
Vol.:(0123456789)1 3

Requirements Eng
DOI 10.1007/s00766-017-0284-8

ORIGINAL ARTICLE

The QDAcity‑RE method for structural domain modeling using
qualitative data analysis
Andreas Kaufmann1 · Dirk Riehle1

Received: 21 February 2017 / Accepted: 16 October 2017
© Springer-Verlag London Ltd. 2017

Domain models must correctly represent the reality of
the domain and be easy to understand from the stakeholder’s
perspective [6, 17]. The degree to which this goal can be
achieved depends heavily on the modeling experience of
the analyst [29, 44].

Qualitative research faces similar challenges. The area
under study is often highly complex and the gathered data is
frequently unstructured, inconsistent, and incomplete [2, 15,
47]. In scientific research, these challenges are addressed by
using codified methods for qualitative data analysis (QDA).
QDA methods focus on extracting the relevant information
from qualitative data, interpreting the data, and abstracting
from it. QDA is employed in theory building research to
study a wide range of phenomena through the gathering and
interpretation of qualitative data. The process leading to the
resulting theory ensures thorough documentation of the
analysis process. The documentation is facilitated through
memos written by the researcher.

We equate the process of theory building to the domain
analysis process. Nuseibeh and Easterbrook state that “we
can compare the problem of validating requirements with
the problem of validating scientific knowledge” [40]. We
take this comparison one step further by proposing that not
only the validation of knowledge, but also its elicitation can
follow similar procedures.

The domains under study both in theory building and
domain analysis are highly complex and the gathered data
might therefore be unstructured, inconsistent, and incom-
plete. Therefore, both challenges require a systematic
method for extracting relevant information from qualita-
tive data. This method should guide the analyst in struc-
turing the data and resolving inconsistencies to arrive at a
coherent theory or domain model, respectively. The con-
text in which requirements engineering (RE) takes place
is usually a socio-technical work system, in which humans

Abstract The creation of domain models from qualitative
input relies heavily on experience. An uncodified ad-hoc
modeling process is still common and leads to poor docu-
mentation of the analysis. In this article we present a new
method for domain analysis based on qualitative data analy-
sis. The method helps identify inconsistencies, ensures a
high degree of completeness, and inherently provides trace-
ability from analysis results back to stakeholder input. These
traces do not have to be documented after the fact. We evalu-
ate our approach using four exploratory studies.

Keywords Domain modeling · Domain model ·
Requirements engineering · Requirements elicitation ·
Qualitative data analysis

1 Introduction

The success of a software development project is highly
dependent on the quality of the results of its requirements
engineering process [19, 54, 56].

The quality of a requirements specification mainly
depends on the experience of the analyst and his or her
understanding of the problem domain. To establish a good
understanding of the problem domain, the analyst may create
a domain model as part of his or her analysis [31, 34, 43].

 * Andreas Kaufmann
 andreas.kaufmann@fau.de
 Dirk Riehle
 dirk@riehle.org

1 Department of Computer Science, Friedrich-Alexander-
University Erlangen Nürnberg, Martensstr. 3,
91052 Erlangen, Germany

 Requirements Eng

1 3

interact with one another and with systems. Understanding
how these social units interact and deal with a phenom-
enon can be viewed as a theory building exercise.

By drawing on theory building in qualitative research as
a form of knowledge generation and applying these con-
cepts to domain analysis we address the following com-
mon challenges:

• Organizational politics and other social aspects that
are uncovered during the analysis can be documented
in the same artifact as the analysis result. In fact, the
methods we adapt from have been used to study social
constructs for decades. The appropriateness of these
methods for investigating social aspects has been well
established.

• Stakeholders frequently have different goals, leading to
conflicting requirements. Managing these conflicts is a
challenge and only one solution can be documented in
the final artifacts. Within a new intermediate artifact,
however, all resolved and unresolved conflicts remain
documented.

• While methods and notations for a multitude of mod-
els have matured, maintaining inter-model consistency
between these models is still a challenge [13]. Our
method interconnects several final model types through
a new intermediate artifact.

Further challenges such as reusability of requirements arti-
facts and management of traces are directly impacted by
improved documentation as an integral part of the analysis
method.

We have developed a method for domain analysis,
called QDAcity-RE, which was inspired by QDA methods
that have been a mainstay of social science research for
more than 50 years [55]. They are also becoming increas-
ingly common in other fields of research. In this article
we describe the QDAcity-RE method and evaluate it using
four exploratory studies. Through these studies we provide
an evaluation of its utility and the qualities of its output.

In the QDAcity-RE method, requirements engineers
sample stakeholders, interview them, correlate other mate-
rials, and perform QDA of the materials to derive a so-
called code system. The code system is then extended to
derive the relevant requirements engineering results. This
paper focuses specifically on the derivation of conceptual
domain models using the QDAcity-RE method.

The contributions of this article are twofold:

1. A novel method for domain modeling, which improves
over the state of the art by exhibiting the following quali-
ties:

(a) Inherent pre-requirements-specification (pre-RS)
traceability between domain model elements and
stakeholder statements.

(b) Efficient identification of inconsistences in stake-
holder statements.

(c) A high degree of completeness of the resulting
domain model.

2. An evaluation of this method using four exploratory
studies.

The remainder of this article is structured as follows: First
we relate our work to the existing body of research in Sect. 2.
Then we present our analysis method in Sect. 3 and the
expected benefits in Sect. 4. Four exploratory studies are
subsequently presented in Sect. 5, the results of which and
their limitations are discussed in Sects. 6 and 7. Finally, a
conclusion is drawn in Sect. 8.

2 Related work

We are not the first to use QDA in requirements engineering.
Related fields like knowledge engineering and process mod-
eling have also employed QDA [9, 10, 41, 59]. Most of this
work does not just use QDA, rather it utilizes QDA in the
larger framework of Grounded Theory (GT) [23]. GT is an
approach to theory building that provides a methodological
framework in addition to the supporting analysis practices.
Our approach differs from mentioned work in that we define
and evaluate our own method, QDAcity-RE. QDAcity-RE
was inspired by GT, but drops many of its epistemological
assumptions and preconditions. We do not believe that GT
itself can be applied to RE but rather that we need to define
and validate our method independently of the social sciences
and qualitative research.

Carvalho et al. tested the application of GT to descrip-
tive process modeling by producing two process models:
one by an experienced software engineer and one by an
experienced qualitative data analyst (researcher) without
software engineering experience [9]. They found that using
the GT method cannot compensate for the software engi-
neer’s expertise and experience. However, its application can
improve the modeling process, because it forces the analyst
to explore the complexity of the data and to systematically
abstract from it. Similar findings are described by Pidgeon
et al., who applied GT to knowledge elicitation [41].

Pidgeon et al. add that GT secures the traceability of a
derived model back to original data sources through the
documentation of the analysis process in codes and memos.
However, they point out that the produced model is still an
interpretation which needs to be validated.

Requirements Eng

1 3

Both authors criticize the complex and labor intensive
analysis process of GT. Their findings can be transferred to
the process of domain analysis, which also includes eliciting
knowledge from domain experts and analyzing it to derive
an abstract model [8]. Our studies concur with [9, 41] con-
cerning the effort required for using methods like GT with
the purpose of domain modeling. Many of the problems we
encountered in this regard, however, can be solved through
better tool support tailored toward domain modeling.

Würfel, Lutz and Diehl propose a holistic approach for
data elicitation, data analysis and the determination of
requirements, similar to the approach that is proposed by
us [59]. They define two process phases: In the first phase,
GT practices are employed for data elicitation and analysis.
In the second phase, domain descriptions are turned into
use cases.

Hughes and Wood-Harper express the need for addressing
the organizational context during requirements determina-
tion. They demonstrate the use of GT to develop an abstract
account of the organization with two case studies [30].
They adapt GT by using predefined categories to address
time constraints. The requirements determined in the case
studies cover mostly organizational aspects. Examples of
such aspects are high-level goals, constraints, and aspects
of change. The studies do not, however, show how to extract
specific requirements on a lower abstraction level nor how to
extract structural elements of an organization. In addition,
they do not describe the data analysis process of their case
studies in any detail.

Chakraborty and Dehlinger explain how the coding pro-
cedure of GT can be applied to determine enterprise system
requirements and to derive UML diagrams, thus bridging
the gap between qualitative data and final system descrip-
tions [10]. They demonstrate their approach by deriving a
UML class diagram from a textual high-level description
of a university support system. However, the diagram they
developed is not consistent. Features and information about
the implementation are represented as classes and the rela-
tionships between classes are not specified. An important
adaptation in their procedure is the addition of conjectural
categories to their model, which were not derived from the
data, but were based on the experience of the analysts. They
discovered that, apart from the advantage of traceability, the
iterative process of GT allows the analyst to discover and
close information gaps earlier in the process.

Chakraborty, Rosenkranz, and Dehlinger propose a pro-
cedure called Grounded and Linguistic-Based Requirements
Analysis for eliciting non-functional requirements (NFR)
[11]. They argue that the application of GT-based practices
in the analysis process improves the requirements specifi-
cation by facilitating the sense-making of multiple view-
points into a cohesive description. However, Chakraborty
et al. also point out that the differences between RE and

theory development make adaptations of GT necessary.
Also, because system analysts are not familiar with GT,
Chakraborty et al. propose to support the analyst in devel-
oping theoretical sensitivity and identifying the important
concepts by giving him or her guidance about the theoretical
principles to apply.

Chakraborty et al. used predefined categories of NFR.
These categories were related using Mylopoulos, Chung,
and Nixon’s NFR framework [38]. Thomas, Bandara, Price,
and Nuseibeh also use an analytical framework, including
predefined thematic codes and extraction rules, to use QDA
for the determination of privacy requirements for mobile
applications [53]. They state that QDA improves require-
ments elicitation by accounting for contextual factors and
securing traceability.

An adaptation of GT many of the presented articles pro-
pose is the use of predefined categories. This alleviates the
high amount of effort required for a systematic analysis
using GT. Traditional GT would not allow for such a-priori
constructs or would at least defer their use to the end of a
study to make sure that theory development is not biased
by preconceived notions of the researcher. In our research
we found that besides the obvious impact on resources, the
usefulness of predefined categories is highly dependent not
only on the domain, but even more so on the desired artifact
the analyst wishes to have created at the conclusion of the
analysis. For instance when the derivation of natural lan-
guage requirements from data was desired, we found pre-
defined categories to be immensely helpful, while for the
conceptual model we found it more helpful to start without
preconceptions in many cases. All of this, however, is still
dependent on the domain.

The use of GT to model requirements is also investigated
in Halaweh’s studies [26, 27]. Halaweh states that catego-
ries and their relationships derived from Corbin and Strauss’
coding paradigm [15] can be compared to classes and their
relationships in class diagrams. Thus, the informal model
resulting from GT can be translated into a semi-formal
model such as a UML class diagram. Theoretical sampling
can help to identify users to interview and theoretical satura-
tion can be used as an indicator to stop requirements elicita-
tion. Halaweh argues that by applying GT and thereby letting
requirements emerge from the data, requirements are user-
driven, supporting user-centered design and satisfying user
needs effectively.

Halaweh points out that the analyst needs to apply the-
oretical sensitivity in order to produce relevant results.
Another claim of his studies is that GT is particularly suited
to identify non-technical aspects regarding change due to
the system’s development and implementation, such as the
user’s resistance to change. This might help to initiate proac-
tive measures for implementation and training to overcome
organizational problems. Halaweh conducted a case study, in

 Requirements Eng

1 3

which he analyzed interviews from which he then retrieved
a class diagram. However, although he asserts equivalence
of GT concepts and object-oriented analysis and design
(OOAD) elements, he does not explain these equivalencies
and does not present guidelines for coding and transferring
an informal model to a class diagram.

The need for more precise expression of the information
encoded within a code system has also been discussed in
qualitative methods research.

Glaser proposes a more flexible method for relating dif-
ferent concepts of a theory by using theoretical codes, which
he divides into coding families [22]. Charmaz criticizes that
Glaser does not provide a comprehensive model and that
some of the theoretical codes overlap and seem random [12].
Their use is therefore difficult for a requirements engineer
who is a novice at GT [10, 12]. However, we investigated
Glaser’s coding families and found two theoretical codes
which are relevant for deriving a structural description of a
domain. Since the focus of domain analysis is the investiga-
tion of the structure of a domain, additional structural types
of relationships apart from “is a” and “is property of” are
needed [18].

3 The QDAcity‑RE method

QDAcity-RE is a method for domain analysis. The analysis
process codified by this method has the goal of creating a
code system through iterative refinement from which the
domain model is derived.

The code system is a unified model that bridges the gap
between stakeholder materials in natural language and more
formal models like requirement engineering artifacts. The
code system is described in Sect. 3.3, and subsequently the
process is detailed in Sect. 3.4.

3.1 Method overview

The domain analysis is performed in an iterative fashion.
The main artifact of the analysis, the code system, is incre-
mentally refined until so-called saturation is reached. Satu-
ration, that is sufficient completeness, is reached when the
code system does not change significantly with the addition
of another iteration of stakeholder sampling, data gathering
and analysis.

Each of the iterations consists of the following three
steps:

1. Stakeholder sampling
2. Data gathering
3. Data analysis

The sampling of new data is driven by gaps and inconsisten-
cies explicitly documented in the current state of the code
system representing the results from all previous iterations.
While the means of data gathering, such as interviews, work-
shops and legacy documentation, are not exclusive to our
method, there are specific characteristics of data and tech-
niques of data gathering that QDAcity-RE suits more than
others. These characteristics are discussed in Sect. 3.4.2.

The analysis is then performed by qualitative coding of
the data in three coding steps, called open, axial and selec-
tive coding.

The goal of our analysis process is to make the previously
implicit and largely undocumented interpretations and deci-
sions made during domain analysis explicit. The manifesta-
tion of this explicit documentation is the main artifact of our
method: the code system.

Figure 1 provides an overview of how to perform domain
analysis using our method.

3.2 Method context

Our method is primarily aimed at environments where prod-
ucts have a long life-cycle and thorough documentation is
needed or even mandated. If it is foreseeable that the system
will be replaced by something completely different in the
near future, the benefits of our method may not outweigh
the increased effort it requires. However if the product will
evolve, then the documentation and the traces back to stake-
holder statements are a major benefit. The documentation
and traceability make it easy to verify if specific concepts are
still relevant and why they were modeled in the first place.

Furthermore, in a context where the main sources of
information are expert interviews or other highly unstruc-
tured information sources, our method is significantly more
helpful when compared with situations in which the infor-
mation sources are already highly structured, for example,
situations with existing specifications. In principle, all types
of data gathering are supported, and the sources can be com-
bined and correlated. To combine different types of data
using data triangulation is recommended.

Our method focuses the data gathering and analysis
process. It is assumed that the project vision and project
scope have already been defined, although the scope may be
refined through the iterative analysis process, if necessary.

3.3 The code system

The code system is a hierarchical structure of codes. It rep-
resents a model that captures concepts, categories, their
properties and interactions. The code system is produced
as a result of the coding process of QDA, which is detailed
in Sect. 3.4.3.

Requirements Eng

1 3

Each code in the code system describes a concept
grounded in the gathered data. When codes are first created
during the analysis process, they are loosely coupled. With
an increasing number of iterations the code system is formed
as hierarchical structure of these codes as nodes. Each code
has a label, a definition, and instructions on its intended use
as well as a description differentiating it from other codes
and possible misinterpretations. In addition to this informa-
tion, which is typically documented in a code book [35],
each code contains meta information on which kind of entity
it is (activity, actor etc.).

The code system bridges the gap between natural lan-
guage text containing stakeholder information and require-
ments engineering artifacts like the analysis domain model.
Each code is linked to one or more text segments in the
gathered data. These instances of a code are called a coding,
and the length of the coded text segment is called the unit of
coding (sentence, paragraph, multi-paragraph, etc.).

Since the code system provides a holistic view on the
phenomenon, it acts as a common denominator between
multiple models describing different views on the domain
(i.e. structural, behavioral, data, communication etc.). This
strengthens inter-model consistency. In our exploratory stud-
ies, for instance, we derived both a UML class diagram as
well as a BPMN diagram from one code system, and we
derived a feature model, class diagram, and domain specific
language (DSL) from another code system with all model
elements traceable to the code system, linking to elements
from various model types.

An example of a code system excerpt from one of our
studies with its traces to associated stakeholder state-
ments and parts of the model is presented in Fig. 2. The

granularity of the traces back to the stakeholder interviews
can be varied through the unit of coding. A typical unit
of coding ranges from a part of one sentence to multiple
paragraphs.

3.4 The QDAcity‑RE process

The analyst starts the domain analysis process by construct-
ing a broad initial interview guideline.

This initial guideline evolves with each iteration of data
gathering and analysis to close knowledge gaps identified
through previous iterations and to resolve inconsistencies.
Increasing specificity of the guideline does not necessarily
lead to a structured interview. Still, structured interviews
or even questionnaires can cover information that require
a larger empirical sample. For this, they can provide valu-
able supplementary material to strengthen the validity of the
findings through method or data triangulation. Triangulation
is a term describing a set of practices used to vary different
aspects of the analysis to gain insights on the phenomenon
from different perspectives. If different perspectives on the
phenomenon lead to the same conclusion, the analysis result
is believed to be more credible. The increased credibility is
assumed because the analysis is grounded in different types
of data (data triangulation), or because the data was ana-
lysed through different types of activities (method triangu-
lation) or by different investigators (investigator triangula-
tion). A fourth form of triangulation is considered, when
the results were verified by people with an external per-
spective on the research project using the same data (theory
triangulation).

Fig. 1 The QDAcity-RE process for structural domain modeling

 Requirements Eng

1 3

While triangulation is not a required part of the QDAcity-
RE method, it is a practice that lends itself well to domain
modeling as well and can easily be integrated.

3.4.1 Stakeholder sampling

With the interview guideline ready, the analyst then per-
forms stakeholder sampling to find those individuals who are
best able to discuss the topics of the interview guideline. The
sampling strategy is not fixed for the entirety of the analysis,
but only for the next iteration. It has to be performed with
consideration for what the gaps, inconsistencies, or novel
insights are that are present in the current state of the code
system.

The sampling strategy is called theoretical sampling,
because it draws on the current state of the theory on how
the phenomenon could be modeled as supported by the evi-
dence already collected and analyzed at the time of sam-
pling. This information is codified in the code system. Theo-
retical sampling promotes a more flexible and agile way of
sampling, as opposed to defining the data gathering process
a-priori based on assumptions about the domain and the dif-
ferent stakeholders. The data gathering is not performed in
a predefined order.

In qualitative research, theoretical sampling is often con-
sidered the ideal way to shield the outcome from being influ-
enced by preconceptions [50] and to highlight information
gaps [12].

3.4.2 Data gathering

During the data gathering phase of each iteration, the ana-
lyst extracts and documents unstructured information from
stakeholders’ both explicit and implicit knowledge. The goal
is to document as much information as possible in a way

that allows for a structured analysis leading to consolidation
with other materials and abstraction into uniquely identifi-
able pieces of information that describe specific parts of the
domain.

QDAcity-RE can be paired with a wide range of methods
for collecting unstructured data from stakeholders, such as
workshops, interviews, observations, surveys or creativity
techniques such as brainstorming. Our method treats all
data the same and unifies the information content of differ-
ent media types in a single artifact, the codesystem, which
encompasses the consolidated information from different
input artifacts.

All of these data gathering methods can be used in our
method, however, interviews take the most prominent role.
The coding of transcribed interviews using QDA can provide
the highest additional value. We have found that our method
provides the highest value in a context, where the majority of
the information is available only in unstructured form. Inter-
views document the stakeholders’ thoughts in a way that
supports an unbiased analysis through a third-party analyst.
Through the analysis the information within the interviews
gets structured and becomes easier to navigate. In contrast,
workshops, for example, often require more structured mod-
eration in order to coordinate a larger group of stakeholders.
This added structure, however, lessens the value of QDA,
because the analyst is most likely to just follow this structure
in his analysis, preventing a possibly more natural structure
to emerge from the data.

Interviews and workshops are transcribed, and can be
coded together with legacy documentation and regulatory
texts.

Throughout the whole process the analyst has to be open
to new ideas emerging by letting the gathering process be
steered in large parts by the stakeholders. This concept is
called theoretical sensitivity and it helps to identify what is

Fig. 2 Codesystem example

Requirements Eng

1 3

significant to the interviewee without being biased by pre-
conceived notions.

Within the scope of this work we use interview tran-
scripts, marketing material, natural language documenta-
tion, regulatory documents and photographed hand-drawn
illustrations as input data for our exploratory projects.

3.4.3 Data analysis

The analysis of the gathered data is driven by the coding
process. During coding the gathered data is annotated to
highlight the most insightful parts of the text, resulting in
a code system. The code system is a hierarchically struc-
tured set of codes, representing common concepts, that con-
nects unstructured data to structured RE artifacts, such as
the domain model and the glossary. The code system thus
ensures inter-model consistency.

The coding process consists of the following three activi-
ties, which are performed in sequence.

1. Open coding
2. Axial coding
3. Selective coding

These three activities are performed during each iteration
of data gathering and analysis until a stopping criterion, the
so-called theoretical saturation, is reached. Reaching the
stopping criterion indicates sufficient completeness of the
analysis results.

It is important to limit the amount of data that is added in
each iteration. Especially the first coding step, open coding,
becomes more difficult to perform as the amount of new
data in each iteration increases. In a research context, typical
increments add new data collected from 1 to 5 interviews for
each iteration. For our exploratory projects we added one
interview per iteration because of the relatively small scope
of each project.

During the first stage of coding, open coding, the analyst
creates an unsorted list of labels and assigns each label to
one or more text segments. These labels are called codes
and the portion of data that has been coded is called a cod-
ing. The granularity of the coded segment is called the unit
of coding, and may vary from single words, sentences to
multiple paragraphs or pages.

Codes are referred to as in-vivo codes [12, 15], if their
name is directly mentioned in the unstructured data, but
codes can also be abstractions from the original material.
Because a domain model should represent the domain ter-
minology [34], in-vivo codes should be the most common
codes. Synonyms should be documented with the code and
ultimately in a glossary. It is common, that in the begin-
ning hundreds of open codes are created on a multitude
of abstraction levels. We advise to first generate specific

concepts for smaller units of coding and then to combine
them during the abstraction process. Specifically when
coding within the context of domain analysis, it is impor-
tant to make all aspects of a phenomenon explicit in sepa-
rate codes. A code “employee attends development meas-
ure” is not easily mapped into a domain model, because it
includes several aspects: the actor “employee”, the activity
“attending development measure”, and the event “develop-
ment measure”. In addition, the analyst should be careful
to describe activities with verbs and not with nouns in
order to distinguish them from events.

The extracted codes are then structured hierarchically
by grouping them into categories during axial coding to
form a map of concepts supported by the analyzed docu-
ments. Categories represent the aspects central to the
domain and are described further with regard to their
properties and context through constant comparison and
questioning. The data fragments indicating the properties
should also be coded. Both structural and dynamic aspects
can be developed into categories. However, if the purpose
of the analysis is clear, such as the extraction of a con-
ceptual domain model, the analyst may focus on aspects
which are central for the analysis and investigate these
first. During the axial coding step, the code system meta-
model is used to define the types of relationships that may
be modeled within the code system.

The last step in a coding iteration, selective coding, helps
model only aspects within the definition of the scope of the
project. The selection and focus on a few high-level phenom-
ena reflects what is central to the domain, what belongs to it
to support the central concepts, and what is not part of the
code system and consequently not significant for the domain.

During this coding step, core categories are chosen,
which holistically describe the studied phenomenon. All
other codes have to be subsumed by a core category. The
code system should describe core categories in all of the
following five dimensions to be considered complete:

1. Actions & strategies
2. Consequences
3. Causal condition
4. Contextual condition
5. Structural condition

This is borrowed from social science research, where these
dimensions form the corner stone of the coding paradigm
[16]. The coding paradigm aims at increasing the systema-
tization of that process [51].

Codes that do not fit in any core category are considered
not relevant. While in research this criterion of relevance
is highly influenced by the research question as well as the
domain, for domain modeling it is purely dependent on the
domain since the question constituting the reason for the

 Requirements Eng

1 3

analysis is always “What are the concepts in this domain and
what are the relations between them?”.

In theory building research, all categories of the code
system will ultimately be subsumed under a single core cat-
egory. However, selecting a single core category does not
make sense for the purpose of domain analysis, because a
domain model should give a complete representation of the
domain [6]. The phenomena, i.e. entities, which are central
to the domain have already been identified as being impor-
tant by developing them into categories.

3.4.4 Iterative refinement

After the initial collection and analysis of data, the analyst
enters an iterative process repeating the concurrent collec-
tion and analysis of data, where the sampling of new data
should be sensitive to how the code system evolves.

After each iteration of data collection and analysis, the
analyst should reevaluate what data should be collected next
based on the current state of the emerging domain theory.
The current state of the code system and lacking description
of the core categories thereby drives the sampling process
for the next iteration of data gathering and analysis.

New iterations are performed until saturation reaches a
defined level. Full saturation is reached, when through the
additional gathering of materials selected through theoretical
sampling, no new codes in the code system emerge, and the
definitions of existing codes remain stable.

Although the concept of theoretical saturation is fre-
quently suggested, the metrics for measuring saturation are
rarely documented. An overview of the problem of data
saturation is presented by Francis et al. [20]. They propose
to start with an initial analysis sample and a stopping cri-
terion, which is the number of consecutive interviews that
have to be analyzed following the initial analysis sample,
without new themes emerging from the data. Both measures
have to be defined a-priori, depending on the complexity
of the studied phenomenon. They conclude, that a 10 + 3
(initial + stopping) rule for their saturation criterion may
be regarded as a reasonable value, if there is no specific
indications on the required sample size within the problem
domain.

Whatever saturation metric may be considered adequate
in a specific case, it is imperative in any case that the meas-
ure be clearly documented and consistently measured.
Although the analysis process can be used without measur-
ing saturation, we advise to define an explicit criterion that
is actually measurable and track this metric throughout the
lifespan of the project.

Using the concept of theoretical saturation yields a
metric for the quality criterion of completeness. Further,
the hierarchical structure of the code system assists the
analyst in identifying conflicts and contradictions. This

hierarchical structure is a direct result of the coding pro-
cess and since concepts describing the same semantic
entity will be located in close proximity within the tree
structure, inconsistencies will be easier to identify.

During each new iteration, the analyst is required to
look for evidence or contrary indications of newly emerg-
ing codes in already coded documents. He or she is also
required to look looking for evidence of established codes
in the new data and to identify new concepts that previ-
ously were not prevalent. This behavior is called constant
comparison.

The code system is further refined iteratively while find-
ing support for a theory, establishing new codes or combin-
ing and eliminating codes which are not sufficiently sup-
ported by the data.

Throughout the whole analysis process, the documenta-
tion of the data gathering and analysis process plays a vital
role. One common practice for facilitating such documenta-
tion in qualitative research is memo writing. Memos can be
attached either to specific codes or as project memos on the
analysis process to the whole code system or specific docu-
ments. Memos are thus important for describing the meaning
of different concepts within the domain and explaining the
decisions within the analyst’s mental process. In current tool
support for QDA, memos are also the only way of describing
more expressive relationships between concepts. This is one
aspect we want to improve about current qualitative research
processes: We want to make information which researchers
usually only write up informally, explicit and machine pro-
cessable by using more convenient and reliable means than
natural language processing (NLP).

4 Expected benefits

When applied to the creation of domain models during
requirements engineering, the expected benefits of our
approach are the following:

1. It closes the gap between the informal stakeholder mate-
rial and formal domain models by adding pre-Require-
ments-Specification (pre-RS) traceability.

 This traceability is embedded in the RE process and
documented in a new unified model, the code system.
The inherent traceability eliminates the need to create
and maintain traces after the fact.

2. It improves the process for deriving domain models from
stakeholder materials by

(a) providing a defined process, where previously
business analysts mostly had to rely on intuition
and experience.

Requirements Eng

1 3

(b) allowing the definition of a measurable stopping
criterion to determine when the requirements
elicitation process exhausted the relevant cases.

3. It improves domain model quality by

(a) ensuring completeness of domain models, where
previously key input might have been missed.

(b) ensuring consistency, by following principles of
the constant comparison method.

Current tools support the documentation of traceability
manually, linking requirements back to specific arti-
facts. However, creating and maintaining these matrices
is a laborious documentation task that does not provide
additional benefits for the actual analysis of the source
documents [5, 14, 28]. If the documentation, however,
is created as part of the text analysis, it can serve both
purposes: to better understand the target domain, and to
create better documentation of the analysis process. The
improved documentation makes each element traceable.

We use qualitative research methods to solve part of
the “grand challenge of traceability” [24], ubiquitous
traceability, in a pre-RS context.

The fine grain traceability provided by using QDA
methods further improves the ability to perform change
impact analysis. If any passage within the source docu-
ments changes, the corresponding parts of the model can
be identified and adapted, and vice versa.

Through the traces, decisions made during the analysis
process become explicit. For instance, when resolving
conflicting descriptions, alternative interpretations or
conflicting viewpoints are documented beyond what is
visible in the final model.

Our approach also empowers less experienced analysts
by offering a codified method, that the analyst may follow
to achieve higher quality models of the domain.

Further, the in-depth analysis through qualitative cod-
ing, especially when a high degree of in-vivo codes are
used, contributes to a better understanding and definition
of terminology that is close to the language use of the
stakeholders.

These benefits can, however, not be achieved at zero
cost. Our experience, which is in line with previous
related studies, is that using QDA methods for domain
analysis increases the effort required for the analysis sig-
nificantly. A cost-benefit estimation has to be made on
a case-by-case basis. Further research into a measurable
effort impact of QDAcity-RE is pending. The required
effort is directly dependent on the eventual tool support.

5 Exploratory studies

After having defined our method, we now present four
studies in which we explore its application. These studies
are detailed in their respective Sects. 5.1, 5.2, 5.3 and 5.4.

The first two projects in which we developed the method
as outlined in Sect. 3 were performed in the domains of
medical imaging diagnostics and railway systems. Both
required the creation of a conceptual domain model which
we developed using QDA techniques. These projects were
interwoven with the initial creation of the method and were
used to explore how the transfer from research method to
domain analysis can be implemented.

Following these two projects we applied our learnings in
two additional studies. In these two studies we evaluated the
QDAcity-RE method within the domains of human resource
(HR) development and qualitative research methods.

Table 1 provides an overview of the qualitative data
coded in the scope of the four exploratory studies.

Table 2 further details some of the key differences among
the four cases.

With each of the four cases, which were executed in the
order presented here, we aimed to refine our method and
thus focused on a specific aspect. The focus of each study
is as follows:

1. Medical image diagnostics
• Establish feasibility for semi-formal modeling
• Create a DSL using QDA

2. Railway systems
• Improve conceptual modeling using QDA

3. HR development
• Compare workshops and interviews as input
• Document full traceability

4. Qualitative research
• Derive a conceptual model, a behavioural model and a

natural language specification from the same codesystem

Table 1 Coded data

Study Data Coded segments

Medical image diagnos-
tics

8 in-depth interviews 1563

Railway systems 4 in-depth interviews
Project documentation
Norms and standards

754

Human resource develop-
ment

6 in-depth interviews
6 workshop transcripts

1237

Qualitative research 6 in-depth interviews 778

 Requirements Eng

1 3

The evaluation model we used to determine the success of
these studies is presented in Table 3. The criteria of this
model are examined for each case in Sect. 7.1.

We used MAXQDA1 as the analysis tool for our explora-
tory studies.

5.1 Domain modeling for medical imaging diagnostics

We first applied our method to the design of a DSL for medi-
cal imaging diagnostics. This study was conducted in col-
laboration with Siemens Healthcare [36].

To create a DSL, the analyst not only requires techni-
cal know how, but needs to have a deep understanding of
the domain. A deep understanding is required so the DSL
will be accessible intuitively for the domain experts, who
represent the target audience of most DSLs. We therefore
conducted a domain analysis using our QDA based method.
As part of this domain analysis a feature model and a con-
ceptual domain model were created.

Through our analysis we identified typical workflows for
medical imaging diagnostics using computer tomography
(CT) and magnetic resonance imaging (MRI). These work-
flows guide the diagnostician through the diagnosis pro-
cesses. The goal of defining these workflows using a DSL
was to achieve standardized medical findings.

To elicit the processes in which users typically engage to
diagnose an image, eight interviews were conducted. These
were subsequently transcribed and analyzed using an early
outline of our qualitative analysis method. The interviewed
personnel included the two project managers, two test engi-
neers a software architect and three product coaches who
were working with all stakeholders to define the product
requirements.

In addition to these interviews we utilized background
material on typical oncological diagnostics provided by the
Siemens AG. We triangulated the results using multiple data
sources. This increases trustworthiness [25].

After the qualitative analysis concluded, and a stable code
system supported by over 1500 coding instances within the
texts had emerged from the data the code system was then
transformed into a formal feature model.

Even without tailoring the coding process toward feature
models around 80% of the codes that emerged from the data
could directly be translated into a node of a feature model.

While the translation into a feature model could be per-
formed with only minor modifications, the modeling on the
domain’s structure through a UML class diagram required
more implicit knowledge of the domain. This knowledge was
not represented in the code system. We attribute this to the
fact that within this study the coding was performed very
similarly to how it is performed in theory building research.
This meant a high degree of freedom regarding the structure
and semantic of the code system. A classification of codes

Table 2 Overview of exploratory studies

Study Industry project Member checks Data trian-
gulation

Outline con-
versations

Fully traceable Evaluation

Medical image diagnostics × Informal × – – –
Railway systems × Follow-up interviews × × – –
Human resource partly Follow-up interviews – × × Expert survey
Development Ontology
Qualitative research – Informal – × × Expert survey

Table 3 Evaluation model

Quality/goal Evaluation criteria

1. Leads to better documentation Model elements can be traced to stakeholder statements
All model elements are grounded in stakeholder statements

2. Improves completeness Domain expert does not consider important elements missing
Model covers all aspects in existing knowledge representations
The analysis process reached saturation

3. Improves consistency Domain expert can not identify any inconsistencies
Inconsistencies were uncovered during coding

4. Can handle different types of input materials Different input materials used (Interviews, Workshops etc.)
5. Supports the creation of different target artifacts Different output artifacts created with inter-model traceability

1 http://www.maxqda.com.

Requirements Eng

1 3

as classes, attributes or relationships had to be added ad-
hoc during the manual transformation process. Some of this
information could be extracted from code memos, but most
of it was created through an additional interpretative step.
A more structured approach would help this transformation,
however if the coding becomes more restrictive it also lim-
its the possibility of unexpected results emerging from the
analysis. Further research into finding the appropriate bal-
ance in this respect is needed.

In a final step, the feature model was then translated into
a DSL, ensuring that the terminology used in the DSL is
the same that was used by the interviewed participants of
the study.

From this experiment we concluded that a partial auto-
mation of transforming a code system into a domain model
warrant further investigation. We also concluded, that such a
transformation would have to be supported by a more formal
code definition which is supported by a meta model.

5.2 Domain modeling for the openETCS toolchain

The second exploratory study was performed in the domain
of railway systems in collaboration with members of the
openETCS project. Our partner for this second study was
Deutsche Bahn AG. The purpose of this project was to
understand the needs within the openETCS project toward
their tool chain. In essence, we performed requirements
elicitation and analysis for tool needs of the software devel-
opment process within the openETCS project.

5.2.1 Data sources

Two major data sources were used for this project: We con-
ducted four interviews with three openETCS stakeholders
and we processed the relevant official documents from the
openETCS repository on GitHub and involved them into our
coding process.

The individuals we interviewed are directly involved in
the openETCS project as team members of the development
team. All interviews were executed in a semi-structured way.
The initial interview took place in September 2013. Our
interview partner was the project leader of the openETCS
initiative. At this point, we had received an informal intro-
duction into the project through a telephone conference with
two of the project leaders. We had also received access to
the documents repository. In preparation for the first inter-
view we analyzed the currently existing requirements docu-
ment and carved out inconsistencies, imprecise wordings
and mistakes. The discussion of these aspects served as an
introduction to the different topics, but the interview became
very open and often one aspect brought up the next one. This
resulted in a long and detailed conversation which covered
the whole project.

5.2.2 Data analysis

The interview guideline was then incrementally adapted to
address issues that were revealed through constant compari-
son such as the following.

• Gaps within the current code system, where a lack of
deeper information was evident.

• Discrepancies within the current code system which
originated in contradictions in the statements of differ-
ent interviewees.

• New aspects of the target domain that appeared during
the analysis.

We used open questions to create a relaxed atmosphere and
encouraged the interviewees to talk about what came to their
mind. They were also free to change the topic if they wanted
to. The prepared questions served only as an outline of the
conversation. The intention was to let the interviewee speak
freely, which is also transferred from the traditional GT
techniques. This shall ease the discovery of topics that the
analyst might not yet be aware of. However, when statements
came up that we did not understand or included unclear
details, or when the current interviewee contradicted state-
ments from earlier interviews, we specifically inquired these
issues and asked for more details.

After running through the coding process, we then revised
and checked the new version of our code system for quality.
Hence, the code system is smoothed and corrected after each
iteration. In addition, the memos containing the code defini-
tions were updated after each iteration. Inconsistencies were
documented, as were poorly understood concepts, which
served as the basis for discussion within the next interview.

5.2.3 Evaluation of openETCS study

Within this study we investigated the abstraction levels
which naturally occur in the code system through the cod-
ing process with regard to a mapping of codes to domain
model elements. We found that our method is capable of
processing pieces of information on all levels of abstraction,
since it facilitates their hierarchical and logical ordering.
An abstract concept will be found on a high level within the
code system and its details will be subsumed in the subor-
dinate levels. In general, the codes that were mapped into
concepts of the domain model could typically be found on
the middle levels. The highest code system levels provided
an abstract perspective split and therefore a structural order,
i.e. “tools” vs. “artifacts”. The low-level codes on the other
hand mostly represented details of a concept such as the
concept’s behaviour or particular attributes.

With this being the first within our four studies that doc-
umented full traceability between the domain model and

 Requirements Eng

1 3

original stakeholder material by means of the code system,
we were frequently challenged by lacking tool support for
the coding process. We chose to document the additional
meta information necessary for creating a conceptual model
from the data within the code memo and maintaining these
manually. On the side of the domain model the links were
represented by the code ID, which was also maintained man-
ually. We expect to address these issues with our own tooling
solution in the future.

5.3 Domain modeling for human resource development

In this study we employed our method for domain modeling
in the environment of human resource (HR) development.
The main functions of HR development are (1) training and
development, (2) organization development, and (3) career
development of employees within an organization [58]. The
goal of this project was to evaluate the use of QDAcity-RE
for the creation of a conceptual domain model, using in-
depth interviews with experts working in the field of HR
development as a data source.

5.3.1 Data sources

All domain experts who participated in this study had high
level management positions in HR and experience in HR
development.

Their employing companies varied in size from a local
company with 50 employees to an international corporation
with over 100,000 employees worldwide and operated in the
sectors IT and market research.

The first interview was guided by 12 open questions,
which aimed at gaining an overview over the domain. For
the following interviews, analysis results determined the
interview questions according to the principle of theoreti-
cal sampling. We conducted semi-structured interviews,
so the prepared questions were used as a guideline and we
adjusted to participant’s answers [15, 37]. This was impor-
tant because we wanted to capture the knowledge of the
domain experts and not force preconceptions on the data
[15, 39]. To clarify inconsistencies, close information gaps,
and extract more detailed information, we conducted follow-
up interviews with two of the domain experts.

As a secondary data source, literature on HR development
[1, 4, 48, 52] was used to clarify the definitions of terms.
Although literature research prior to or at the beginning of
the research project is avoided in GT, Corbin and Strauss
believe that literature may be used to support the analysis as
soon as the main categories of the theory have emerged [21].

The interviews were audio recorded, anonymized and
transcribed manually. Corbin and Strauss advise to tran-
scribe interviews fully at the beginning of the research pro-
ject and in later stages only to transcribe those parts of an

interview which are important for the theory [15]. To limit
the risk of missing useful information, we transcribed the
whole content, but left out introductory and closing conver-
sations and defined a simplified transcription system [33].
The speech parts of interviewees were transcribed word
for word, including laughter. However, we did not include
details such as accentuation or the lengths of breaks, because
they are not relevant for the purpose of our research [3].
For the speech parts of the interviewer, we left out parts
which did not include any information such as expressions of
comprehension, because this would interrupt the information
given by interviewees unnecessarily.

5.3.2 Data analysis

When we applied the method described in Sect. 3 to our
example, concepts emerged from the data during open cod-
ing as explained above. The coding process started after the
first interview had been conducted and transcribed. In order
to represent the domain terminology, primarily in vivo codes
were used [3, 34]. Units of coding varied in size from one
phrase to a whole paragraph. Coding a whole paragraph
was sometimes necessary to preserve information about the
relationships between concepts. The units of coding belong-
ing to one concept were compared to investigate their dif-
ferences and similarities and to guide the questions for the
following interviews.

Usually, actors are not coded explicitly in GT research
projects, because they are intertwined with other concepts.
For example, a study investigating how patients deal with
pain includes concepts such as “experiencing pain” or
“pain”, but no concept “patient” [12, 15]. However, actors,
including external systems and organizational units, need
to be represented in a conceptual domain model [34, 45,
57]. For the domain of HR development, for example,
“employee” is a central concept. The same is the case for
objects and places, which are normally not investigated
explicitly during GT research. Therefore, actors, places and
objects, which includes tangible and intangible objects and
the concept type “idea” of GT, need to be coded as well.

Because conceptual domain models represent the enti-
ties of a domain, these are the phenomena we want to study
and were therefore developed into categories. Concepts
which seemed to belong to the same aspect were grouped
into categories. For example “giving feedback”, “feedback
survey”, “360-degree feedback” and “evaluating feedback”
were grouped under “feedback”.

We also coded background information, such as the posi-
tion of the interviewee in the organizational structure and
the current systems in use, as well as information about the
purpose of HR development. Although these codes should
be clearly distinguished, such information should be cap-
tured and kept in mind during the analysis, as it might be the

Requirements Eng

1 3

reason for differences between incidents and contain impor-
tant information for later design decisions.

5.3.3 Evaluation of HR study

The domain model created through our method was evalu-
ated with regard to the following quality aspects proposed
by Bolloju and Leung [6]:

• Syntactic quality: The domain model adheres to the mod-
eling language.

• Semantic quality: The domain model represents the real-
ity correctly and completely.

• Pragmatic quality: The domain model is easy to under-
stand from the stakeholders’ perspective.

We used basic notation elements of UML class diagrams
in accordance with the UML. Adherence to the syntax was
ensured by using tool support for domain modeling. To
assess the perceived semantic and pragmatic quality, we
conducted a qualitative survey of the participating domain
experts. The evaluation of semantic quality was completed
by comparing our domain model with an existing ontology
of the domain to assess the congruence of identified con-
cepts with established research.

For our written survey (adapted from [42]), we received
answers from three of the four participating domain experts
as shown in Table 4.

The domain model was evaluated to give a rather com-
plete, realistic and correct representation of the domain. The
only concept which was identified as missing was “criteria
of potential”. Within the interviews we conducted, the topic
of potential was only mentioned once as being currently in
discussion for implementation, thus did not show to be sig-
nificantly relevant according to the data. However, as satura-
tion could not be reached, this concept might appear during
further analysis. The only inconsistency which was reported,
was that performance assessment did not necessarily evalu-
ate target agreements. Domain experts’ descriptions of the
relationship between competency, performance, employee
assessment and target agreements were inconsistent and
imprecise. Their statements were therefore compared and

further investigated in interviews, which resulted in the dis-
tinction between competency and performance assessment
and a defined relationship between performance evalua-
tion and target agreements. However, the inconsistencies
and imprecisions in the data were not completely resolved
because saturation could not be reached and would need
to be investigated further with additional interviews. The
received feedback suggests that regular validation of analy-
sis results should be part of the domain analysis process to
improve the quality of the domain model.

The domain experts were undecided if all elements in the
domain model were relevant for the representation of the
domain. This was to be expected as the evaluation of rel-
evance depends on the purpose of the domain model and the
desired level of abstraction. These concerns also lead experts
to be undecided whether the domain is represented correctly.

Answers regarding the perceived pragmatic quality var-
ied. The domain model was perceived as confusing by some
of the domain experts. This might be attributed to the chal-
lenge of identifying the optimal abstraction levels within the
code system to be matched to the conceptual model, and pre-
sents an opportunity for improvement in regard to the design
of the domain model and our analysis method. Specifically,
it should be investigated if clearly defined abstraction levels
in the code system can help to improve the clarity of the
domain model.

To further assess the congruence of identified concepts,
we compared our domain model with Schmidt and Kun-
zmann’s competency-based ontology of HR development
[49]. While the ontology only covers HR development with
regard to competency management, all participating domain
experts stated that performance management was also a
part of HR development and our analysis showed a close
interrelationship between these two sub-domains. Thus,
our domain model provides a more holistic representation
of the domain. In comparison, our domain model covers
70% of the concepts from the ontology, while 50% of the
competency-related classes (excluding sub-classes) from
our domain model are represented in the ontology. How-
ever, the identification of equivalent concepts was based on
our interpretation, because Schmidt and Kunzmann do not
provide definitions of their concepts. This shows the value

Table 4 Evaluation of domain model by domain experts

Question Disagree Rather disagree Undecided Rather agree Agree

It was easy for me to understand what the model was trying to model 1 1 1
The model represents the domain correctly 3
The model is a realistic representation of the domain 1 2
All the elements in the model are relevant for the representation of the domain 2 1
The model gives a complete representation of the domain 3
The model contains contradicting elements 2 1

 Requirements Eng

1 3

of creating a glossary to provide a thorough understanding
of the identified concepts. Using our method, concepts and
their definitions are developed simultaneously and directly
linked, which ensures consistency between the domain
model and the glossary.

5.4 Domain modeling for qualitative research

The goal of our fourth study was the application of our
method for the domain analysis and requirements elicita-
tion for tool support for qualitative analysis methods such as
employed in our domain modeling method. This study had
a focus on the integration of multiple views in code systems
(conceptual view, process view, requirements specification
etc.). This specific research question is beyond the scope of
this article, therefore we focus on it as another application
of our method with a conceptual domain model as a result-
ing artifact which was evaluated through expert feedback.

5.4.1 Data sources

The data source for this project was a series of expert inter-
views. In total, five interviews with five stakeholders were
carried out. Four of them were professional researchers
from social sciences. The goal of these interviews was to
generate a theory on how social science researchers per-
form theory building, with a focus on QDA and specifically
on how they perform the task of coding. Three of the four
researchers we talked to perform social science research and
use QDA methods. All of them are experienced researchers
and employed QDA methods in multiple research projects.
One of them holds a doctor’s degree, the other two are PhD
students and hold master’s degrees or equivalent titles. The
fifth interviewee was a software engineer working on QDA
tooling.

5.4.2 Data analysis

As with the other exploratory projects, we let the code sys-
tem structure emerge out of the data. Hence, we initially kept
very close to GT. All interviews were performed in a semi-
structured way. The intention was to let the interviewees speak
freely. This eases the discovery of topics that the analyst might
not yet be aware of. However, when statements came up we did
not understand or included unclear details, or when the current
interviewee contradicted statements from earlier interviews,
we asked for more details about these topics. During the first
iterations’ axial and selective coding steps, the code system
developed into a direction that might be the expected outcome
of a conventional analysis as well: Since the purpose of this
project was the creation of a domain model and a requirements

specification through QDAcity-RE, the structure split up into
separate parts for the social science domain analysis and for
the requirements analysis. Issues like the project steps for the
former and development constraints for the latter emerged out
of the data as core concepts. These concepts naturally became
superordinate codes in the code system. This may partly result
from the interview outlines of the initial interviews, since they
addressed questions like “What project phases are there in a
research project when you apply QDA methods?”.

Speech of both interviewer and interviewee were tran-
scribed word for word. We excluded accentuation of state-
ments and non-verbal communication. Furthermore, we left
out speech parts that only stated an expression of comprehen-
sion, which would interrupt the flow of information and make
the text more difficult to read. In some cases we decided to
directly skip short passages in statements where the speaker
misspoke and corrected himself. Some expressions of collo-
quial speech or dialect were transformed into equivalent stand-
ard language expressions.

In order to assess the current state of the code system with
regard to its completeness at any given point in time, we
assigned a traffic light color to each code within the memo,
specifying how well the concept is described in the code
system:

• Red huge gaps of information, lots of data missing
• Yellow contradictions within related codes, information

gaps, open tasks for this section
• Green section is complete, no questions, requirements are

written down, tasks are done

We denoted the specifics of the gaps, problems, contradictions,
thoughts or questions within the code memos. Hence, they
provide both a quick overview of status and a flexible way to
denote issues.

5.4.3 Evaluation of qualitative research study

We asked the domain experts to give feedback on our results
by participating in a written survey.

Two of the experts provided feedback, which was positive.
One of them pointed to a missing detail. Beyond, they agreed
to our results (see Table 5).

During the evaluation of the previous study we assumed
that some of the “undecided” answers were the result of a lack-
ing context with regard to the purpose of the model, we added
the category “can’t be assessed” to allow for this distinction
to be made explicit.

Requirements Eng

1 3

6 Limitations

6.1 Application domain

During our exploratory studies, some important differences
between traditional GT and its application to domain analy-
sis became apparent. The most significant difference is the
focus on either behavioral or structural aspects. GT focuses
on interaction systems and therefore mainly uses concepts
to describe dynamic aspects of a research area, i.e. actions
which indicate a phenomenon [16]. A conceptual domain
model however describes the important entities of a problem
domain and their structural relationships [7].

Although the data sources used for domain analysis,
such as domain expert knowledge, contain mostly dynamic
descriptions of the domain, an analysis method must provide
a way to extract structural entities [46, 57]. These structural
aspects need to be described with their attributes and related
to each other, the same way phenomena under study in GT
are represented with categories and properties.

6.2 Sampling and saturation

In all four cases theoretical sampling could not be fully
applied due to limited access to interview partners. This
meant that we applied theoretical sampling mainly to the
choice of questions and not the choice of interview part-
ners. Especially when we interviewed domain experts from
different companies, we had to start each interview with
basic questions to understand the specific context within the
company. Thus, the interviews provided rather high level
information. To address a lack of detail in certain cases we
conducted follow-up interviews to retrieve more detailed
information. However, theoretical saturation could not be
reached due to availability constraints of domain experts,
and time constraints for each of the projects.

Furthermore the definition of a sensible criterion for satu-
ration in the context of domain analysis is subject of ongo-
ing study. Configuring an individual metric based on logged
changes based on the specific domain is our current recom-
mendation. However what dimensions of changes should be

tracked, how they should be weighted and what a reasonable
default preset could be is subject to further research.

6.3 Lack of tool support

Due to a lack of dedicated tool support for parts of the
method, assumptions we have on the effectiveness of the
method regarding the effort needed for its execution can not
be validated. While the activity of coding the data is sup-
ported by existing tooling which we employed in our cases,
these tools do not adequately support the documentation of
machine readable meta information required for our method.
Thus many of the process steps were executed using a pen
and paper method of tracking all links between the docu-
ments which is error prone and also distracts from the actual
task. We expect to alleviate some of these concerns with our
own tool support in the future.

7 Discussion

7.1 Evaluation of exploratory projects

Table 6 provides an overview over the four studies with
regard to our evaluation model presented in Sect. 5.

All four of our studies confirmed an excellent level of
documentation for the analysis process. This documentation
includes traces from each model element back to individual
stakeholder statements and documentation. The documenta-
tion also includes the reasoning for most interpretations in
short memos. A researcher not involved with the coding of
the data could easily assess the relevance of different aspects
to the group of interviewed experts.

The first two studies did not yield an explicit validation
of the resulting artifacts against a fixed reference point or
through an objective third party. However, these studies
were useful in exploring the viability of the approach and
identifying pitfalls that had to be addressed by our method.
They also validated our hypothesis that, using QDAcity-RE,
it is possible to use the code system as a unified model that
connects different target artifacts through inter-model traces

Table 5 Evaluation of domain model by domain experts

Question Disagree Rather disagree Undecided Rather agree Agree Can’t be
assessed

It was easy for me to understand
what the model was trying to model 1 1
The model represents the domain correctly 1 1
The model is a realistic representation of the domain 1 1
The model gives a complete representation of the domain 1
The model contains contradicting elements 1 1 1

 Requirements Eng

1 3

which makes navigating between the different artifacts easier
and also fosters inter-model consistency. To this end, the
first study derived a DSL a feature model as well as a con-
ceptual model from the same code system, while the second
study did the same for a conceptual model and a glossary.
The fourth project also contributed toward this dimension
of evaluation by combining the extraction of a Software
Requirements Specification (SRS) in natural language with
the creation of a process model and a conceptual model from
the same dataset using the same code system. In this last
case the code system had to be adapted with a predefined
structure on the top two levels to make part of it specific to
NL requirements documents.

The artifact quality concerning completeness and consist-
ency of the created models was evaluated through surveys
with domain experts conducted within the 3rd and 4th study
as well as through a comparison with an ontology that has
been established independently from our research.

All of the four studies used expert interviews as a means
of data collection, supplemented by a variety of other mate-
rials such as drawings, norms and regulations, formal docu-
mentation and workshop transcripts. While our studies indi-
cate that all of these types of materials can be analysed using
the same method it is our finding that our method provides
more value the less structured the data is. This correlates
with our finding, that a bottom up or middle-out approach
suits our method better than a top down approach. This
coincides with the most common use of QDA in qualita-
tive research that, to a significant extent, can be considered
inductive theory building.

7.2 General results

During our study, we found that the coding procedure sup-
ported the structuring and analysis of qualitative data for
conceptual domain modeling. Important concepts became

apparent already early in the coding process. This was also
the case for data which emphasized process descriptions,
which interviews tend to favor. The participating domain
experts primarily gave an account of their domain from a
process point of view. Through the development of con-
cepts and categories, the structural aspects emerged and
could be further investigated through theoretical sampling.
Inconsistencies could be investigated through comparing
the respective data fragments and notes could be taken
in code memos about questions which need to be asked
in the next interview and about the different options of
interpretation. This was especially important for integrat-
ing company-specific descriptions of HR development into
a consistent domain model.

The systematic coding procedure and the writing of
memos make the process of domain analysis traceable, but
coding and modeling decisions are still interpretive and
therefore depend on the analyst’s experience and expertise.
What to code and how to develop concepts into categories
is a difficult task for which there is not one simple solu-
tion. We found that abstracting too early in the process or
focusing too much on the domain model while coding can
make later changes more difficult. However, the analysis
method provides more guidance to a novice analyst for
extracting a domain model. Systematic coding helped us
to engage with the domain to be analyzed, where previous
domain knowledge was limited.

Although theoretical sensitivity also depends upon the
researcher’s level of experience in qualitative research and
the phenomenon under study, it develops further during
the research process and can be enhanced using techniques
for questioning the data or systematically analyzing a word
or phrase and comparing different incidents [15, 27, 32].
This suggests that while a requirements engineer still ben-
efits from his or her experience in the domain under study,
a systematic analysis procedure can support him or her

Table 6 Study evaluation

1 2 3 4 5
Documentation Completeness Consistency Input types Model types

Medical Imaging Partial traceability – – Expert interviews Feature model
Memos DSL

Conceptual model
openETCS Tool-

chain
Full traceability
Memos

– Problems systematically docu-
mented and resolved

Expert interviews
Norms

Conceptual model
Glossary

HR Development Full traceability Expert survey Expert survey Expert interviews Conceptual model
Memos Ontology Problems systematically docu-

mented and resolved
Workshops
Drawings

Qualitative
Research

Full traceability Expert survey Expert survey Expert interviews Process model
Memos Problems systematically docu-

mented and resolved
SRS
Conceptual model

Requirements Eng

1 3

to develop theoretical sensitivity with regard to domain
analysis.

The practices of constant comparison, theoretical sensi-
tivity and questioning of the data can also help to prevent
experienced analysts from prejudiced misconceptions. On
the other hand we experienced the coding process as time
consuming and requiring a high cognitive effort, in accord-
ance with many of the authors of related work.

Our studies suggest that our analysis method favors a
bottom up or middle-out approach and provides less addi-
tional value for a top-down analysis approach.

8 Conclusions

We present and evaluate a novel approach to domain
analysis by adapting qualitative research methods from
the social sciences. In our approach, the social science
research process of theory building facilitates domain
analysis within the requirements elicitation phase. We
show how an iterative process of concurrent data collec-
tion and analysis can be applied to requirements engineer-
ing, including open, axial, and selective coding of quali-
tative data. Our method inherently produces traceability
of requirements back to original statements by stakehold-
ers, which does not have to be created and maintained
separately after the fact. The traces are documented in
an analysis artifact called the code system which evolves
iteratively with the analysis process.

We showed that by applying QDA to domain analysis,
structural elements and relationships needed to derive a
UML class diagram can be extracted from a code system
based on interviews with domain experts. Constant com-
parison and theoretical sampling assist in integrating dif-
fering domain descriptions into an abstract model. While
the analysis process still includes interpretations and
modeling decisions, our method provides more guidance
than existing domain analysis approaches and a thorough
documentation of these decisions. In addition, codes and
memos ensure traceability between the original data and
the derived model and assist in connecting several RE arti-
facts ensuring a high degree of inter-model consistency.

Acknowledgements We would like to thank Katharina Kunz, Florian
Schmitt and Benjamin Mempel for their valuable contributions execut-
ing the exploratory studies. We would also like to thank all anonymous
interview partners as well as Siemens Healthcare, Deutsche Bahn and
the openETCS project for participating in our studies and providing
valuable feedback to improve our method. Finally, thanks to Hannes
Dohrn, Maximilian Capraro, Michael Dorner, Nikolay Harutyunyan
and Daniel Knogl for workshopping this paper to improve its presenta-
tion, and to Ann Barcomb for proofreading.

References

 1. Achouri C (2015) Human resources management: eine praxis-
basierte Einführung. Springer, New York

 2. Balzert H (2010) Lehrbuch der softwaretechnik: Basiskonzepte
und requirements engineering. Springer, New York

 3. Bazeley P (2013) Qualitative data analysis: practical strategies.
Sage, Newbury Park

 4. Becker M (2009) Personalentwicklung-bildung, förderung und
organisationsentwicklung in theorie und praxis. 5. erw. Aufl.
Stuttgart. Schäffer-Poeschel Verlag, S 546

 5. Blaauboer F, Sikkel K, Aydin MN (2007) Deciding to adopt
requirements traceability in practice. In: Krogstie J, Opdahl
AL, Sindre G (eds) Advanced information systems engineer-
ing. Springer, pp 294–308

 6. Bolloju N, Leung FS (2006) Assisting novice analysts in devel-
oping quality conceptual models with uml. Commun ACM
49(7):108–112

 7. Broy M (2013) Domain modeling and domain engineering: Key
tasks in requirements engineering. In: Münch J, Schmid K (eds)
Perspectives on the future of software engineering. Springer, pp
15–30

 8. Byrd TA, Cossick KL, Zmud RW (1992) A synthesis of research
on requirements analysis and knowledge acquisition techniques.
MIS Q 16:117–138

 9. Carvalho L, Scott L, Jeffery R (2005) An exploratory study into
the use of qualitative research methods in descriptive process
modelling. Inf Softw Technol 47(2):113–127

 10. Chakraborty S, Dehlinger J (2009) Applying the grounded
theory method to derive enterprise system requirements. In:
10th ACIS international conference on software engineering,
artificial intelligences, networking and parallel/distributed com-
puting, 2009. SNPD’09. IEEE, pp 333–338 (2009)

 11. Chakraborty S, Rosenkranz C, Dehlinger J (2015) Getting to the
shalls: facilitating sensemaking in requirements engineering.
ACM Trans Manag Inf Syst TMIS 5(3):14

 12. Charmaz K (2014) Constructing grounded theory. Sage, New-
bury Park

 13. Cheng BHC, Atlee JM (2007) Research directions in require-
ments engineering. In: 2007 future of software engineering,
FOSE ’07. IEEE Computer Society, Washington, pp 285–303.
doi:10.1109/FOSE.2007.17

 14. Cleland-Huang J, Gotel OC, Huffman Hayes J, Mäder P, Zisman
A (2014) Software traceability: trends and future directions. In:
Proceedings of the on future of software engineering. ACM, pp
55–69

 15. Corbin J, Strauss A (2014) Basics of qualitative research: tech-
niques and procedures for developing grounded theory. Sage,
Newbury Park

 16. Corbin JM, Strauss A (1990) Grounded theory research: proce-
dures, canons, and evaluative criteria. Qual Sociol 13(1):3–21

 17. Cruzes DS, Vennesland A, Natvig MK (2013) Empirical evalu-
ation of the quality of conceptual models based on user per-
ceptions: a case study in the transport domain. In: Ng W, Sto-
rey VC, Trujillo JC (eds) Conceptual modeling. Springer, pp
414–428

 18. Daoust N (2012) UML requirements modeling for business
analysts: steps to modeling success. Technics Publications,
Denville

 19. Dvir D, Raz T, Shenhar AJ (2003) An empirical analysis of the
relationship between project planning and project success. Int
J Proj Manag 21(2):89–95

 20. Francis JJ, Johnston M, Robertson C, Glidewell L, Entwistle V,
Eccles MP, Grimshaw JM (2010) What is an adequate sample

 Requirements Eng

1 3

size? Operationalising data saturation for theory-based inter-
view studies. Psychol Health 25(10):1229–1245

 21. Gibson B, Hartman J (2013) Rediscovering grounded theory.
Sage, Newbury Park

 22. Glaser BG (1978) Theoretical sensitivity: advances in the meth-
odology of grounded theory. Sociology Press, Mill Valley

 23. Glaser BG, Strauss AL (2009) The discovery of grounded the-
ory: strategies for qualitative research. Transaction Publishers,
Piscataway

 24. Gotel O, Cleland-Huang J, Hayes JH, Zisman A, Egyed A, Grün-
bacher P, Dekhtyar A, Antoniol G, Maletic J (2012) The grand
challenge of traceability (v1.0). In: Cleland-Huang J, Gotel O,
Zisman A (eds) Software and systems traceability. Springer, pp
343–409

 25. Guion LA (2002) Triangulation: establishing the validity of quali-
tative studies. Extension Institute of Food and Agricultural Sci-
ences, Gainesville, FL. http://www.rayman-bacchus.net/uploads/
documents/Triangulation.pdf. Accessed 27 Sept 2009

 26. Halaweh M (2012) Application of grounded theory method in
information systems research: methodological and practical
issues. Rev Bus Inf Syst (Online) 16(1):27

 27. Halaweh M (2012) Using grounded theory as a method for sys-
tem requirements analysis. JISTEM J Inf Syst Technol Manag
9(1):23–38

 28. Hofmann HF, Lehner F (2001) Requirements engineering as a
success factor in software projects. IEEE Softw 18(4):58

 29. Hruschka P (2014) Business analysis und requirements engineer-
ing: Produkte und Prozesse nachhaltig verbessern. Carl Hanser
Verlag GmbH & Co. KG. ISBN-13: 978-3446438071

 30. Hughes J, Wood-Harper T (1999) Systems development as a
research act. J Inf Technol 14(1):83–94

 31. Insfrán E, Pastor O, Wieringa R (2002) Requirements engineer-
ing-based conceptual modelling. Requir Eng 7(2):61–72

 32. Kelle U (2010) The development of categories: different
approaches in grounded theory. The Sage handbook of grounded
theory. Sage, Newbury Park, pp 191–213

 33. King N, Horrocks C (2010) Interviews in qualitative research.
Sage, Newbury Park

 34. Larman C (2005) Applying UML and patterns: an introduction
to object-oriented analysis and design and iterative development.
Pearson Education India, Delhi

 35. MacQueen KM, McLellan E, Kay K, Milstein B (1998) Code-
book development for team-based qualitative analysis. CAM J
10(2):31–36

 36. Mempel B (2014) Definition einer DSL mittels QDA, Master the-
sis, self published

 37. Myers MD, Newman M (2007) The qualitative interview in is
research: examining the craft. Inf Organ 17(1):2–26

 38. Mylopoulos J, Chung L, Nixon B (1992) Representing and using
nonfunctional requirements: a process-oriented approach. IEEE
Trans Softw Eng 18(6):483–497

 39. Nohl AM (2013) Narrativ fundierte interviews. In: Bohnsack R,
Flick U, Lüders C, Reichertz J (eds) Interview und dokumentari-
sche Methode. Springer, pp 13–26 (2013)

 40. Nuseibeh B, Easterbrook S (2000) Requirements engineering: a
roadmap. In: Proceedings of the conference on the future of soft-
ware engineering. ACM, pp 35–46

 41. Pidgeon NF, Turner BA, Blockley DI (1991) The use of grounded
theory for conceptual analysis in knowledge elicitation. Int J Man
Mach Stud 35(2):151–173

 42. Poels G, Maes A, Gailly F, Paemeleire R (2005) Measuring the
perceived semantic quality of information models. Springer, New
York

 43. Pohl K, Rupp C (2011) Requirements engineering fundamentals:
a study guide for the certified professional for requirements engi-
neering exam-foundation level-IREB compliant. Rocky Nook Inc,
San Rafael

 44. Prieto-Díaz R (1990) Domain analysis: an introduction. ACM
SIGSOFT Softw Eng Notes 15(2):47–54

 45. Rosenberg D, Stephens M (2007) Use case driven object modeling
with UML. APress, Berkeley

 46. Rupp C, Queins S et al (2012) UML 2 glasklar: Praxiswissen
für die UML-Modellierung. Carl Hanser Verlag GmbH Co KG,
Munich

 47. Rupp C et al (2014) Requirements-Engineering und-Management:
Aus der Praxis von klassisch bis agil. Carl Hanser Verlag GmbH
Co KG, Munich

 48. Ryschka J, Solga M, Mattenklott A (2010) Praxishandbuch Per-
sonalentwicklung: Instrumente, Konzepte. Springer, Beispiele

 49. Schmidt A, Kunzmann C (2006) Towards a human resource
development ontology for combining competence management
and technology-enhanced workplace learning. In: On the move
to meaningful internet systems 2006: OTM 2006 workshops.
Springer, pp 1078–1087

 50. Strauss A, Corbin J et al (1990) Basics of qualitative research, vol
15. Sage, Newbury Park

 51. Strübing J (2004) Was ist grounded theory? In: Bohnsack R, Flick
U, Lüders C, Reichertz J (eds) Grounded theory. Springer, pp
13–35

 52. Thom N, Zaugg RJ (2009) Moderne Personalentwicklung: Mitar-
beiterpotenziale erkennen, entwickeln und fördern. Springer, New
York

 53. Thomas K, Bandara AK, Price BA, Nuseibeh B (2014) Distilling
privacy requirements for mobile applications. In: Proceedings of
the 36th international conference on software engineering. ACM,
pp 871–882

 54. Verner J, Cox K, Bleistein S, Cerpa N (2005) Requirements engi-
neering and software project success: an industrial survey in Aus-
tralia and the us. Aust J Inf Syst 13(1):225–238

 55. Wacker JG (1998) A definition of theory: research guidelines for
different theory-building research methods in operations manage-
ment. J Oper Manag 16(4):361–385

 56. Wallace L, Keil M (2004) Software project risks and their effect
on outcomes. Commun ACM 47(4):68–73

 57. Wazlawick RS (2014) Object-oriented analysis and design for
information systems: modeling with UML, OCL, and IFML.
Elsevier, Amsterdam

 58. Werner J, DeSimone R (2011) Human resource development.
Cengage Learning, Boston

 59. Würfel D, Lutz R, Diehl S (2015) Grounded requirements engi-
neering: an approach to use case driven requirements engineering.
J Syst Softw 117:645–657

