifacts. Scanning of binary artifacts

is necessary if the source code of dependent components is not available.

In contrast scanning of source code artifacts provide better results.

• By automation and DevOps integration. Some tools provide plugins

to integrate the tools better or easily in a development environment, or235

working within an automated process, as a continuous integration process.

On the other hand, tools which require a manual integration setup are

often more suitable for a firms own needs.

• By maturity level. In this sampling five of six tools are established tools

in this field and are well known. The OSS-Review-Toolkit is the only240

exception here. It’s a project started in 2017 which has recently gained

popularity.

The list of tools and their key characteristics are presented in Table 2. All

tools were evaluated on March 2018.

For data gathering, we used semi-structured interviews conducted by one245

or two researchers with FLOSS governance experts or responsible coworkers

from the sampled companies. In seven companies we interviewed one expert, in

one company we interviewed two experts, and in two companies we interviewed

11

Table 2: Sample of governance tools.

Tool License Delivery

model

Scannable

artifacts

Automation

& DevOps

integration

Maturity

level

Black Duck

Hub

Proprietary CB Source,

binary

DI, AU Mature

DejaCode Apache 2.0 CB, OP Source,

binary

ADA Mature

FOSSology GPL-2.0 OP Source,

binary

MDA Mature

FOSSA Proprietary CB, OP Source DI, AU Mature

OSS Review

Toolkit

Apache 2.0 OP Source MDA Newer

project

WhiteSource Proprietary CB, OP Source,

binary

DI, AU Mature

Delivery model: CB=Cloud-based, OP=On premise

Automation & DevOps integration: DI=Dev. integration provided, AU=automation

provided, ADA=Dev. integration and automation as an additional service, MDA=Manual

Dev. integration and automation required

three experts. In total, we conducted 20 interviews. When possible, we recorded

and transcribed the interviews. In three cases we took notes.250

We developed key questions and an interview guideline for the semi-structured

interviews and kept them stable, except for a few iterative adjustments from

company to company, throughout the whole data gathering process. The inter-

views were exploratory in line with our grounded-theory-based research method.

For data analysis, we followed the QDAcity-RE method, performing itera-255

tive and incremental qualitative data analysis (QDA) supported by the MaxQDA

software. We developed two separate coding systems for the theory-building

using expert interviews and for the theory evaluation using tool marketing ma-

12

terials and demos. During the QDA coding process, we iteratively refined the

code system. Upon reaching theoretical saturation [25], the code system be-260

came the basis for our theory. Individual codes correspond to low-level tool

requirements in our requirements specification. Both for theory building and

evaluation, our code systems consist of hierarchical codes. We did not apply the

top category codes in our QDA. We followed the QDAcity-RE methods QDA

process as follows:265

• Open coding. We created a basic set of codes from which the hierarchy is

built. Open codes are direct annotations of primary materials and link to

them for data-theory traceability.

• Axial coding. We built a code system by deriving more abstract concepts

and categories from open codes, thus developing the axes of the code270

system.

• Selective coding. We applied the codes to the gathered data and chose

which codes are important and which are not. We adjusted the coding

system by removing the irrelevant codes and by adding the ones that

emerged when applying the axial codes.275

4. Research Results

This section presents our theory of industry requirements for FLOSS gover-

nance tools, followed by the evaluation of the suggested theory through feature

analysis of existing FLOSS governance tools.

We limited our scope to FLOSS governance tools related to the commercial280

use of FLOSS components, explicitly excluding companies contribution to or

leadership of FLOSS projects. We only present the requirements that have been

directly derived or inferred from our data, thus excluding the ones that have been

presented in the literature, but not confirmed by our industry study. The result

is a partial theory that covers the key requirement categories and requirements285

based on our sample. Analyzing 20 expert interviews, researcher notes and

13

company materials, we derived the following high-level industry requirements

for FLOSS governance tools:

• Tracking and reuse of FLOSS components

• License compliance of FLOSS components290

• Search and selection of FLOSS components

• Architecture model for software products

• Other requirements (security, export restrictions etc.).

We present each category and detailed requirements below.

4.1. Tracking and Reuse of FLOSS components295

At its core, FLOSS governance starts from identifying and keeping a record

of the open source components used in a companys products. To achieve this,

developers need to use various tools to document, track and report their FLOSS

use in a systematic and consistent manner. This translates into a number of

requirements we identified through our expert interviews. The requirements we300

grouped under the Tracking and Reuse category cover identifying and reporting

the FLOSS use, updating and reusing FLOSS components, as well as main-

taining and managing bills-of-materials. We present each of these aspects as

follows.

Req 1.1. The tool should help users identify the use of FLOSS components305

in their code base.

Companies must identify what open source components end up in their prod-

ucts. Some open source components are added directly by company developers,

but others get there through supplied software with or without the knowledge of

anyone in the company. In any case, it is the companys responsibility to ensure310

its products open source license compliance, as well as to check the compatibility

with potential export restrictions, security, and quality assurance requirements.

14

Before doing any of these things, companies need to identify exactly what open

source components made it into their products, which translates into a require-

ment to the tools that support this. Talking about their automation efforts in315

identifying open source components, one expert interviewee from Company 6

says:

“We can automate a lot of things whenever we can track down software, and

source code, or binaries, and can identify them, and can say, okay, this is a

binary that came from this place under this license. If the information is full,320

and complete, and correct, that could be automated.” — Company 6

Req 1.2. The tool should help users report the use of FLOSS components

in a product architecture model.

Developers use open source components and libraries all the time, but with-

out a defined process or tooling such use is often not reported and not docu-325

mented. Depending on the open source components license and its use case, this

can cause legal and technical issues if discovered. For this reason, companies

have processes and tools in place to enable easy reporting of FLOSS compo-

nents used by developers. Such tools can be integrated into the development

toolchain, if a company has advanced open source governance tooling. If not,330

this can be achieved through basic component repositories or documents for

reporting such use. This translates into the requirement to have tools that help

report FLOSS components used and their interdependencies in the software ar-

chitecture. Interviewees from Company 3 share their view on this requirement:

“We have started last year with this repository [tool for reporting open source335

use]. It’s under construction I would say. It’s a document folder, like a folder on

SharePoint where you can report your open source use - we have an [automated]

template for this. It’s called a solution blueprint.” — Company 3

15

Req 1.3. The tool should help users update FLOSS components and their

metadata.340

Merely identifying and reporting the use of open source components in com-

pany products is not enough for the complete open source governance and com-

pliance. Companies must track and regularly update used open source compo-

nents and their metadata. Failing to do so can cause a number of risks, such

as exposure to security vulnerabilities discovered in an old version of an open345

source component (often newer versions fix the discovered vulnerabilities). To

address this issue, companies aim to rely on open source governance tools to

efficiently update their open source components and related metadata.

Req 1.4. The tool should help users maintain a bill of materials of the

FLOSS components used in a product.350

All companies should track their use of FLOSS components in order to effi-

ciently manage FLOSS integration into their products, as well as to enable the

cost-saving use of FLOSS components already used by the companys other de-

velopers. Efficient FLOSS component management ensures a companys ability

to maintain and produce upon customer request an up-to-date bill of materials.355

Req 1.5. The tool should help users reuse FLOSS components that have

already been used in a product.

Open source components and libraries are often reused within the company.

Once their licenses and corresponding use cases are checked and approved, these

components can be used and reused across the company without further checks360

saving time for both developers and compliance or open source program of-

fice. For efficient reuse, companies establish databases or repositories for the

approved open source components.

The detailed subcategories of requirements for Tracking and Reuse of FLOSS

components are demonstrated in Table 3.365

16

Table 3: Requirement Category 1. Tracking and Reuse of FLOSS components requirements

1. The tool should help users identify the use of FLOSS components in their code base.
a. The tool should allow reading in an existing code base.
b. The tool should allow automated finding of open source licenses in an existing code base.
c. The tool should allow automated finding of open source software checked-in and used by a company developer.
d. The tool should allow automated finding of open source software not checked-in, but used by a company developer.
e. The tool should allow automated finding of open source software that is part of the supplied proprietary software

using commonly accepted data exchange standards (such as SPDX).
f. The tool should allow automated finding of open source software that is part of the supplied proprietary software

using binary or source code scanning.

2. The tool should help users report the use of FLOSS components in a product architecture model.
a. The tool should allow creating a product architecture model to systematically record use of FLOSS components, their

metadata and component dependencies.
b. The tool should allow manual recording of metadata of the used FLOSS components.
c. The tool should allow confirming the metadata of FLOSS components identified automatically.
d. The tool should allow modifying the metadata of FLOSS components identified automatically.
e. The tool should allow removing the metadata of FLOSS components identified automatically.
f. The tool should allow automated reporting of a newly used FLOSS component within the build process and/or con-

tinuous integration process.
g. The tool should allow reporting undeclared use of FLOSS components and their metadata.

3. The tool should help users update FLOSS components and their metadata.
a. The tool should allow automated updates of FLOSS components to their newest available versions.
b. The tool should allow to back up the current versions of FLOSS components before updating them.
c. The tool should allow automated identification of changed metadata including FLOSS component license and copy-

right information.
d. The tool should allow automated history recording of FLOSS components and their metadata.

4. The tool should help users maintain bill of materials of the FLOSS components used in a product.
a. The tool should allow creating a formal bill of material using a commonly accepted data exchange standard (such as

SPDX).
b. The tool should allow automated generation of a formal bill of materials using company’s product architecture model.
c. The tool should allow developers to add identified and reported metadata on used FLOSS components into the formal

bill of materials.
d. The tool should allow developers to update the formal bill of materials.
e. The tool should allow automated generation of a bill of materials instance in a structured textual format.
f. The tool should allow automated generation of a bill of materials instance in a commonly accepted data exchange

standard (such as SPDX) format.

5. The tool should help users reuse FLOSS components that have already been used in a product.
a. The tool should allow creating a centralized and company-wide accessible FLOSS component repository.
b. The tool should allow automated adding of FLOSS components and their metadata into the repository using the

product architecture model.
c. The tool should allow automated updating of FLOSS components repository using the product architecture model.
d. The tool should allow all company developers to access the FLOSS components repository.
e. The tool should allow searching in the FLOSS component repository.
f. The tool should allow finding the company developers who used an FLOSS component from the repository.

4.2. License Compliance of FLOSS components

FLOSS license compliance is a central aspect and key tool requirement cate-

gory to the companies we studied. Companies strive to automate license compli-

17

ance, license scanning, and license management. Some companies employ con-

tinuous integration/deployment and thus require appropriate license compliance370

tools that can be integrated into their development process. Tool requirements

for license compliance go on to encompass automated license interpretation, li-

cense identification and documentation. We present each of these aspects as

follows.

Req 2.1. The tool should help users interpret open source licenses.375

For consistent and scalable FLOSS governance, companies need to interpret

the common open source licenses for their use cases. License interpretation

includes understanding and documenting companys view on the legal and tech-

nical obligations caused by certain open source licenses in relation to different

use cases (e.g. internal use only, use for production only, use in products to be380

distributed). One industry requirement is to have a tool that helps with license

interpretation, though its recognized that full automation here is not possible.

An expert from Company 2 talks about the tool requirement for support in

license interpretation:

“So, the open source handbook doesn’t really present rules in a concrete setup,385

but what it does is it explains all the interpretations of the licenses that we

have. We assess licenses with lawyers, with our internal lawyers, and from these

license assessments, we determine certain rules for its usage, modification, and

contribution. And these rules for the individual licenses are explained in that

document. Well, it’s a Word document. It has a common structure, yeah. For390

every license, we have this kind of setup. Many of those issues are just collected

in the Wiki-like system. Its not formally that structured.” — Company 2

Req 2.2. The tool should help users document the identified licenses of

the used FLOSS components in the companys open source license

repository or license handbook.395

Companies need to identify and document the open source licenses of their

FLOSS components. This translates into one of the essential tool requirements

18

for license scanning, license identification, and documentation. An expert from

Company 7 mentions the tool requirement for automating FLOSS license scan-

ning and identification of other FLOSS component metadata:400

“Interviewee: We have a full tool-set that goes through and scans the code,

that pulls out all the license information, the authorship [copyright] information,

and runs that through our process for verification, for compliance, for compati-

bility and so forth.” — Company 7

Req 2.3. The tool should help users find and document the unidentified405

licenses of the used FLOSS components in the companys open source

license repository or license handbook.

After a license scan, the identified licenses need to be double checked and

reviewed to ensure that the license mixtures are compatible and that all the

correct licenses have been identified and documented.410

Req 2.4. The tool should help users approve the use of a FLOSS component

in a product based on FLOSS license compliance guidelines.

After interpreting open source licenses and identifying their use of FLOSS

components, companies need to check if the component currently in use or

the potential components correspond to the companys open source governance415

use guidelines. If so, their use can be approved, and developers can use these

components in their projects. Doing manual component approval might work

for small projects, but is inefficient in most cases, especially in larger projects.

Thus, companies use tools to automate the component approval process, at least

to some extent, which translates into the corresponding requirement.420

Req 2.5. The tool should help users distribute a product that is compli-

ant with the FLOSS licenses of the FLOSS components used in that

product.

FLOSS governance is critical in software release management. It is an in-

dustry best practice to review software products for FLOSS license compliance425

before distributing them to customers. In this phase, its essential to use tools

19

that help review the final software products, their bills-of-materials, and their

fulfillment of FLOSS license obligations. An example obligation is publishing

the source code.

The detailed subcategories of requirements for License Compliance of FLOSS430

components are demonstrated in Table 4.

4.3. Search and Selection of FLOSS components

FLOSS governance tools are also used to help developers search and select

appropriate FLOSS components for their projects. This includes requirements

for searching the web for open source components and for selecting the ones435

that fit company guidelines best, as well as for estimating the cost of using a

selected FLOSS component. We present each of these requirements as follows.

Req 3.1. The tool should help users search for FLOSS components.

Some companies we studied encourage developers to first search internally

for an open source solution that has been used in the past in the company using440

knowledge sharing tools or databases. This translates into a requirement for

tools to help search for open source components, as seen in the interview in

Company 2:

“[Talking about the Wiki-like system for knowledge sharing] the point is that

developers themselves when they ask questions can go to that page and then445

search that. Otherwise, they come to their open source compliance manager and

have a discussion with him, and he can point out the relevant pages. And the

open source compliance managers, they maintain the web pages and so on.” —

Company 2

Req 3.2. The tool should help users select the best FLOSS components.450

Companies should use FLOSS governance tools to efficiently search and se-

lect the right FLOSS components, which translates into tool requirements on

evaluating different component candidates and selecting one. One interviewee

talks about the role of tools in FLOSS component selection process:

20

Table 4: Requirement Category 2. License Compliance of FLOSS components requirements

1. The tool should help users interpret open source licenses.
a. The tool should allow user to document open source license interpretations using a formal language or notation

supported by the tool.
b. The tool should provide automated standard interpretation of the most common FLOSS licenses in company’s license

repository or license handbook.
c. The tool should allow users to modify license interpretation of the most common FLOSS licenses in company’s

license repository or license handbook.
d. The tool should allow users to add license interpretation of the FLOSS licenses of the used FLOSS components to

company’s license repository or license handbook.
e. The tool should allow users to change license interpretation in the license repository or license handbook.
f. The tool should allow developers to request license interpretation of a FLOSS license of an FLOSS component s/he

wants to use in a product.
g. The tool should allow open source program office to discuss license interpretation requests.
h. The tool should allow open source program office to fulfill license interpretation requests.

2. The tool should help users document the identified licenses of the used FLOSS components in the company’s open
source license repository or license handbook.
a. The tool should allow creating an open source license repository.
b. The tool should allow developers, lawyers and managers to read the open source license repository.
c. The tool should allow automated inventorying of known open source licenses from the product architecture model.
d. The tool should allow users to add new open source licenses into the open source license repository.
e. The tool should allow users to remove obsolete open source licenses from the open source license repository.
f. The tool should support the commonly accepted data exchange standards (such as SPDX).
g. The tool should allow users to search open source license information in the open source license.

3. The tool should help users find and document the unidentified licenses of the used FLOSS components in com-
pany’s open source license repository or license handbook.

a. The tool should allow software package scanning to find the open source licenses unidentified previously through
product architecture model.

b. The tool should allow source code scanning for the internally developed code to find the origin of used, but uniden-
tified open source code and its license.

c. The tool should allow source code scanning for the FLOSS components taken from FLOSS projects to find the origin
of used, but unidentified open source code and its license.

d. The tool should allow binary scanning for the FLOSS components that are part of the supplied proprietary software
components to find the origin of used, but unidentified open source code and its license.

e. The tool should allow automated inventorying of the open source licenses identified because of binary and source
code scanning.

f. The tool should allow manual changing the automatically identified open source licenses.
g. The tool should allow removing the automatically identified open source licenses.
h. The tool should support binary and source code scanning integration into the build process and/or continuous inte-

gration process.
i. The tool should allow finding and documenting copyright notices, export restriction information and other compli-

ance-related metadata for FLOSS components used in a product.

4. The tool should help users approve the use of a FLOSS component in a product based on FLOSS license compli-
ance guidelines.
a. The tool should allow creating white lists of company-approved FLOSS licenses according to company policy.
b. The tool should allow creating black lists of company-blocked FLOSS licenses according to company policy.
c. The tool should allow updating white and black lists of FLOSS licenses.
d. The tool should allow creating license interpretation-based rules for automated recommendation on component use

approval according to company policy.
e. The tool should allow developers to request approval of FLOSS components with previously unassessed licenses.
f. The tool should allow lawyers to approve or block use of FLOSS components due to license incompatibility with

company policy.
g. The tool should allow automated recording of FLOSS license approval decisions in company’s open source license

repository.

5. The tool should help users distribute a product that is compliant with the FLOSS licenses of the FLOSS compo-
nents used in that product.
a. The tool should allow automated generating of FLOSS license obligations for each product using product architecture

model and open source license repository.
b. The tool should allow automated assignment of tasks that will ensure compliance with FLOSS license obligations.
c. The tool should allow automated audit of product’s bill of materials before distribution.
d. The tool should allow manual audit of product’s bill of materials before distribution.
e. The tool should allow adjusting product’s bill of materials before distribution.

“Interviewee: When you move on from a strategic decision to component455

selection with components of open source projects to be used, then we have a

process that we require the projects to name all the open source components to

21

assess that they want to use, that they assess the license, that they check the

license, and that they document that and that again this assessment is commu-

nicated to upper management and signed off that.” — Company 2460

Req 3.3. The tool should help users estimate the cost of using a FLOSS

component.

Using open source software does not incur any licensing costs, but there are

costs that need to be considered when deciding for using a FLOSS component.

A company should check the license compliance and quality assurance of an open465

source component, update and maintain it, and scan it for potential security

vulnerabilities. Estimating these costs can affect the decision of selecting a

certain FLOSS component.

The detailed subcategories of requirements for Search and Selection of FLOSS

components are demonstrated in Table 5.470

Table 5: Requirement Category 3. Search and selection of FLOSS components requirements

4.4. Architecture Model for Software Products

One topic emerged from the interviews that is closely related to requirements

on FLOSS compliance tools which is about an architecture model to incorpo-

22

rate all collected compliance-relevant data. While there is SPDX to exchange

compliance information, there is no common data structure to incorporate data475

from different tools. Therefore, the companies we interviewed developed their

own version of such an architecture model. To investigate what are common

requirements for such models we did additional interviews focused on this topic.

This requirements are shown in Table 6.

Table 6: Requirement Category 4. Architecture model for software products.

1. The model should represent relationship and dependency information.
a. The model should represent relationships between components.
b. The model should represent dependencies that are arising from infrastructure.
c. The model should represent relationship to other systems.

2. The model should represent license information.
a. The model should have a reusable license model.
b. The model should represent license policies.

3. The model should allow optimization.
a. The model should allow to identify already detected components.
b. The model should allow automation of the tool.

4. The model should represent a product’s distribution and release information.
a. The model should represent different distribution (on-premise, cloud service)
b. The model should distinguish between private/internal or public/external products.
c. The model should represent release information.

5. The model should represent information about the quality and reliability of compliance relevant data.
a. The model should represent the origin of compliance relevant data.
b. The model should represent the reliability of compliance relevant data.

6. The model should allow the integration of additional data.
a. The model should allow the integration of different data.
b. The model should represent various metadata.
c. The model should represent export and control restrictions.
d. The model should be extendable.

Req 4.1. The model should represent relationship and dependency infor-480

mation.

The interviewees described three types of relationships that are needed for a

comprehensive dependency mapping. The first type of relationships is between

the components of a product to trace back the introduction of dependencies.

The second type is about relationships that are arising from infrastructure de-485

pendencies, like the Java Runtime Environment (JRE) or a compiler which

23

inject code into the product. The last type of relationships is to external sys-

tems. This is useful if a product consumes a service from another system over

the network.

“So you have the packaging and the installer also adds some software to it.490

So the bill of material we added into it is incomplete, because the installer itself

is a third party software, and it’s taking the package and wrapping it then add

scripts.” — Company 11

Req 4.2. The model should represent license information.

The interviewed partners described that having the license information as495

a simple text is not sufficient enough. A dedicated license model would allow

inheriting required information about a license for a component, like the legal

duties that come with a license.

Another requirement in this category is that the model should represent

license policies which can be applied to a product’s components. This way, third500

party components with not approved licenses can be rejected automatically.

“We create a data model of the license, the necessary metadata. And then

this is added to the license, and whenever we see a component that has the same

license, it will inherit automatically the license metadata,usage types approvals,

the applications, our legal duties, and so forth.” — Company 11505

Req 4.3. The model should allow optimization.

To reduce and avoid redundant FLOSS compliance work for already reviewed

components the model must be able to identify these components. Therefore,

changes in the corresponding artifacts of a component need to be detected.

Also, the model should not prevent the tools from being used in an automated510

process.

Req 4.4. The model should represent a products distribution and release

information.

This subsection presents the requirements related to product distribution

an release. One criterion that a model has to represent is if a product is only515

24

for internal use or is a product that will be shipped to customers and needed

to be approved by the FLOSS compliance office. Another is the type of how a

product is distributed (e.g. on-premise, as cloud service) can lead to different

license obligations and so it needs to be considered. Additional, information

about the release of a product helps to provide special reports for a release520

version.

Req 4.5. The model should represent information about the quality and

reliability of compliance relevant data.

The interviewees described that they want to know from which sources the

third party components are downloaded and how reliable the related metadata525

are. Factors that needed to be considered here are if a third party developer

published to a source repository or was it done by an intermediary, or if a source

repository is well known and has a good reputation.

For compliance-relevant metadata, the reliability of such data is helpful for

decision making. Not all collected compliance-relevant data are similarly reli-530

able. Some data collection is done through automated tools without any review

of experts, while other data is the result of a proper review process by experts.

Req 4.6. The model should allow the integration of additional data.

While compliance tools often focus on specific use cases, like license scan-

ning, an architectural model should incorporate data from different tools with535

different use cases to create a comprehensive representation of a product. The

integration of different collected data for the same use case allows to compare

results and conclude correct assumptions. The interviewees reported that an

inflexible model for their products causes problems for adapting technological

changes, e.g. the introduction of container technologies like Docker for delivering540

a product.

4.5. Other requirements

Beyond the above mentioned three requirement categories, FLOSS gover-

nance and compliance tools are used to fulfill many other requirements compa-

25

nies have. Here we present select ones that are not grouped into any category.545

Req 5.1. The tool should help users detect and prevent security vulnera-

bilities in products FLOSS components.

Companies need to detect and prevent potential security vulnerabilities in

open source components used in their products. This is often done at the same

stage as open source license scanning. Therefore the industry requirement is to550

use tools in checking for security vulnerabilities in open source software used.

One expert from Company 1 mentions this need:

“It’s that all of our work is on infrastructure, is on running a server and not

develop. The only area where we really get in touch with software development

is when it comes to security management of open source components maybe even555

for proprietary software. Even though that is ridiculously important, and [its]

even more important to actually know which components you have in your sys-

tem [to check them for security vulnerabilities]. And frankly, a lot of companies

do not know that.” — Company 1

Req 5.2. The tool should help users document and communicate the com-560

panys FLOSS governance strategy, policies and best practices.

The companies we interviewed have FLOSS governance strategies, policies

and best practices. These are documented and shared in the company so that

the developers, managers and legal experts follow the same guidelines around

FLOSS governance. Tools can be used to document and communicate these565

guidelines, as mentioned by an expert from Company 6:

“Interviewee: [We use a] Wiki page and store information about the release,

and the sign off of them, so we have also a good amount of tooling, if not to

say too many different tools that are in this toolchain to upload it and support

open source compliance process, and not forget the last time we’ve seen our dear570

artists where we have to model the process, how the process works.” — Company

6

26

Req 5.3. The tool should help users check for export restrictions when

using FLOSS components.

Open source components are developed by communities of different compo-575

sition and origin. Depending on the specific geographical origin of the open

source component, companies using it might have to ensure compliance with

certain export restrictions when distributing their products. Ensuring compli-

ance with export restrictions is a complex task and must be automated, which

translates into the corresponding tool requirement.580

5. Evaluation

This section presents the evaluation of our theory using the feature analysis

of existing FLOSS governance tools. We analyzed marketing materials and

demos of six widely used FLOSS governance tools. The analysis resulted in the

following list of common key features related to FLOSS use in products:585

• Component Tracking & Reporting : support for a bill of materials, com-

ponent inventory, knowledge base (external inventory), license obligation

reporting, and commonly accepted data exchange standard support

• Scanning / License Checking : support for licenses identification, copyright

identification, code origin identification, and license management590

• Policies: support for applying/ensuring FLOSS policies

• Security : support for security vulnerability detection

• Development Integration Automation: support for integration into con-

tinuous integration and deployment

We focused on two main requirement categories: Tracking and Reuse of595

FLOSS components and License Compliance of FLOSS components.

We chose these categories because these requirements are fundamental to any

software company according to the analysis of the industry interviews, and tools

support of these requirements represent base functionality.

27

5.1. Tracking and Reuse of FLOSS components600

The identification of FLOSS components and their licenses in a given soft-

ware product or component is a core functionality of all sampled tools. All the

high-level requirements of category 1 in the proposed theory are matched by

the features of the sampled tools. For example, Black Duck Software enables

its users to identify the used FLOSS components (Requirement 1.1) in both the605

source code and in binaries (with lesser precision):

“[Black Duck Hub enables to] fully discover all open source in your code” —

Black Duck Hub

FOSSA helps to explore and report relationships between modules incl. the

open source ones (Requirement 1.2):610

“[FOSSA allows its user to] explore relationships between modules and if/how

dependencies are included in your build.” — FOSSA

Black Duck Hub also has features for BOM maintenance (Requirement 1.4)

and for FLOSS component reuse (Requirement 1.5):

“We provide a license obligation report, including an easily consumable bill615

of materials (BOM) that you can deliver to your customers and/or internal

stakeholders.” — Black Duck Hub

“[Black Duck Hub enables to] eliminate uncertainty and promote reuse [of

FLOSS]” — Black Duck Hub

However, not all detailed (low-level) requirements from the proposed theory620

are supported by existing tool features. Requirement 1.1.d, for example, requires

tools to allow an automated finding of open source software, not checked-in but

used by a company developer. This requirement is not entirely supported by

any of the studied tools because of its technological complexity.

5.2. License Compliance of FLOSS components625

All the studied tools support FLOSS license compliance features. They

fulfill requirements, such as license interpretation, license identification, and

documentation, FLOSS component approval etc.

28

FOSSology covers several requirements related to FLOSS license compliance

(Requirement 2.2, 2.3) [49]:630

“FOSSology is an open source license compliance software system and toolkit.

As a toolkit, you can run license, copyright and export control scans from the

command line. As a system, a database and web UI are provided to give you a

compliance workflow. License, copyright, and export scanners are tools available

to help with your compliance activities.” — FOSSology635

Requirement 2.4 (approve FLOSS component use follows guidelines) is cov-

ered by WhiteSource. Once policies are created, by using black and white lists

of FLOSS licenses, they can be automated applied to a product. Developers can

request the approval of a license and the decision for this license will be tracked

and archived to make it traceable.640

“WhiteSource also lets you create your companys license policy by defining a

whitelist of automatically approved licenses; a blacklist of automatically rejected

licenses and a list of licenses that need to be approved on a case-by-case basis”

— WhiteSource

“These initiate a predefined email approval request, with all approvals tracked,645

signed and archived within the WhiteSource system for later access.” — White-

Source

The top-level requirement Search and Selection of FLOSS components cant

be fulfilled directly by the studied tools, but Black Duck owns and operates

the Black Duck Open Hub community platform which fulfills most of the re-650

quirements in this category. This platform allows users to search for available

FLOSS components, analyze them to select the best one. Open Hub offers an-

alytics about how active the development and community of a component is,

and other information that indicates the health of a component.

“[Black Duck Open Hub] is an online community and public directory of655

free and open source software (FOSS), offering analytics and search services for

discovering, evaluating, tracking, and comparing open source code and projects.

Where available, the Open Hub also provides information about vulnerabilities

and project licenses.” — Black Duck Hub

29

5.3. Architecture Model for Software Products660

While the requirements on an architecture model observe FLOSS governance

from another point of view they are backing the requirements for FLOSS gov-

ernance and compliance tools. All of the six categories of requirements on an

architecture model can be related to the requirements from the Tables 3,4 and

5, and confirm them.665

For example, the requirement “Req 4.2. The model should represent license

information.” about a reusable license model and license policies are related

to the requirements of category 2.4 (approve the use of a FLOSS component)

and 2.5 (distribute a product that is compliant). A reusable license model

allows having a company-based license interpretation that can by applied to670

all components of a product. It could also help to interpret new licenses by

inheriting information from types of licenses, like copy-left licenses, which is also

related to the requirements 2.1 (interpret open source licenses). Furthermore,

license policies that can be applied to detected licenses are reflected in the

requirements of category 2.4.675

Another example, are the requirements about automation and the identifi-

cation of already scanned components. These requirements can be related to all

categories of requirements on FLOSS governance tools. For the interviewees it

was important that as many tasks as possible could be automated by the tools.

6. Discussion680

Our main contribution is the requirements specification presented in Section

4 and its evaluation in Section 5.

Through evaluation, we see that most of the industry requirements are

matched by tool providers. However, not all requirements are fulfilled. None of

our studied tools completely fulfill some of the following low-level requirements:685

• Requirement 2.1.b (automated standard interpretation of common FLOSS

licenses)

30

• Requirement 2.3.h (automated license checking within continuous integra-

tion)

• Requirement 2.5.b (automated assignment of FLOSS compliance tasks)690

• Requirement 2.5.c (automated audit of products bill of materials before

distribution)

One reason is the complex computational nature of the complete automation

of compliance tasks. An empirical study by German et al. [46] showed that a

deeper understanding of licensing issues requires human expertise, which limits695

the automation of some license compliance tasks. Moreover, most companies

dont allow complete automation of compliance as they require a human actor

to be responsible for legal matters, even if they use semi-automated tooling.

Also, the requirements in the category 3.3 (estimate the cost of using a FLOSS

component), such as the estimation of costs, risks, and benefits of using FLOSS700

components cant be fulfilled by any of the studied tools.

Our evaluation demonstrates that the high-level requirements of our theory

do match the features offered by industry leading FLOSS governance tools. The

evaluation shows that existing tools satisfy most of the low-level requirements by

the industry, but not others, such as requirements of complete automation. We705

recognize that our research results are limited, but novel and industry relevant.

We lay the groundwork for future studies into FLOSS governance tool require-

ments, that will hopefully expand our requirements specification theory. Our

work leads us to propose the following research questions for future research:

• RQ1: What are other detailed FLOSS governance tool requirements be-710

yond Tracking and Reuse of FLOSS components, License Compliance of

FLOSS components and Search and Selection of FLOSS components?

• RQ2: How can FLOSS governance tool requirement theories be better

evaluated or validated?

• RQ3: How to engineer FLOSS governance tool requirements of the future715

31

addressing missing features and industry needs before companies become

aware of them?

7. Research Limitations

The study faces several limitations. We follow Guba [50] in assessing the

trustworthiness of our research through the quality criteria of credibility, de-720

pendability, confirmability, and transferability.

Credibility. Credibility is the degree to which we can establish confidence in

the truth of our findings in the context of the inquiry. To ensure credibility, we

performed two rounds of peer debriefing, together with three colleagues we re-

viewed this study and incorporated the feedback from our colleagues from within725

our research group. Furthermore, during data collection we conducted our in-

terviews iteratively, adjusting our semi-structured interview questions based on

the company context and on our experience with earlier interviews.

Dependability. Dependability is the degree of consistency of the findings and

traceability from the data to the results. We ensured dependability by collecting730

and saving raw interview data, documenting our qualitative data analysis in

different stages of the coding and by documenting our analysis in a manner

that allows tracing each requirement in our theory to its origin in our collected

data. We included numerous direct references to the expert interviews in the

presentation of our research findings in Section 4.735

Confirmability. Confirmability is the degree to which the authors are neutral

towards the inquiry and their potential bias effect on the findings . Qualitative

data research realized by one researcher has inherent subjectivity and bias.

Even though we followed the research method constructs carefully, there is bias

associated with method interpretation and application to our specific context.740

To address this limitation, we had a second coder analyze our data and improve

our original QDA coding based on input from the second coder [51].

32

Transferability. Transferability is the degree to which findings of our study

hold validity in other contexts. To ensure transferability, we chose companies

and tools for our study through a thorough sampling. Though we aimed for a745

highly representative sample of companies, we do recognize that this study can

have a limited degree of transferability as the findings are based solely on the

20 expert interview in eleven companies in our sample. This limitation can be

tested through further validation studies.

8. Conclusion750

This paper presents a study of eleven industry companies with advanced

FLOSS governance practices. Our study concluded in a theory of FLOSS gover-

nance tool requirements by the industry. Also, we provide a detailed hierarchical

list of these industry relevant requirements. As such it offers unique insight into

industry understanding of FLOSS governance tools and their expectations from755

them, alongside existing tools and their features.

The data gathered through semi-structured interviews and materials collec-

tion was analyzed using the novel adoption of grounded theory method: the

QDAcity-RE method. We cast our theory as a requirements specification mak-

ing it applicable and practice relevant to the companies willing to employ these760

requirements. Finally, we evaluated our findings using six industry-leading

FLOSS governance tools and the analysis of their features matched with the

requirements of the suggested theory.

The study of the missing features of existing tools is out of the scope of this

paper but it can be a valuable part of the further research. Further research765

can also focus on the reasons why tool providers do not fulfill the unsatisfied

requirements of our theory (e.g. full automation of compliance) and how such

problems can be solved.

Acknowledgments. This research was funded by BMBFs (Federal Ministry

of Education and Research) Software Campus 2.0 project (OSGOV, 01IS17045-770

17570). We would like to thank Hannes Dohrn, Ann Barcomb, Michael Dorner,

33

Maximilian Capraro, Andreas Kaufmann and Shushanik Hakobyan for their

generous feedback that helped us improve our paper. We would also like to

thank our industry partners that provided their valuable time and expertise for

this research project.775

References

[1] J. Franch Gutiérrez, A. Susi, M. C. Annosi, C. P. Ayala Mart́ınez, R. Glott,

D. Gross, R. Kenett, F. Mancinelli, P. Ramsany, C. Thomas, et al., Man-

aging risk in open source software adoption, in: Proceedings of the 8th

International Joint Conference on Software Technologies (ICSOFT 2013),780

2013, pp. 258–264.

[2] A. Deshpande, D. Riehle, The total growth of open source, in: IFIP In-

ternational Federation for Information Processing, Vol. 275, Springer US,

Boston, MA, 2008, pp. 197–209. doi:10.1007/978-0-387-09684-1_16.

URL http://link.springer.com/10.1007/978-0-387-09684-1{_}16785

[3] Fitzgerald, The Transformation of Open Source Software, MIS Quarterly

30 (3) (2006) 587. doi:10.2307/25148740.

URL http://www.jstor.org/stable/10.2307/25148740

[4] G. von Krogh, E. von Hippel, The Promise of Research on Open Source

Software, Management Science 52 (7) (2006) 975–983. doi:10.1287/mnsc.790

1060.0560.

URL http://pubsonline.informs.org/doi/abs/10.1287/mnsc.1060.

0560

[5] D. Riehle, The economic motivation of open source software: Stakeholder

perspectives, Computer 40 (4) (2007) 25–32. arXiv:arXiv:1011.1669v3,795

doi:10.1109/MC.2007.147.

URL http://ieeexplore.ieee.org/document/4160218/

[6] D. Riehle, The commercial open source business model, in: Lecture Notes

in Business Information Processing, Vol. 36 LNBIP, 2009, pp. 18–30. doi:

34

http://link.springer.com/10.1007/978-0-387-09684-1{_}16
http://dx.doi.org/10.1007/978-0-387-09684-1_16
http://link.springer.com/10.1007/978-0-387-09684-1{_}16
http://www.jstor.org/stable/10.2307/25148740
http://dx.doi.org/10.2307/25148740
http://www.jstor.org/stable/10.2307/25148740
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.1060.0560
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.1060.0560
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.1060.0560
http://dx.doi.org/10.1287/mnsc.1060.0560
http://dx.doi.org/10.1287/mnsc.1060.0560
http://dx.doi.org/10.1287/mnsc.1060.0560
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.1060.0560
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.1060.0560
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.1060.0560
http://ieeexplore.ieee.org/document/4160218/
http://ieeexplore.ieee.org/document/4160218/
http://ieeexplore.ieee.org/document/4160218/
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1109/MC.2007.147
http://ieeexplore.ieee.org/document/4160218/
http://link.springer.com/10.1007/978-3-642-03132-8{_}2
http://dx.doi.org/10.1007/978-3-642-03132-8_2
http://dx.doi.org/10.1007/978-3-642-03132-8_2

10.1007/978-3-642-03132-8_2.800

URL http://link.springer.com/10.1007/978-3-642-03132-8{_}2

[7] Black Duck Software, 2017 Open Source Security and risk analysis (2017).

[8] M. Radcliffe, P. Odence, The 2017 open source year in review (2017).

[9] D. Riehle, B. Lempetzeder, Erfolgsmethoden der Open-Source-Governance

und -Compliance, Tech. rep., Friedrich-Alexander-Universitat Erlangen-805

Nürnberg, Erlangen (2014).

[10] M. Ruffin, C. Ebert, Using Open Source Software in Product Development:

A Primer (jan 2004). doi:10.1109/MS.2004.1259227.

URL http://ieeexplore.ieee.org/document/1259227/

[11] Ø. Hauge, C. Ayala, R. Conradi, Adoption of open source software810

in software-intensive organizations - A systematic literature review,

Information and Software Technology 52 (11) (2010) 1133–1154.

doi:10.1016/j.infsof.2010.05.008.

URL http://linkinghub.elsevier.com/retrieve/pii/

S0950584910000972815

[12] A. Aksulu, M. Wade, A Comprehensive Review and Synthesis of Open

Source Research, Journal of the Association for Information Systems

11 (11) (2010) 576–656. doi:10.1.1.190.4493.

[13] A. Bonaccorsi, C. Rossi, Why open source software can succeed, Research

Policy 32 (7) (2003) 1243–1258. doi:10.1016/S0048-7333(03)00051-9.820

URL http://linkinghub.elsevier.com/retrieve/pii/

S0048733303000519

[14] E. Capra, C. Francalanci, F. Merlo, An empirical study on the relationship

between software design quality, development effort, and governance in

open source projects, IEEE Transactions on Software Engineering 34 (6)825

(2008) 765–782. doi:10.1109/TSE.2008.68.

URL http://ieeexplore.ieee.org/document/4599582/

35

http://dx.doi.org/10.1007/978-3-642-03132-8_2
http://link.springer.com/10.1007/978-3-642-03132-8{_}2
http://ieeexplore.ieee.org/document/1259227/
http://ieeexplore.ieee.org/document/1259227/
http://ieeexplore.ieee.org/document/1259227/
http://dx.doi.org/10.1109/MS.2004.1259227
http://ieeexplore.ieee.org/document/1259227/
http://linkinghub.elsevier.com/retrieve/pii/S0950584910000972
http://linkinghub.elsevier.com/retrieve/pii/S0950584910000972
http://linkinghub.elsevier.com/retrieve/pii/S0950584910000972
http://dx.doi.org/10.1016/j.infsof.2010.05.008
http://linkinghub.elsevier.com/retrieve/pii/S0950584910000972
http://linkinghub.elsevier.com/retrieve/pii/S0950584910000972
http://linkinghub.elsevier.com/retrieve/pii/S0950584910000972
http://dx.doi.org/10.1.1.190.4493
http://linkinghub.elsevier.com/retrieve/pii/S0048733303000519
http://dx.doi.org/10.1016/S0048-7333(03)00051-9
http://linkinghub.elsevier.com/retrieve/pii/S0048733303000519
http://linkinghub.elsevier.com/retrieve/pii/S0048733303000519
http://linkinghub.elsevier.com/retrieve/pii/S0048733303000519
http://ieeexplore.ieee.org/document/4599582/
http://ieeexplore.ieee.org/document/4599582/
http://ieeexplore.ieee.org/document/4599582/
http://ieeexplore.ieee.org/document/4599582/
http://ieeexplore.ieee.org/document/4599582/
http://dx.doi.org/10.1109/TSE.2008.68
http://ieeexplore.ieee.org/document/4599582/

[15] P. B. De Laat, Governance of open source software: State of the art, Journal

of Management and Governance 11 (2) (2007) 165–177. doi:10.1007/

s10997-007-9022-9.830

URL http://link.springer.com/10.1007/s10997-007-9022-9

[16] C. Lattemann, S. Stieglitz, Framework for Governance in Open Source

Communities, in: Proceedings of the 38th Annual Hawaii International

Conference on System Sciences, IEEE, 2005, pp. 192a–192a. doi:10.1109/

HICSS.2005.278.835

URL http://ieeexplore.ieee.org/document/1385626/

[17] D. Riehle, Controlling and steering open source projects, Computer 44 (7)

(2011) 93–96. doi:10.1109/MC.2011.206.

URL http://ieeexplore.ieee.org/document/5958712/

[18] B. M. Sadowski, G. Sadowski-Rasters, G. Duysters, Transition of gover-840

nance in a mature open software source community: Evidence from the

Debian case, Information Economics and Policy 20 (4) (2008) 323–332.

doi:10.1016/j.infoecopol.2008.05.001.

URL http://linkinghub.elsevier.com/retrieve/pii/

S0167624508000310845

[19] T. Jaeger, Open Source License Obligations Checklists, Open Source Au-

tomation Development Lab (self-published white paper) (2017) 1–8.

[20] G. R. Gangadharan, S. De Paoli, V. D’Andrea, M. Weiss, License com-

pliance issues in free and open source software, MCIS 2008 Proceedings

(2008) 2.850

[21] D. M. German, Y. Manabe, K. Inoue, A sentence-matching method for

automatic license identification of source code files, in: Proceedings of the

IEEE/ACM international conference on Automated software engineering

- ASE ’10, ACM Press, New York, New York, USA, 2010, p. 437. doi:

10.1145/1858996.1859088.855

URL http://portal.acm.org/citation.cfm?doid=1858996.1859088

36

http://link.springer.com/10.1007/s10997-007-9022-9
http://dx.doi.org/10.1007/s10997-007-9022-9
http://dx.doi.org/10.1007/s10997-007-9022-9
http://dx.doi.org/10.1007/s10997-007-9022-9
http://link.springer.com/10.1007/s10997-007-9022-9
http://ieeexplore.ieee.org/document/1385626/
http://ieeexplore.ieee.org/document/1385626/
http://ieeexplore.ieee.org/document/1385626/
http://dx.doi.org/10.1109/HICSS.2005.278
http://dx.doi.org/10.1109/HICSS.2005.278
http://dx.doi.org/10.1109/HICSS.2005.278
http://ieeexplore.ieee.org/document/1385626/
http://ieeexplore.ieee.org/document/5958712/
http://dx.doi.org/10.1109/MC.2011.206
http://ieeexplore.ieee.org/document/5958712/
http://linkinghub.elsevier.com/retrieve/pii/S0167624508000310
http://linkinghub.elsevier.com/retrieve/pii/S0167624508000310
http://linkinghub.elsevier.com/retrieve/pii/S0167624508000310
http://linkinghub.elsevier.com/retrieve/pii/S0167624508000310
http://linkinghub.elsevier.com/retrieve/pii/S0167624508000310
http://dx.doi.org/10.1016/j.infoecopol.2008.05.001
http://linkinghub.elsevier.com/retrieve/pii/S0167624508000310
http://linkinghub.elsevier.com/retrieve/pii/S0167624508000310
http://linkinghub.elsevier.com/retrieve/pii/S0167624508000310
http://portal.acm.org/citation.cfm?doid=1858996.1859088
http://portal.acm.org/citation.cfm?doid=1858996.1859088
http://portal.acm.org/citation.cfm?doid=1858996.1859088
http://dx.doi.org/10.1145/1858996.1859088
http://dx.doi.org/10.1145/1858996.1859088
http://dx.doi.org/10.1145/1858996.1859088
http://portal.acm.org/citation.cfm?doid=1858996.1859088

[22] M. Di Penta, D. M. German, G. Antoniol, Identifying licensing of jar

archives using a code-search approach, in: 2010 7th IEEE Working Con-

ference on Mining Software Repositories (MSR 2010), IEEE, 2010, pp.

151–160. doi:10.1109/MSR.2010.5463282.860

URL http://ieeexplore.ieee.org/document/5463282/

[23] K. Charmaz, Constructing grounded theory, Sage, 2014.

[24] J. Corbin, A. Strauss, Basics of qualitative research: Techniques and pro-

cedures for developing grounded theory, Sage, 2014.

[25] A. Kaufmann, D. Riehle, The QDAcity-RE method for structural domain865

modeling using qualitative data analysis, Requirements Engineering 24 (1)

(2019) 85–102. doi:10.1007/s00766-017-0284-8.

[26] H. Wang, C. Wang, Open source software adoption: A status report, IEEE

Software 18 (2) (2001) 90–95. doi:10.1109/52.914753.

URL http://ieeexplore.ieee.org/document/914753/870

[27] OpenChain Specification (2019).

URL https://www.openchainproject.org/spec

[28] N. Harutyunyan, A. Bauer, D. Riehle, Understanding industry require-

ments for floss governance tools, in: IFIP International Conference on Open

Source Systems, Springer, 2018, pp. 151–167.875

[29] M. Höst, A. Oručević-Alagić, A systematic review of research on open

source software in commercial software product development, Information

and Software Technology 53 (6) (2011) 616–624.

[30] D. Cruz, T. Wieland, A. Ziegler, Evaluation criteria for free/open source

software products based on project analysis, Software Process Improvement880

and Practice 11 (2) (2006) 107–122. doi:10.1002/spip.257.

URL http://doi.wiley.com/10.1002/spip.257

37

http://ieeexplore.ieee.org/document/5463282/
http://ieeexplore.ieee.org/document/5463282/
http://ieeexplore.ieee.org/document/5463282/
http://dx.doi.org/10.1109/MSR.2010.5463282
http://ieeexplore.ieee.org/document/5463282/
http://dx.doi.org/10.1007/s00766-017-0284-8
http://ieeexplore.ieee.org/document/914753/
http://dx.doi.org/10.1109/52.914753
http://ieeexplore.ieee.org/document/914753/
https://www.openchainproject.org/spec
https://www.openchainproject.org/spec
http://doi.wiley.com/10.1002/spip.257
http://doi.wiley.com/10.1002/spip.257
http://doi.wiley.com/10.1002/spip.257
http://dx.doi.org/10.1002/spip.257
http://doi.wiley.com/10.1002/spip.257

[31] J. C. Deprez, S. Alexandre, Comparing Assessment Methodologies for

Free/Open Source Software: OpenBRR and QSOS, in: Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intel-885

ligence and Lecture Notes in Bioinformatics), Vol. 5089 LNCS, Springer

Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 189–203. doi:10.1007/

978-3-540-69566-0_17.

URL http://link.springer.com/10.1007/978-3-540-69566-0{_}17

[32] O. Hummel, W. Janjic, C. Atkinson, Code conjurer: Pulling reusable890

software out of thin air, IEEE Software 25 (5) (2008) 45–52. doi:

10.1109/MS.2008.110.

URL http://ieeexplore.ieee.org/document/4602673/

[33] M. Umarji, S. E. Sim, Archetypal internet-scale source code search-

ing, in: Finding Source Code on the Web for Remix and Reuse, Vol.895

9781461465, Springer US, Boston, MA, 2014, pp. 35–52. doi:10.1007/

978-1-4614-6596-6_3.

URL http://link.springer.com/10.1007/978-0-387-09684-1{_}21

[34] G. von Krogh, S. Spaeth, S. Haefliger, Knowledge reuse in open

source software: An exploratory study of 15 open source projects,900

Proceedings of the Proceedings of the 38th Annual Hawaii International

Conference on System Sciences-Volume 07 00 (100012) (2005) 198–2.

doi:10.1109/HICSS.2005.378.

URL http://ieeexplore.ieee.org/document/1385643/http:

//portal.acm.org/citation.cfm?id=1043102905

[35] K. R. Lakhani, E. Von Hippel, How open source software works:

”free” user-to-user assistance, Research Policy 32 (6) (2003) 923–943.

doi:10.1016/S0048-7333(02)00095-1.

URL http://linkinghub.elsevier.com/retrieve/pii/

S0048733302000951910

38

http://link.springer.com/10.1007/978-3-540-69566-0{_}17
http://link.springer.com/10.1007/978-3-540-69566-0{_}17
http://link.springer.com/10.1007/978-3-540-69566-0{_}17
http://dx.doi.org/10.1007/978-3-540-69566-0_17
http://dx.doi.org/10.1007/978-3-540-69566-0_17
http://dx.doi.org/10.1007/978-3-540-69566-0_17
http://link.springer.com/10.1007/978-3-540-69566-0{_}17
http://ieeexplore.ieee.org/document/4602673/
http://ieeexplore.ieee.org/document/4602673/
http://ieeexplore.ieee.org/document/4602673/
http://dx.doi.org/10.1109/MS.2008.110
http://dx.doi.org/10.1109/MS.2008.110
http://dx.doi.org/10.1109/MS.2008.110
http://ieeexplore.ieee.org/document/4602673/
http://link.springer.com/10.1007/978-0-387-09684-1{_}21
http://link.springer.com/10.1007/978-0-387-09684-1{_}21
http://link.springer.com/10.1007/978-0-387-09684-1{_}21
http://dx.doi.org/10.1007/978-1-4614-6596-6_3
http://dx.doi.org/10.1007/978-1-4614-6596-6_3
http://dx.doi.org/10.1007/978-1-4614-6596-6_3
http://link.springer.com/10.1007/978-0-387-09684-1{_}21
http://ieeexplore.ieee.org/document/1385643/ http://portal.acm.org/citation.cfm?id=1043102
http://ieeexplore.ieee.org/document/1385643/ http://portal.acm.org/citation.cfm?id=1043102
http://ieeexplore.ieee.org/document/1385643/ http://portal.acm.org/citation.cfm?id=1043102
http://dx.doi.org/10.1109/HICSS.2005.378
http://ieeexplore.ieee.org/document/1385643/ http://portal.acm.org/citation.cfm?id=1043102
http://ieeexplore.ieee.org/document/1385643/ http://portal.acm.org/citation.cfm?id=1043102
http://ieeexplore.ieee.org/document/1385643/ http://portal.acm.org/citation.cfm?id=1043102
http://linkinghub.elsevier.com/retrieve/pii/S0048733302000951
http://linkinghub.elsevier.com/retrieve/pii/S0048733302000951
http://linkinghub.elsevier.com/retrieve/pii/S0048733302000951
http://dx.doi.org/10.1016/S0048-7333(02)00095-1
http://linkinghub.elsevier.com/retrieve/pii/S0048733302000951
http://linkinghub.elsevier.com/retrieve/pii/S0048733302000951
http://linkinghub.elsevier.com/retrieve/pii/S0048733302000951

[36] S. K. Sowe, I. Stamelos, L. Angelis, Understanding knowledge shar-

ing activities in free/open source software projects: An empiri-

cal study, Journal of Systems and Software 81 (3) (2008) 431–446.

doi:10.1016/j.jss.2007.03.086.

URL http://linkinghub.elsevier.com/retrieve/pii/915

S0164121207000842

[37] M. Helmreich, D. Riehle, Best Practices of Adopting Open Source Soft-

ware in Closed Source Software Products Diplomarbeit im Fach Infor-

matik in Nürnberg, Ph.D. thesis, Friedrich-Alexander-Universität Erlan-

genNürnberg (2011).920

URL http://dirkriehle.com/uploads/2011/03/DA-complete.pdf

[38] K. M. Popp, Best Practices for commercial use of open source software:

Business models, processes and tools for managing open source software,

BoD–Books on Demand, 2015.

[39] Tools for Managing Open Source Programs (2019).925

URL https://www.linuxfoundation.org/

tools-managing-open-source-programs/

[40] G. M. Kapitsaki, N. D. Tselikas, I. E. Foukarakis, An insight into license

tools for open source software systems, Journal of Systems and Software

102 (2015) 72–87.930

[41] R. Semeteys, Method for qualification and selection of open source software,

no. May 2008, Talent First Network, 2008.

URL https://timreview.ca/article/146

[42] K. Stewart, P. Odence, E. Rockett, Software Package Data Exchange

(SPDX) Specification, International Free and Open Source Software Law935

Review 2 (2) (2012) 191–196. doi:10.5033/ifosslr.v4i1.45.

URL https://spdx.org/

39

http://linkinghub.elsevier.com/retrieve/pii/S0164121207000842
http://linkinghub.elsevier.com/retrieve/pii/S0164121207000842
http://linkinghub.elsevier.com/retrieve/pii/S0164121207000842
http://linkinghub.elsevier.com/retrieve/pii/S0164121207000842
http://linkinghub.elsevier.com/retrieve/pii/S0164121207000842
http://dx.doi.org/10.1016/j.jss.2007.03.086
http://linkinghub.elsevier.com/retrieve/pii/S0164121207000842
http://linkinghub.elsevier.com/retrieve/pii/S0164121207000842
http://linkinghub.elsevier.com/retrieve/pii/S0164121207000842
http://dirkriehle.com/uploads/2011/03/DA-complete.pdf
http://dirkriehle.com/uploads/2011/03/DA-complete.pdf
http://dirkriehle.com/uploads/2011/03/DA-complete.pdf
http://dirkriehle.com/uploads/2011/03/DA-complete.pdf
http://dirkriehle.com/uploads/2011/03/DA-complete.pdf
http://dirkriehle.com/uploads/2011/03/DA-complete.pdf
https://www.linuxfoundation.org/tools-managing-open-source-programs/
https://www.linuxfoundation.org/tools-managing-open-source-programs/
https://www.linuxfoundation.org/tools-managing-open-source-programs/
https://www.linuxfoundation.org/tools-managing-open-source-programs/
https://timreview.ca/article/146
https://timreview.ca/article/146
https://spdx.org/
https://spdx.org/
https://spdx.org/
http://dx.doi.org/10.5033/ifosslr.v4i1.45
https://spdx.org/

[43] D. Riehle, N. Harutyunyan, License clearance in software product gover-

nance, in: NII Shonan, 2017.

URL http://dirkriehle.com/wp-content/uploads/2017/09/940

License-Clearance-in-Software-Product-Governance-Public.pdf

[44] G. R. Gangadharan, V. D’Andrea, S. De Paoli, M. Weiss, Managing license

compliance in free and open source software development, Information Sys-

tems Frontiers 14 (2) (2012) 143–154. doi:10.1007/s10796-009-9180-1.

URL http://link.springer.com/10.1007/s10796-009-9180-1945

[45] D. M. German, A. E. Hassan, License integration patterns: Addressing

license mismatches in component-based development, in: 2009 IEEE 31st

International Conference on Software Engineering, IEEE, 2009, pp. 188–

198. doi:10.1109/ICSE.2009.5070520.

URL http://ieeexplore.ieee.org/document/5070520/950

[46] D. M. German, M. Di Penta, J. Davies, Understanding and Auditing the

Licensing of Open Source Software Distributions, in: 2010 IEEE 18th Inter-

national Conference on Program Comprehension, IEEE, 2010, pp. 84–93.

doi:10.1109/ICPC.2010.48.

URL http://ieeexplore.ieee.org/document/5521758/955

[47] J. M. Gonzalez-Barahona, D. Izquierdo-Cortazar, S. Maffulli, G. Robles,

Understanding how companies interact with free software communities,

IEEE software 30 (5) (2013) 38–45.

[48] K.-J. Stol, M. Ali Babar, Challenges in using open source software in prod-

uct development: a review of the literature, in: Proceedings of the 3rd960

international workshop on emerging trends in free/libre/open source soft-

ware research and development, ACM, 2010, pp. 17–22.

[49] R. Gobeille, Robert, The FOSSology project, in: Proceedings of the 2008

international workshop on Mining software repositories - MSR ’08, ACM

Press, New York, New York, USA, 2008, p. 47. doi:10.1145/1370750.965

40

http://dirkriehle.com/wp-content/uploads/2017/09/License-Clearance-in-Software-Product-Governance-Public.pdf
http://dirkriehle.com/wp-content/uploads/2017/09/License-Clearance-in-Software-Product-Governance-Public.pdf
http://dirkriehle.com/wp-content/uploads/2017/09/License-Clearance-in-Software-Product-Governance-Public.pdf
http://dirkriehle.com/wp-content/uploads/2017/09/License-Clearance-in-Software-Product-Governance-Public.pdf
http://dirkriehle.com/wp-content/uploads/2017/09/License-Clearance-in-Software-Product-Governance-Public.pdf
http://dirkriehle.com/wp-content/uploads/2017/09/License-Clearance-in-Software-Product-Governance-Public.pdf
http://link.springer.com/10.1007/s10796-009-9180-1
http://link.springer.com/10.1007/s10796-009-9180-1
http://link.springer.com/10.1007/s10796-009-9180-1
http://dx.doi.org/10.1007/s10796-009-9180-1
http://link.springer.com/10.1007/s10796-009-9180-1
http://ieeexplore.ieee.org/document/5070520/
http://ieeexplore.ieee.org/document/5070520/
http://ieeexplore.ieee.org/document/5070520/
http://dx.doi.org/10.1109/ICSE.2009.5070520
http://ieeexplore.ieee.org/document/5070520/
http://ieeexplore.ieee.org/document/5521758/
http://ieeexplore.ieee.org/document/5521758/
http://ieeexplore.ieee.org/document/5521758/
http://dx.doi.org/10.1109/ICPC.2010.48
http://ieeexplore.ieee.org/document/5521758/
http://portal.acm.org/citation.cfm?doid=1370750.1370763
http://dx.doi.org/10.1145/1370750.1370763
http://dx.doi.org/10.1145/1370750.1370763

1370763.

URL http://portal.acm.org/citation.cfm?doid=1370750.1370763

[50] E. G. Guba, Criteria for assessing the trustworthiness of naturalistic in-

quiries, Ectj 29 (2) (1981) 75.

[51] M. Lombard, J. Snyder-Duch, C. C. Bracken, Content Analysis in Mass970

Communication: Assessment and Reporting of Intercoder Reliability, Hu-

man Communication Research 28 (4) (2002) 587–604. doi:10.1093/hcr/

28.4.587.

URL https://academic.oup.com/hcr/article/28/4/587-604/4331304

41

http://dx.doi.org/10.1145/1370750.1370763
http://portal.acm.org/citation.cfm?doid=1370750.1370763
https://academic.oup.com/hcr/article/28/4/587-604/4331304
https://academic.oup.com/hcr/article/28/4/587-604/4331304
https://academic.oup.com/hcr/article/28/4/587-604/4331304
http://dx.doi.org/10.1093/hcr/28.4.587
http://dx.doi.org/10.1093/hcr/28.4.587
http://dx.doi.org/10.1093/hcr/28.4.587
https://academic.oup.com/hcr/article/28/4/587-604/4331304

	Introduction
	Related Work
	Research Method
	Theoretical Sampling

	Research Results
	Tracking and Reuse of FLOSS components
	License Compliance of FLOSS components
	Search and Selection of FLOSS components
	Architecture Model for Software Products
	Other requirements

	Evaluation
	Tracking and Reuse of FLOSS components
	License Compliance of FLOSS components
	Architecture Model for Software Products

	Discussion
	Research Limitations
	Conclusion

