
Inner Source in Platform-Based
Product Engineering

Dirk Riehle, Maximilian Capraro, Detlef Kips, and Lars Horn

Abstract—Inner source is an approach to collaboration across intra-organizational boundaries for the creation of shared reusable

assets. Prior project reports on inner source suggest improved code reuse and better knowledge sharing. Using a multiple-case case

study research approach, we analyze the problems that three major software development organizations were facing in their product

line engineering efforts. We find that a root cause, the separation of product units as profit centers from a platform organization as a

cost center, leads to delayed deliveries, increased defect rates, and redundant software components. All three organizations assume

that inner source can help solve these problems. The article analyzes the expectations that these companies were having towards

inner source and the problems they were experiencing in its adoption. Finally, the article presents our conclusions on how these

organizations should adapt their existing engineering efforts.

Index Terms—Inner source, product line engineering, product families, platform-based product engineering, open source, open collaboration,

case study research

Ç

1 INTRODUCTION

INNER source software development is the use of open
source best practices in firm-internal software develop-

ment [26]. Thus, inner source is an approach to collaboration
based on the open collaboration principles of egalitarian, merit-
ocratic, and self-organizingwork [63]. Egalitarian workmeans
that software developers are free to contribute to projects
that they have not been officially assigned to, meritocratic
work means that decisions are made based on the merits of
an argument and not based on the status of the involved peo-
ple, and self-organizing work means that developers adjust
their collaboration processes to the needs at hand rather than
strictly following a predefined process [52].

In inner source, no open source software is being
developed, but open source best practices are being used.
Many engineering organizations expect that complement-
ing existing top-down processes with such bottom-up
self-organization will improve their productivity. This
article focuses on software development within compa-
nies across intra-organizational boundaries, most notably
profit center boundaries, that would otherwise hinder
any such collaboration. In a nutshell, inner source is sup-
posed to enable collaboration across development silos.

Dinkelacker et al. [26] of Hewlett Packard suggest
improved quality, shared problem solutions, and more
readily allocatable developer resources as a result of

applying inner source. Gurbani et al. [36], [37] suggest that
the contributions of many improve quality and that the free
availability of a software component within the company
reduces collaboration friction. Vitharana et al. [70] of IBM
suggest improved reuse. Our experience is that inner source
can improve access to resources, software quality and
development speed, among other things [52].

Over the last five years, we have helped several software
development organizations understand and adopt inner
source. Many found it difficult to apply the lessons
described in the aforementioned articles to their situation.
What seemed to work on paper, did not work in practice.

This article presents case study research on the situation
of three major software development organizations which
were trying to apply inner source to platform-based product
engineering. A platform is a set of shared reusable assets,
including but not limited to software libraries, components,
and frameworks [50]. We define platform-based product engi-
neering to be the engineering of software products utilizing
a shared common platform. Product line engineering [18] is a
special but important case of platform-based product
engineering.

Our case study companies expected inner source to help
them overcome problems with lack of resources, lack of per-
tinent skills, and unclear requirements. Yet, they had prob-
lems putting inner source into practice. To this end, this
article addresses the following research questions:

� RQ1: What are current problems in platform-based
product engineering (leading to inner source)?

� RQ2: What benefits do organizations expect from
adopting inner source?

� RQ3: What problems did they experience when
adopting inner source?

The research method employed is multiple-case case study
research [9], [14], [28], [73]. Data gathering and analysis
was performed using workshops, formal interviews, and

� D. Riehle and M. Capraro are with the Computer Science Department,
Friedrich-Alexander University Erlangen-N€urnberg, Erlangen 91058,
Germany. E-mail: {dirk.riehle, maximilian.capraro}@fau.de.

� D. Kips is with the Develop Group, Erlangen 91058, Germany.
E-mail: kips@develop-group.de.

� L. Horn is with e-solutions, Erlangen 91058, Germany.
E-mail: lars.horn@esolutions.de.

Manuscript received 28 Mar. 2015; revised 21 Jan. 2016; accepted 3 Apr.
2016. Date of publication 13 Apr. 2016; date of current version 16 Dec. 2016.
Recommended for acceptance by A. Egyed.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2016.2554553

1162 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 12, DECEMBER 2016

0098-5589� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

materials review. The process was incremental with learn-
ings being provided back to the case study participants to
receive validating feedback as to the theories being built
(“member checking”).

The contributions of this paper are the following:

� It presents three non-trivial case studies of platform-
based product engineering.

� It provides three theories, each answering to one of
the research questions, specifically:
� a theory of key problems companies face in plat-

form-based product engineering,
� a theory of expected benefits of applying inner

source to product engineering, and
� a theory of experienced or expected problems of

adopting inner source.
Similar to open source, which evolved from a volunteer-

based (“free-for-all”) development process to a foundation-
based (“managed”) software development process [53],
[13], we find that for our case study organizations, inner
source should move to a governed process beyond the defi-
nition given in the beginning of this section.

The paper is structured as follows. Section 2 reviews
related work on inner source and product line engineering.
Section 3 describes our research set-up, methods employed,
and data sources. Section 4 presents the research results as a
set of theories addressing the research questions. Section 5
discusses our findings and suggests hypotheses for theory
validation. Section 6 discusses the limitations of this work,
and Section 7 provides an outlook on future work and some
concluding remarks.

2 RELATED WORK

The first research on inner source was reported about by
Dinkelacker et al. [26] in 2002. A slow stream of case studies
and examples has been reported about since then [31], [36],
[37], [52], [62], [66], [68], [70]. Product line engineering [18],
[50] has received most of the attention in platform-based
product engineering so we focus on this.

2.1 Inner Source Software Development

Inner source is the use of open source practices in corporate
software development [26], [62]. Other terms that have been
used are hybrid open source [58], corporate open source
[37], and firm-internal open source [52]. Inner source is not
necessarily intended to replace an organization’s develop-
ment methods, but can be used to extend these methods
[65], [67], [68].

DTE Energy [61], Ericsson [64], Hewlett-Packard [26],
[47], IBM [48], [70], Kitware [45], Lucent [36], [37], Nokia
[41], [42], [43], Philips [67], [68], [69], [71] and SAP [52] all
report about inner source in corporate software develop-
ment. These practitioner reports do not answer our research
questions, but they do indicate the relevance of inner source
research in general.

This paper focuses on inner source in platform-based
product development. With the exception of Philips, none
of the organizations reporting about inner source specifi-
cally addressed this situation. Consequently, it is not clear
to which extent reported inner source problems and

solutions apply to inner source in platform-based product
development.

Philips applied an inner source approach to software prod-
uct line engineering. Philips observed that inner source
increased collaboration of geographically distributed devel-
opers, enabled collaboration across intra-organizational
boundaries, enhanced knowledge management and informa-
tion exchange, “helped to break the platform bottleneck, since
using departments are able to create patches”, and lead to
improved software quality and more efficient development
[67], [68], [69], [71]. Inner source adoption at Philips was chal-
lenged by process diversity among the organizational units
[71]. When compared with the reports from Philips, we find
similar benefits, but identify more challenges for the success-
ful adoption of inner source in product line engineering.

In contrast to the practitioner reports from Philips and
other organizations, we performed case study research
using qualitative data analysis. Our cases cover three differ-
ent mature development organizations, all of which are cul-
turally and socially homogeneous. We reduced complexity
by excluding cases of globally distributed software develop-
ment. Thus, our resulting theories have a significantly
higher validity and reliability than the practitioner reports.

In absolute numbers, there is still less research literature
on inner source than there are practitioner reports.

Melian and M€ahring [46] as well as Gaughan et al. [31]
performed exploratory studies. They discuss benefits and
challenges of inner source adoption. Stol et al. [63] introduce
a model of nine key factors to support inner source adop-
tion. Stol et al.’s model was synthesized from literature and
evaluated in three case-studies. While some of the key fac-
tors are geared towards mitigating inner source adoption
challenges, the model does not aim to present benefits and
challenges of inner source adoption. None of the studies
discusses specifics of inner source adoption in software
product line engineering.

Stol et al. [62] present a case study of an undisclosed orga-
nization that is developing a software product line. They iden-
tified 13 challenges of integrating software developed using
an inner source approach into their product line. We can con-
firm some of their findings, but also present theories and
draw conclusions that go beyond the situation of integrating
existing inner source components. We address the full life-
cycle, from creation through development and use to mainte-
nance of a component, and we do so using three large inde-
pendent case studies rather than one. We therefore believe
our results aremore broadly applicable.

2.2 Platform-Based Product Engineering

In our research, we investigate inner source as applied to
platform-based product engineering. Most inner source
reports discuss one-off projects where only one inner source
component was being developed. In contrast, our work is
about a group of products (case 1), a product family (case
2), and a product line (case 3) [5], [50], all three on top of a
single shared platform that offers a large number of shared
reusable assets.

A product line, according to Clements and Northrop is “a
set of software-intensive systems sharing a common, man-
aged set of features that satisfy the specific needs of a particu-
lar market segment or mission and that are developed from a

RIEHLE ET AL.: INNER SOURCE IN PLATFORM-BASED PRODUCT ENGINEERING 1163

common set of core assets in a prescribedway” [18]. This def-
inition focuses on the artifacts. In addition, Schwanninger
et al. state: “[. . .] the term ‘software product line engineering’
denotes a collection of engineering techniques and practices
that supports the efficient development of such software-
intensive systems (or products)” [57]. This second definition
focuses on the processes rather than the artifacts and is more
in line with our work here.

A significant part of research into product line engineer-
ing is about tools and mechanisms for managing product
variability, for example, [2], [10], [11], [12], [21], [22], [24],
[25], [49], [55], [56], [59], [60], [65]. Our work is orthogonal
to this research, because we focus on the processes leading
to the specification, development, and use of shared compo-
nents, rather than the tools and mechanisms for managing
it. Also, the specific challenges of product line variability
are not a concern for this research, because the shared reus-
able assets from our case platforms not only supported a
product line but also a product family and a product group.

In the established terminology of product line engineer-
ing, the domain engineering process governs the identifica-
tion, definition, creation, and evolution of reusable assets,
typically made available to applications as part of a platform
the applications or products built on. The application engi-
neering process then governs the selection, configuration,
adaptation and eventual use of a reusable platform asset in
the context of an application for a particular market segment
[1], [3], [4], [6], [7], [8], [16], [17], [18], [50]. Our research is
related to these processes if viewed more broadly (not just a
product line but also a product family or group). Specifically,
our research identifies problems that the case study compa-
nies had in their engineering efforts and which they believed
could not be overcome using a product line approach but
only using an inner source approach.

Problems with application and domain engineering pro-
cesses in product line engineering have been identified, for
example, by Berger et al. [10] and Jepsen et al [39]. Without
calling it inner source, this research came to similar conclu-
sions as the inner source research reviewed earlier.

The relationship between inner source and product line
engineering has been recognized by industry. Most notably,
van der Linden presented a tutorial at the 13th International
Conference on Product Line Engineering about using inner
source in product line engineering [67]. Like [66], this is a
practitioner report. No research is known to us that specifi-
cally combines inner source with platform-based product
engineering in general or software product line engineering
in particular.

3 RESEARCH APPROACH

We performed multiple-case case study research. Case
study research is a natural choice for dealing with phenom-
ena for which no established theories exist [27]. Case study
research is a well-established exploratory research method
[9], [14], [19], [23], [28], [29], [73].

3.1 Case Selection (Sampling)

We acquired the case study companies from our industry
network. We looked for cases that were similar along the
following dimensions:

� Established long-running set of products on top of a
shared platform (age > 10 years).

� Mature software development organization with
established platform engineering practices in place.

� Sufficiently large development organization (devel-
oper population size > 500 people).

� Culturally and socially homogeneous, with all devel-
opers located in one location or region.

All our cases fulfill the properties. This makes them com-
parable along these dimensions, allowing us to draw cross-
case conclusions and strengthen the breadth of our theory [9].

Please note that this focus also limits the generalizability
of our results; most notably, and deliberately, we excluded
problems and solutions of globally distributed software
development in this research.

3.2 Cases and Companies

The three cases stem from three independent, large and
diversified, internationally operating software product com-
panies. Table 1 shows key properties of the products and
their owning company.

� Company 1 provides multiple business software
products. The case study (case 1) is about a particu-
lar product group.

� Company 2 provides a broad portfolio of products.
The case study (case 2) is about a health-care soft-
ware product family.

� Company 3 provides a broad portfolio of products.
The case study (case 3) is about a telecommunica-
tions carrier software product line.

As mentioned, we avoided the complexity of globally dis-
tributed software development. Only during the course of
analysis did we learn that case 2 collaborated with a remote
party. When we inquired further, our case study partners
confirmed that they thought this information was not rele-
vant for the case.

We had not selected for this, but found that all three
cases shared the same organizational setup:

� All products and the supporting platform are owned
by a single business unit with a single overall business
owner responsible for all products.

� The business unit is broken up into product units,
each of which is a profit center of its own. A product
unit manages the development of a particular prod-
uct as sold to a particular market. A profit center is
an organizational unit that is expected to directly
contribute to the company’s profit. The manager of a
product unit has revenue responsibility for it.

� The supporting platform organization, which provides
the reusable assets, is a cost center, paid for jointly by
the product units. A cost center is an organizational
unit that supports other units, but is not expected to
contribute to company profits directly.

We therefore distinguish three main and distinct organi-
zational units of analysis: the overall business unit, the indi-
vidual product units, and the platform organization.

3.3 Data Gathering

In each case, we were brought in by a case study sponsor. In
case 1 and 2 we gained access to all units of analysis (product

1164 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 12, DECEMBER 2016

group business unit, selected product units, platform organi-
zation) as well as individuals from the corresponding organi-
zational units. In case 3 we worked through an internal
consulting group that mediated our access to the units of
analysis.

In all cases, audio recordings of discussions were not per-
mitted. In case 1 and 2 we went in as two researchers, with
one researcher asking questions and the other researcher
taking notes. In case 3 only one researcher was permitted,
who also took the notes. In total, we conducted 21 semi-
structured interviews of at least one hour or longer, see
Table 2. We also collected product information, internal
memos, software documentation, and organizational docu-
mentation, see Table 3.

We took on cases in the order of their numbering. Start-
ing with case 1, we refined our questions and perspectives
in the first set of interviews together with a representative
of the case study sponsor and selected follow-on interviews
accordingly.

Our key questions and interview guidelines remained
stable after the first case and have been applied to case 2
and 3 like they had been applied to case 1. However, inter-
views of this type of research are exploratory, so we allowed
for theoretical sensitivity, and followed discussion paths
that had not been foreseen in our interview guidelines.

Case 2 already repeated most issues of case 1, but dur-
ing case 3 we learned little new, so we concluded that we
were nearing theoretical saturation and should stop [15],
[19], [34].

3.4 Data Analysis

We performed iterative and incremental “qualitative” data
analysis (QDA). We employed MaxQDA, a qualitative
data analysis tool. Theory building using QDA consists of
repeatedly working through existing and new materials,
annotating (“coding”) text segments, and extracting a
code system, the backbone of the theory under develop-
ment [15], [19].

A code system consists of a hierarchy of codes, with so-
called core categories at or near the root, and the most spe-
cific codes as the leaves. Different activities transform the
hierarchy in different ways.

� Open coding creates the basic set of codes from which
the hierarchy is built. Open codes are straightfor-
ward annotations of the primary materials and
directly link to them.

� Axial coding builds the code system by deriving more
abstract concepts and categories from open codes,
that is, the axes of the code system are being
developed.

� Selective coding finally allows the coder to choose
what is important and what is not. By dropping irrel-
evant aspects, the code system is being shaped into
the theory backbone.

Concepts in the code system are cross-linked by memos to
enrich concepts and relationships and the resulting theory
with insights from the primary materials. We applied the
constant comparative method, which ensures that the code
system remains cohesive and focused on the questions to
be answered [32].

The resulting code system and its memos are an abstract
representation of the theory presented in this paper. The
resulting theories are descriptive in nature. They have been
derived using an inductive process and are therefore appli-
cable to their original context, but not necessarily beyond
[15], [19].

TABLE 2
Access to Units of Analysis, Data Gathered, Methods Employed

Case Year No. Interviews Workshops Supplemental Materials

1 2012 11 5 Yes
2 2013 6 None Yes
3 2013 4 3 Yes

TABLE 1
Key Properties of Case Study Products and Their Companies

Case 1 Case 2 Case 3

Product group/
family/line

Product domain Business software Health-care software Telecommunications
carrier software

Type of platform-based product
engineering

Group of products on
shared platform

Product family on shared plat-
form

Product line including
shared platform

Age of products > 10 years > 10 years > 10 years
Number of developers in product
engineering

> 500 developers > 500 developers > 500 developers

Is product engineering distrib-
uted?

No (same campus) Yes, but within same metropoli-
tan area

No (same campus)

Developer population Socially and culturally
homogeneous

Socially and culturally homoge-
neous

Socially and culturally
homogeneous

How is product engineering orga-
nized?

Product ¼ profit center
Platform ¼ cost center

Product ¼ profit center
Platform ¼ cost center

Product ¼ profit center
Platform ¼ cost center

Company
information

Age of company > 20 years > 20 years > 20 years

Total number of developers in
company

> 1.000 developers > 10.000 developers > 10.000 developers

Is the company operating interna-
tionally?

Yes Yes Yes

Case sponsor Product group business
owner

Platform organization Internal consulting group

RIEHLE ET AL.: INNER SOURCE IN PLATFORM-BASED PRODUCT ENGINEERING 1165

3.5 Quality Assurance

The empirical base of the work enhances the trustworthi-
ness of the presented theories [33]. In general, the quality of
the theories is maintained by following the methods
properly.

We had a second coder code a second code system. This
independently developed code system showed a high
degree of agreement with the original code system [44]. For
assessing this, we sat together and went through the cod-
ings one-by-one, finding little inconsistencies, supporting
our conclusion of high rigor of our work and strengthening
our theory’s reliability.

The broad array of available materials supported data tri-
angulation that increased the internal validity of our theo-
ries [35].

4 RESEARCH RESULTS

This section presents a theory of selected problems in
platform-based product engineering, the expected benefits
of applying inner source to such product engineering, and
adoption problems when doing so.

4.1 Presentation of Results

This section presents results using cause-and-effect diagrams
[38]. We found that this type of diagram brings out the theo-
ries better than a more traditional top-down concepts and
relationships discussion.

In our diagrams, a rectangle represents a concept. A
concept has a name. The numbers at the bottom of the
box indicate the case in which they were mentioned. A
category is represented as a rectangle with gray back-
ground. If a concept is positioned on top of a category, it
belongs to that category.

Causes and effects flow from left to the right. An
arrow between two concepts links the source to the tar-
get as one cause to one effect. An effect can also be a
cause to other effects; cause and effect are roles of con-
cepts. Cause and effects can have m:n relationships, and
we capture these relationships as an acyclic graph. Cause
and effect relationships are transitive. Links derived
from other links by transitive concatenation are omitted
in our diagrams.

In all three case studies, we were not allowed to make
audio recordings. The quotations we provide in the follow-
ing sections are derived from our notes and therefore sum-
marize or paraphrase what we heard. In addition, we
changed the terminology from company-specific terms to
generic terminology.

4.2 Problems in Product Engineering

Figs. 1 and 2 present cause-and-effect diagrams of problems
and their effects on the engineering efforts of our case study
companies. Fig. 1 shows problemswith organizational struc-
ture, and Fig. 2 shows how these problems affect the domain
engineering process. Both figures share some of the same
causes; they have been split up for readability purposes.

The key result is the following:

A root cause, the separation of product units as profit cen-
ters from a platform organization as a cost center, leads to
delayed deliveries, increased defect rate, and redundant
software components.

In our case studies, the business unit owns all products and
the platform, a product unit develops a particular product,
and a platform organization supports the product units in
their work by providing shared reusable assets. The business
units in our case studies are all structured into product units
as profit centers and the platformorganization as a cost center.

As Fig. 1 shows, the problems encountered with the orga-
nizational structure are traced back to the “separation of
product units as profit centers and platform organization as
cost center”, which makes them “silos” in the language of
our interview partners, that is, organizational units that do
not collaborate sufficiently. Specifically, the “separation of
product units as profit centers” leads to

� “lack of global business unit perspective” where
each product unit acts in their own interests irrespec-
tive of possible synergies from collaboration,

� “insufficient trust between product units” where
other product units are viewed as threats or competi-
tors rather than possible collaborators,

� “power play between product units” where manag-
ers in some or all of the product units are fighting to
enforce their interests irrespective of other product
unit needs,

� “insufficient developer networking” where develop-
ers do not find the time to talk to each other across
the organizational unit boundaries.

In addition, the separation starves the platform organiza-
tion for resources. This leads to

� “lack of resources at platform organization”, because
profit centers responsible for their own revenue are
always in a stronger position to hire developers than
any cost center.

Figs. 1 and 2 do not show every cause and effect relation-
ship, and discussing all interactions is beyond a reasonable
length for this article. In the following sections, we therefore
focus on the following three central cause-and-effect chains:

TABLE 3
Interview and Materials Information

Case 1 Case 2 Case 3

Unit of analysis access Direct access to all units of
analysis

Direct access to all units of
analysis

Mediated by sponsor

Subject access Interview partners selected by
consensus

Interview partners selected by
consensus

Mediated by sponsor

Types of data collected Collateral materials, inter-
view notes

Collateral materials, inter-
view notes

Collateral materials, inter-
view notes

Researchers Two researchers (one inter-
viewer, one scribe)

Two researchers (one inter-
viewer, one scribe)

Single researcher taking his
own notes

1166 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 12, DECEMBER 2016

Fig. 1. Problems in our case study companies resulting from their organizational structure.

Fig. 2. Resulting process and artifact problems in case study companies.

RIEHLE ET AL.: INNER SOURCE IN PLATFORM-BASED PRODUCT ENGINEERING 1167

1. Lack of resources at platform organization !
Delayed domain artifact realization ! Delayed
product delivery.

2. Power play between product units ! Poorly priori-
tized domain requirements ! Rework and wasted
effort! Delayed product delivery.

3. Insufficient intra-organizational-unit collaboration!
Limited understanding of other organizational units
! Unclear reusable assets requirements ! Insuffi-
cient reusable asset quality! Increased defect rate.

We chose these chains for presentation because they
received themost mentions and interest in our interviews.

4.2.1 Chain 1: Lack of Resources

In all three cases, the platform organization had a signifi-
cantly higher workload than any of the product units,
despite the more direct pressure on the product unit to
deliver a product.

“All this work overload leads to lower code quality. I just
finish up as quickly as I can and then move on.” Devel-
oper (platform), case 1.

“The platform often misses delivery deadlines for reusable
assets, which keeps product units from delivering their
own features in time.” Developer (product unit), case 2.

“We fixed the bug ourselves, using a work-around. We
cured the symptom, not the cause, but the platform orga-
nization had no time for this bug.” Developer (product
unit), case 2.

“The platform organization is completely overloaded by
too many reusable asset requirements from product units.
Most never get realized.”Mediator, case 3.

The lack of resources of the platform organization has
various consequences, including delayed delivery of prod-
ucts and lower quality of the code base.

All the products are mature and were bringing in sub-
stantial revenues. So why is the platform organization not
as well staffed as the product units?

“The cost pressure is not high enough; time-to-market is
more important. That is why we [product unit] get new
developers more easily.” Developer (product unit), case 1.

“We are moving the platform towards becoming a prod-
uct of its own so that we can more easily hire developers
ourselves.” Manager (platform), case 2.

“Making a case for a new developer to save costs is much
harder than making a case for a developer who will bring
in more money.” Mediator, case 3.

In all case studies, (product unit) profit centers find it
easier to hire new developers than (platform organization)
cost centers. In case 2, it had led management to contem-
plate turning the platform organization into a profit center
itself (they were considering to turn the platform into a
product of its own).

4.2.2 Chain 2: Product Unit Power Play

In all three cases, the requirements engineering process for
reusable assets suffered from poor prioritization of the
requirements.

“A consequence of the power play between product units
is that the platform drives the [domain engineering] pro-
cess and involves product units only very late.” Devel-
oper (platform), case 1.

“We [platform organization] don’t know how to prioritize
reusable asset requirements, and the product units are no
help because each feature is most important.” Manager
(platform), case 2.

“Our feature requests often don’t get prioritized highly
enough, so we have to implement them ourselves. This
leads to inefficient and ugly code.” Developer (product
unit), case 2.

Product units found it hard to participate effectively in
the domain engineering process for the definition of shared
reusable assets. This is a result of the power play between
the product units: The power play led to disagreement and
stalemates, leaving it to the platform organization to define
and prioritize requirements. The platform organization in
turn does not know how to do this well because it is too far
away from market requirements:

“We [product unit] often have to change requirements,
and the platform does not prioritize these change requests
highly enough. Generally speaking, the platform organi-
zation does not prioritize well, because it is too far away
from the customer.” Architect (product unit), case 2.

While product units believe that the platform organiza-
tion cannot prioritize well, the stalemate between product
units to get their requirements prioritized highest has put
the platform organization in charge of domain requirements
prioritization—even though the product units believe that
knowing their customers is important to prioritize these
domain requirements right.

4.2.3 Chain 3: Insufficient Collaboration

The lack of sufficient collaboration between product units
and between product units and the platform organization
led to limited understanding of what product units need
and hence what the reusable asset requirements provided
by them actually mean:

“Our silo culture and the lack of collaboration hinders the
effectiveness of domain engineering. We seem to never
agree on what would be an important reusable asset nor
its specific features.” Developer (product unit), case 1.

“Reusable assets often don’t work. They don’t meet our
[product unit] requirements.” Manager (product unit),
case 1.

“I have too much to do to contribute code [to other proj-
ects]. We [. . .] file change requests and that’s it.” Devel-
oper (product unit), case 2.

“The lack of collaboration [across the product family]
really hurts a unique look-and-feel.” Manager (product
unit), case 2.

A main consequence of not understanding reusable asset
requirements is rework and wasted effort until the product
units are satisfied. This implies a higher defect rate than
would have been necessary:

“We didn’t understand the reusable asset requirements as
communicated by the product units. [. . .] Not much

1168 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 12, DECEMBER 2016

worked when we first delivered the component.” Devel-
oper (platform), case 1.

Summarizing, the case study companies felt that their
existing domain engineering processes were not delivering
reusable assets of sufficient quality fast enough.

4.3 Expected Benefits of Inner Source

The case study sponsors had read our early work at SAP on
inner source (then called “firm internal open source”) [52],
which also provided their understanding of inner source. In
that definition, we followed the basic pattern of explaining
inner source as open-source-style software development
within the company.

In this original understanding of inner source, the key idea
is that all relevant software is laid open for everyone inside
the company. As new requirements surface or problems with
existing components are found, developers help themselves
by contributing new features to components or fixing bugs of
components that they are not necessarily responsible for.

In this section, we present what case study sponsors were
expecting to achieve by applying inner source to their plat-
form-based product engineering. In the next section we
present the reservations they had and the problems they
were experiencing in their inner source adoption efforts.

4.3.1 Overview of Expected Benefits of Applying Inner

Source

Table 4 displays the expected benefits as taken from our
analysis and the cause-and-effect concept linkage.

We separate general benefits that accrue to everyone
from the benefits that accrue only to specific units of analy-
sis. In addition, we add benefits that accrue to developers
because of the high number of mentions.

� General benefits expected are improved innovation,
collaboration, development efficiency and uniformity
of processes. The largest subcategory is higher devel-
opment efficiency, where improved code reuse and
quality were key mentions. Finding and fixing bugs
faster was particularly important. It was mentioned
that a higher awareness of overall business unit goals
was important and could be achieved. Finally, inno-
vationwas assumed to speed up.

� From the business unit perspective, inner source would
get products to market faster. From a product unit per-
spective, product quality would improve, the plat-
form would be easier to work with, and problems
would be solved faster because of the product unit’s
broader understanding of the involved assets. From
the platform organization’s perspective, the benefits
were complementary: A lower workload was
assumed, because product units would be empow-
ered to help themselves and requirements would
become clearer and better prioritized.

� Specific benefits accruing to software developers were
a higher job satisfaction and an improved reputation
within the company.

Many of these benefits have already been reported about
in the literature, see Section 2. Here, we’ll first focus on the

TABLE 4
Overview of Benefits Expected of Applying Inner Source to Platform-Based Product Engineering at Case Study Companies

RIEHLE ET AL.: INNER SOURCE IN PLATFORM-BASED PRODUCT ENGINEERING 1169

expected benefits as they relate to the problems of platform-
based product engineering reported in the previous section,
and then add selected expected benefits that are of interest
to software development in general.

4.3.2 Expected Benefits towards Problems with

Platforms

Inner source is expected to address the problem of “lack of
resources” in the platform organization:

“The traditional processes are like a corset; we sometimes
have to wait for a year to receive the features we need.”
Manager (product unit), case 2.

“Rather than wait for the platform to add the new feature,
we would like to do it ourselves to overcome the resource
capacity problem.”Manager (product unit), case 2.

“Inner source helps allocate existing resources in a
more efficient way [than existing approaches].” Media-
tor, case 3.

When discussing product unit power play and poorly
prioritized and defined requirements, interview partners
pointed out that inner source gives product units back some
power and reintroduces a better understanding of the busi-
ness value of features:

“Using inner source, we [product unit] can reclaim more
say in feature prioritization, which we had lost to the plat-
form organization.” Manager (product unit), case 2.

“Inner source helps better determine the business value of
requirements and prioritize them right.”Mediator, case 3.

Finally, on the problem of “insufficient collaboration”,
inner source brings about more knowledge sharing, which
waswidely discussed as beneficial by our interviewpartners:

“Inner source helps product units gain the necessary
knowledge for efficient use of platform components.”
Developer (platform), case 1.

“Inner source helps us better share knowledge to alleviate
the effects of people leaving the company.” Owner (busi-
ness unit), case 1.

“We would like to broaden the capabilities of our develop-
ers beyond their immediate product, and inner source
helps us do that.” Manager (product unit), case 2.

4.3.3 Expected Benefits towards General Problems

Interview partners not only discussed how they expect
inner source to help address the problems with platforms,
but also how it helps improve development efficiency in
general.

Inner source is expected to speed up development:

“By sharing best practices through inner source collabo-
ration, I expect us to get more effective in using our
tools.” Developer (platform), case 1.

“Through inner source we’ll get to know more developers
which will help us fix problems faster in the future.”
Manager (product unit), case 2.

“Inner source improves time-to-market.”Mediator, case 3.

Also, inner source is expected to improve code quality:

“Inner source leads to more uniformity and reduction of
complexity [. . .]” Developer (platform), case 1.

“I expect a shared code base to be of higher quality.”
Developer (product unit), case 2.

“Inner source should help unify the quality assurance
processes.” Manager (product unit), case 2.

“Inner source encourages product units to find and fix
defects in platform code. “ Mediator, case 3.

Finally, inner source is expected to improve code reuse:

“Inner source [between product units] will make it easier
to reduce redundant code, move components into the plat-
form where they belong.”Developer (product unit), case 2.

“We expect to see more code reuse.” Mediator, case 3.

The general assumption is that inner source gets people
to collaborate more and better across organizational unit
boundaries and that this leads to more and better knowl-
edge sharing and broader understanding of one’s own and
other people’s work.

Our interview partners expect that, due to these changes,
requirements are communicated more clearly, prioritized
better, and understood more easily. Development efficiency
improves because people understand the implications of
their work better and can draw on broader support going
about their work.

Several interview partners suggested that a well-orga-
nized inner source process would be a superior domain
engineering process when compared with the traditional
cross-functional teams that were responsible for new reus-
able asset definition and implementation.

Finally, interview partners suggested that inner source
improves innovation processes:

“Inner source lets product units participate more in prior-
itizing and realizing platform requirements; this added
flexibility creates more innovation.” Architect (product
unit), case 1.

“Most innovations take place outside the platform unit;
using inner source we can more easily transfer them to
the platform.” Developer (product unit), case 2.

“Inner source takes the platform closer to the customer,
makes it more relevant.” Architect (platform), case 2.

Finally, inner source is expected to motivate developers
and help them build a reputation.

“I expect developers to be more satisfied about their job.”
Owner (business unit), case 1.

“Inner source developers will see an increase of their
internal ‘market value’.” Owner (business unit), case 1.

“Opening up assets and processes will increase the respect
for platform development.”Manager (platform), case 2.

Such added motivation and visibility was considered to
be beneficial to the company as well.

4.4 Experienced Problems with Inner Source

While the interview partners from our case study compa-
nies expected that the benefits described in the previous sec-
tion could be achieved, they also had questions as to how
this could be done best.

1170 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 12, DECEMBER 2016

All three case companies had already been applying
inner source using the generic model laid out in the litera-
ture without much concern for the specifics of platform-
based product engineering. In this section we present the
problems they were experiencing.

Table 5 shows the relevant part of our code system. The
main categories are

� “problems with developers” (both product unit and
platform organization) and

� “problems with product unit managers” (only prod-
uct unit, not platform).

Where it says “problems with [. . .]” in Table 5, the problems
had already materialized. Where it says “expected problems
with [. . .]”, interview partners were only expecting these
problems but had no actual experiences to back these up.

Expected but not empirically experienced problems are not
necessarily irrelevant: They represent fears ormisunderstand-
ings, even if those fears may not be grounded in reality. For
example, some worried about “degradation of code base due
to uncontrolled contributions”. Here, the (wrong) assumption
is that projects are free for all to write to. Like in open source,
any real inner source project will provide unlimited read
access but will tightly control write access, typically employ-
ing a two-stage reviewprocess for quality assurance [30].

Two main subcategories emerged for both developers
and product unit managers: Lack of engagement due to

� “boundary conditions not being right” and
� “active psychological resistance”.

There were no concerns specifically attributed to engi-
neering managers from the platform organization. It
was assumed that they stood the most to gain since
they were complaining about the lack of resources the
loudest.

4.4.1 Problems with Developers

For developers, the worry was that they were generally too
overloaded to contribute or would not know how to do it or
would find the software too complex to make a contribu-
tion. Some of these problems can be remedied short-term by
education (how to contribute) while others will remain
long-term research topics (reducing software complexity).
They are either manageable or out of scope from an inner
source perspective.

In scope is the active psychological resistance that some
developers and product unit managers showed. For devel-
opers, it boiled down to two subcategories:

� Dislike of performing quasi-public work and
� fear of follow-on and maintenance work.

Dislike of performing quasi-public work. With assets being
more open and work being more transparent, a developer
can build a reputation as well as lose one. Work is out in the
(corporate) open, and mistakes are more visible than before.

TABLE 5
Experienced or Expected Problems with Inner Source Adoption

RIEHLE ET AL.: INNER SOURCE IN PLATFORM-BASED PRODUCT ENGINEERING 1171

Achievements are more clearly attributable to individual
developers.

“Many developers don’t like to touch other people’s code
because they fear making mistakes.” Manager (platform),
case 1.

“Inner source leads to [public] mistakes, and [some]
developers fear mistakes because they lead to reputation
loss among colleagues.” Manager (platform), case 1.

“Some developers feel intimidated by inner source [devel-
opment] and do not contribute because they feel they do
not know how to do it.” Mediator, case 3.

Quasi-public work, however, is a two-edged sword:
What worries some developers inspires others (see
“reputation gain” under benefits in the previous section).

Fear of follow-on and maintenance work. With real or per-
ceived workloads high in all case study companies, any-
thing that suggested more work seemed problematic:

“Developers will show passive resistance because they
fear inner source will add more work.” Manager (plat-
form), case 1.

“Even if a developer has a good idea for an inner source
project, they will not talk about it out of fear of having to
perform the work themselves.” Developer (product unit),
case 1.

“If the inner source project is large, developers will avoid
contributing out of fear of being sucked in and not being
able to leave.” Mediator, case 3.

Specifically, it was assumed that developers might not
contribute, because they fear requests for continued or fol-
low-on work, including maintenance work:

“Most developers hate maintenance of important compo-
nents because it makes them responsible for fixing high-
priority bugs; this creates too much stress.” Developer
(product unit), case 1.

“Some developers show passive resistance, because they
fear inner source will add more work.” Developer (prod-
uct unit), case 2.

Worries about unwanted maintenance work were strong.

4.4.2 Problems with Product Unit Managers

For product unit managers, the worry was that they had not
enough budget flexibility and typically were focused too
much on their own career, that is, lacked a greater-good per-
spective (for the overall business unit). Active psychological
resistance was assumed because of two effects:

� Fear of transparency and loss of control and
� fear of not meeting performance goals.

Fear of transparency and loss of control. The idea of expos-
ing all project management artifacts from a road-map down
to detailed task lists was frightening to some, since it sug-
gests exposure to public scrutiny and follow-on critique—a
serious problem in highly political organizations.

“Most managers dislike showing their planning docu-
ments widely; it might open them up for critique.” Man-
ager (product unit), case 1.

Similarly, letting developers participate in inner source
projects and not knowing in detail what they were doing
suggests loss of control, another unpleasant feeling:

“Allowing developers to contribute to inner source proj-
ects may feel like losing control to some managers.”
Developer (platform), case 1.

Fear of not meeting performance goals. Another perception
was that by letting developers contribute to inner source,
middle managers would lose resources and hence may not
be able to meet their performance goals. Thus, some disal-
lowed any such engagement, and when forced, tried to
keep their best developers to themselves.

“Negotiations between managers to allow their developers
to contribute to inner source can be time-consuming.”
Manager (product unit), case 1.

“Managers may disallow contribution to inner source if
they feel their own product is not benefiting enough.”
Developer (platform), case 1.

“A typical middle manager will try to keep their good
developers to themselves and only let their low-perform-
ing developers contribute to inner source.” Architect
(product unit), case 2.

4.4.3 Summary of Experienced Problems

From a “greater good” perspective, i.e., the efficiency of the
overall business unit, inner source makes imminent sense.
However, for middle managers of the product units and the
developers in the trenches, real problems stand in their way.

As to developers, like in open source, we can assume that
some will take to inner source and some won’t. Some will
want to build a company-wide reputation and further their
career, while some will not.

As to middle managers, inner source initiatives are fac-
ing a tragedy of the commons problem. As others also
observed [71], everyone wants to utilize the platform, but
not everyone allows their developers to contribute to inner
source projects.

5 DISCUSSION OF FINDINGS

Our case study companies found it difficult to successfully
establish inner source projects; this article presents the rea-
sons we found. The key problems are misaligned organiza-
tional incentives leading to local rather than global revenue
optimization and psychological challenges of the involved
middle managers and developers leading to the rejection of
open collaborative behavior as necessary for inner source
projects.

5.1 Discussion of Problems

The problems break down into organizational, psychologi-
cal, and process challenges.

5.1.1 Organizational Challenges

We found that making product units profit centers leads
middle managers to worry more about reaching their per-
formance goals than overall engineering efficiency. Under
such pressure, the relationship to the platform organization

1172 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 12, DECEMBER 2016

becomes more transactional rather than more relational: The
platform is supposed to provide software for an agreed-
upon specification for appropriate compensation.

However, formalizing the relationship and making it
more transactional does not solve the underlying knowl-
edge management problems: Understanding the require-
ments, implementing them properly, and knowing how to
use the results are not capabilities that can be communi-
cated well on paper.

5.1.2 Psychological Challenges

Some middle managers and developers feared the transpar-
ency that inner source brought to their projects: They dis-
liked that all across the organization other managers and
developers could see project and product artifacts, progress,
and quality. Not wanting such openness of their work, they
resisted inner source projects.

If we believe practitioner reports from large but compar-
atively young companies like Google [72] and Facebook
[40], these psychological challenges may be a generational
issue: Developers who have been exposed to open source
during their education may find it easier to engage in open
collaborative behavior than software developers to who
open source still represents alien behavior. From this per-
spective, it may simply require time for inner source to
establish itself.

5.1.3 Process Breakdown

The organizational and psychological challenges led to a
domain engineering process in which most product units
only wanted to provide requirements, but not be involved
in their implementation. The product units found it hard to
gain consensus on requirements, which ultimately led to
the platform taking a more active role in requirements defi-
nition and prioritization than was appropriate for its
position.

The consequence was increased hiring in product units
for work that should be performed with and as part of the
platform organization’s work rather than redundantly in
the product units. This represents a suboptimal use of
resources that we can only explain with our findings
described above, that is, the misalignment of organizational
incentives and the psychological challenges faced by middle
managers and developers alike.

5.2 Theory Generalization

We shortly review our recommendations to the case study
companies and then present the main hypotheses that we
see follow from our theories.

5.2.1 Proposed Solution

Our case study companies wanted to know how to over-
come their problems with inner source. We believe that
these mature organizations need a more structured process
than just a well-spirited call to arms to take up inner source.
Thus, next to general recommendations like establishing a
software forge [52] and getting the overall business unit
owner to create proper incentives, we also made more
specific suggestions.

First, we suggested to establish a formal inner source
incubation process. In this process, every manager or devel-
oper can make a suggestion for a new reusable component.
All suggestions are public and are discussed publicly. In
regular intervals, a council of architects makes a decision as
to which suggestion will be turned into a project. The result-
ing inner source project will be staffed from all affected
product units as well as the platform organization.

Furthermore, borrowing from open source foundations
[54], we recommended to establish something we called
an “inner source foundation”, effectively a coaching orga-
nization like the Apache Software Foundation. This
coaching organization has responsibility for the inner
source process, but not the involved human resources.
The inner source foundation helps inner source projects
get instantiated and coaches them as to proper inner
source practices.

5.2.2 Hypotheses and Predictions

Our case study companies have been continuing their
efforts. However, it is too early to tell whether our recom-
mendations have been beneficial to them.

The theories we present are only as good as the hypothe-
ses that they generate and that can be validated in future
work. Such confirmatory research will also allow for gener-
alized conclusions that are not possible from pure case
study research.

H1 Resistance and misunderstandings (like expected
lower code quality of inner source components) can be
addressed successfully by way of education and active
participation in the practice of inner source software
development.

This hypothesis is likely to evaluate to true, given the
change in public opinion on the use of and participation in
open source software projects from a negative to a positive
stance.

H2 Psychological openness or resistance to inner source
(i.e., desire or fear to work under quasi-public scrutiny)
depends on manager and developer personalities and is
not a function of organizational structure or process.

Resistance to quasi-public scrutiny had managers and
developers holding back from inner source projects, despite
apparent advantages. Many expressed that the observed
resistance is rooted in the psychological make-up of people
and unlikely to be remedied by organizational and process
measures alone.

H3 As long as open source does not come natural to an
organization, inner source will not come easy to it either.
Until this has changed, an organization will need an
explicitly governed inner source process.

The call for an explicitly governed process is standard
corporate behavior. Such processes may be needed until
inner source practices have become a mainstay of corporate
culture.

Several managers remarked that building up inner
source competence is a step towards open source compe-
tence, suggesting that both competencies build on the same
base.

RIEHLE ET AL.: INNER SOURCE IN PLATFORM-BASED PRODUCT ENGINEERING 1173

H4 Inner source and open source draw on the same com-
petencies of people and a person who is good at one is
likely to be good at the other.

Thus, we suggest that open source and inner source com-
petencies are structurally similar, if not isomorphic. This is
not surprising given that inner source has originally been
motivated by open source. This hypothesized relationship
then leads to our most potent hypothesis:

H5 While there is no doubt about the need of platform
software and shared reusable assets, a platform develop-
ment organization may not be needed any longer. It can
be replaced by an inner source program.

This is an interesting though probably controversial
hypothesis: If large companies can work together in an
open source foundation to develop shared infrastructure
components, why can’t product units within an organiza-
tion work together to create a platform of shared reusable
assets without the need for a dedicated organizational unit
that maintains this platform?

This does not deny the need for organizational support of
inner source, specifically coaching and the adherence to
good inner source governance practices, much like open
source foundations coach projects and ensure good open
source governance. However, none of the open source foun-
dations that host these industry platforms are actually
developing any of it: They are pure coaching, governance,
and back-office organizations.

6 RESEARCH LIMITATIONS

This research faces a number of limitations. We first discuss
the traditional quality criteria for empirical research and after
that focus on specific criteria for exploratory (qualitative, yet
empirical) research, followed by a general discussion.

6.1 Empirical Research Quality Criteria

We cannot generalize beyond our case studies and cannot
draw statistical inferences. Still, we can discuss the tradi-
tional quality criteria of internal and external validity:

6.1.1 Internal Validity

As discussed in Section 3, we had a second coder analyze
the documents. The second coder derived a code system
and linkage close to the original one. The high inter-coder
agreement is leading us believe in an adequate quality of
the code systems and the theories they represent.

In addition, we were able to draw on a rich and diverse
body of materials, as discussed in Section 3. This diversity
supported data triangulation in our analysis and increased
the internal validity of our findings.

6.1.2 External Validity

As also discussed in Section 3, we provided our findings
back to the case study participants to learn about possible
misunderstandings or omissions. The feedback was rein-
forcing and validated our analysis.

If there was any conformity bias, it would have been mit-
igated by the case study participants’ desire to receive use-
ful recommendations that actually helped them.

6.1.3 Generalizability

We review our work with respect to other findings and in
particular open source to further assess external validity
and generalizability.

As to expected benefits of inner source, our findings are
well in line with prior work [31], [36], [37], [52], [62], [70],
extending it in some places.

It is interesting to compare our work with the reports
about inner source in product line engineering at Phillips
[68], [69]. The work at Phillips appears to be practitioner
reports only; no discernible research method was being
applied. Still, we find agreement on the observation that
platform engineers are often too far away from customers to
define requirements well. We also learn that Phillips has
been trying multiple engagement models to get inner source
off the ground [71], suggesting they have yet to find a final
answer to their inner source efforts.

With respect to the problems experienced when applying
inner source, Section 5 provides some hypotheses about the
relationship between open source and inner source. Inner
source is motivated by open source and reflects its values
and practices. Thus, any similarity between our inner source
findings and what is known about open source makes those
inner source findings more likely to be true:

� Empirical research on open source, surveyed e.g., in
[20], finds that some developers simply resist partici-
pation in open source for psychological reasons.

� Also, practitioner handbooks, surveyed e.g., in [30],
show that contributing to open source is often hin-
dered by managers worrying about losing control
over their developers.

These open source experiences reflect what we found
happening in inner source at our case study companies,
lending increased credibility to these results.

6.2 Exploratory Research Quality Criteria

While empirical, our research is primarily exploratory
(“qualitative”) in nature. For many years, researchers have
argued that the traditional empirical validity criteria do not
or should not apply to such research.

Guba and Lincoln, most notably, replace the tradi-
tional notion of validity with the concept of trustworthi-
ness, which in turn is based on the more fine-grain
concepts of credibility, transferability, dependability, and
confirmability [33], all four derived from the traditional
quality criteria. Thus, we review our work from this per-
spective as well.

Our copious notes from interviews and workshops com-
prise an as complete as possible record of what has been
said. For case 1 and 2 we participated as two researchers,
one actively engaged (asking questions), one observing and
taking notes. We believe we fully captured most relevant
events and information. After an interview we had our
notes reviewed and corrected, where necessary, by the
interviewees resp. participants.

We also evaluated our work by gathering feedback from
our case study companies after we finished an analysis (so-
called member checking). The responses showed clear
agreement with our findings. Since the case studies were
performed in sequence, findings from a prior case study

1174 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 12, DECEMBER 2016

informed our choices and foci for the next case study allow-
ing us to address questions previously not addressed.

6.3 Other Generalizability Issues

Our interviewees expected inner source to help solve their
engineering problems. One may argue that these problems
could be remedied through traditional domain engineering
processes as well. We did not question the decision of our
case study companies to focus on inner source rather than
more traditional practices, which they had been working on
for many years already.

We performed three case studies, which may seem low.
By case 3, however, interview partners were repeating
themselves and others. Beyond these three cases, we have
been involved with other inner source initiatives. Those var-
ied on several dimensions that made the three cases of this
article homogeneous, so we did not try to include them.

Our cases were chosen to investigate the homogeneous sit-
uation of successfulmature platform-basedproduct engineer-
ing without the problems of globally distributed software
development. We do not know what geographical, temporal,
and social diversity would do to our findings. Our findings
only apply to co-located, culturally and socially homogeneous
populations.

7 CONCLUSIONS

This article presents an analysis of three mature platform-
based product engineering efforts. The respective business
units expected that inner source, the cross-organizational-
unit collaboration on software projects based on open
source best practices, would improve productivity. Our
analysis presents the problems these companies faced, the
expectations they had, and the problems they experienced
in the adoption of inner source.

We find that setting up product units as profit centers
and platform organizations as cost centers leads to under-
staffing platform organizations and hinders collaboration
and knowledge sharing across organizational units. We also
find that inner source benefits are most obvious to the over-
all business unit, while middle managers of product units
and developers can be reluctant to contribute to inner
source projects. To that end we make recommendations as
to overcome this reluctance.

Finally, we draw conclusions from our theories and pres-
ent hypotheses that will structure future research work.

ACKNOWLEDGMENTS

We would like to thank Ann Barcomb, Christoph Elsner,
Andreas Kaufmann, Daniel Lohmann, Klaus-Benedikt
Schultis, Klaas-Jan Stol and the anonymous reviewers for
feedback that helped us improve this article.

REFERENCES

[1] N. I. Altintas, and S. Cetin, “Managing large scale reuse across
multiple software product lines,” in Proc. 10th Int. Conf. High Con-
fidence Software Reuse Large Syst., 2008, pp. 166–177.

[2] C. Atkinson, et al., Component-Based Product Line Engineering with
UML. Upper Saddle River, NJ, USA: Pearson Education, 2002.

[3] D. Batory, C. Johnson, B. MacDonald, and D. Von Heeder,
“Achieving extensibility through product lines and domain-
specific languages: A case study,” ACM Trans. Software Eng.
Methodology, vol. 11, no. 2, pp. 191–214, 2002.

[4] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid,
and J. M. DeBaud, “PuLSE: A methodology to develop software
product lines,” in Proc. Symp. Software Reusability, May 1999,
pp. 122–131.

[5] J. Bosch, Design and use of software architectures: Adopting and evolv-
ing a product line approach, Upper Saddle River, NJ, USA: Pearson
Education, 2000.

[6] J. Bosch, “The challenges of broadening the scope of software
product families,” Commun. ACM, vol. 49, no. 12, pp. 41–44, 2006.

[7] J. Bosch, “Expanding the scope of software product families: Prob-
lems and alternative approaches,” Lecture Notes in Computer Sci-
ence, p. 4034, vol. 4, 2006.

[8] J. Bosch, and P. Bosch-Sijtsema, “From integration to composition:
On the impact of software product lines, global development and
ecosystems,” J. Syst. Software, vol. 83, no. 1, pp. 67–76, 2010.

[9] L. J. Bourgeois III, and K. M. Eisenhardt, “Strategic decision pro-
cesses in high velocity environments: Four cases in the microcom-
puter industry,”Management Sci., vol. 34, no. 7, pp. 816–835, 1988.

[10] T. Berger, D. Nair, R. Rublack, J. M. Atlee, K. Czarnecki, and
A. Wąsowski, “Three cases of feature-based variability modeling
in industry,” in Proc. Model-Driven Eng. Languages Syst., 2014,
pp. 302–319.

[11] T. Berger, R. H. Pfeiffer, R. Tartler, S. Dienst, K. Czarnecki,
A. Wąsowski, and S. She, “Variability mechanisms in software
ecosystems,” Inform. Software Technol., vol. 56, no. 11, pp. 1520–
1535, 2014.

[12] S. Buhne, K. Lauenroth, and K. Pohl, “Modelling requirements
variability across product lines,” in Proc. 13th IEEE Int. Conf.
Requirements Eng.,Aug. 2005, pp. 41–50.

[13] E. Capra, and A. I. Wasserman, “A framework for evaluating
managerial styles in open source projects,” in Proc. Open Source
Develop. Communities Quality, 2008, pp. 1–14.

[14] A. L. Cavaye, “Case study research: A multi-faceted research
approach for IS,” Inform. Syst. J., vol. 6, no. 3, pp. 227–242, 1996.

[15] K. Charmaz, Constructing Grounded Theory. Thousand Oaks, CA,
USA: Sage, 2014.

[16] G. Chastek, and J. D. McGregor, “Guidelines for developing a
product line production plan,” Software Eng. Inst., Carnegie Mel-
lon Univ., Tech. Rep. CMU/SEI-2002-TR-006), 2002.

[17] G. Chastek, P. Donohoe, and J. D. McGregor, “A study of product
production in software product lines,” Software Eng. Inst., Carne-
gie Mellon Univ., Tech. Rep. CMU/SEI-2004-TN-012, 2004.

[18] P. Clements, and L. Northrop, Software Product Lines: Practices and
Patterns. Reading, MA, USA: Addison-Wesley, 2002.

[19] J. Corbin, and A. Strauss, Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory. Thousand Oaks,
CA, USA: Sage publications, 2014.

[20] K. Crowston, K. Wei, J. Howison, and A. Wiggins, “Free/Libre
open-source software development: What we know and what we
do not know,” ACM Comput. Surveys, vol. 44, no. 2, p. 7, 2012.

[21] K. Czarnecki, and U. W. Eisenecker, Generative Programming:
Methods, Tools, and Applications. Reading, MA, USA: Addison-
Wesley, 2000.

[22] K. Czarnecki, S. Helsen, andU. Eisenecker, “Formalizing cardinality-
based feature models and their specialization,” Software Process:
Improvement and Practice, vol. 10. no. 1, pp. 7–29, 2005.

[23] P. Darke, G. Shanks, and M. Broadbent, “Successfully completing
case study research: Combining rigour, relevance and pragma-
tism,” Inform. Syst. J., vol. 8, no. 4, pp. 273–289, 1998.

[24] S. Deelstra, M. Sinnema, and J. Bosch, “Product derivation in soft-
ware product families: A case study,” J. Syst. Software, vol. 74,
no. 2, pp. 173–194, 2005.

[25] D. Dhungana, P. Gr€unbacher, R. Rabiser, and T. Neumayer,
“Structuring the modeling space and supporting evolution in soft-
ware product line engineering,” J. Syst. Software, vol. 83. no. 7,
pp. 1108–1122, 2010.

[26] J. Dinkelacker, P. K. Garg, R. Miller, and D. Nelson, “Progressive
open source,” in Proc. 24th Int. Conf. Software Eng., May 2002,
pp. 177–184.

[27] S. Easterbrook, J. Singer, M. A. Storey, and D. Damian, “Selecting
empirical methods for software engineering research,” in Proc.
Guide Adv. Empirical Software Eng., 2008, pp. 285–311.

[28] K. M. Eisenhardt, “Building theories from case study research,”
Acad. Manag. Rev., vol. 14, no. 4, pp. 532–550, 1989.

[29] K. M. Eisenhardt, and M. E. Graebner, “Theory building from
cases: Opportunities and challenges,” Acad. Manag. J., vol. 50,
no. 1, pp. 25–32, 2007.

RIEHLE ET AL.: INNER SOURCE IN PLATFORM-BASED PRODUCT ENGINEERING 1175

[30] K. Fogel, Producing Open Source Software: How to Run a Successful
Free Software Project. Sebastopol, CA, USA: O’Reilly Media, Inc,
2005.

[31] G. Gaughan, B. Fitzgerald, and M. Shaikh, “An examination of the
use of open source software processes as a global software devel-
opment solution for commercial software engineering,” in Proc.
35th Euromicro Conf. Software Eng. Adv. Appl.,Aug. 2009, pp. 20–27.

[32] B. G. Glaser, “The constant comparative method of qualitative
analysis,” Social Problems, 436–445, 1965.

[33] E. G. Guba, and Y. S. Lincoln, Fourth Generation Evaluation. Thou-
sand Oaks, CA, USA: Sage publications, 1989.

[34] G. Guest, A. Bunce, and L. Johnson, “How many interviews are
enough? An experiment with data saturation and variability,”
Field Methods, vol. 18, no. 1, pp. 59–82, 2006.

[35] L. A. Guion, D. C. Diehl, and D. McDonald. “Triangulation: Estab-
lishing the validity of qualitative studies,” in Proc. Int. Conf. Foun-
dations Comput. Sci., 2011.

[36] V. K. Gurbani, A. Garvert, and J. D. Herbsleb, “A case study of a
corporate open source development model,” in Proc. 28th Int.
Conf. Software Eng., May 2006, pp. 472–481.

[37] V. K. Gurbani, A. Garvert, and J. D. Herbsleb, “Managing a corpo-
rate open source software asset,” Commun. ACM, vol. 53. no. 2,
pp. 155–159, 2010.

[38] K. Ishikawa, Introduction to Quality Control. New York, NY, USA:
Taylor & Francis, 1990.

[39] H. P. Jepsen, J. G. Dall, and D. Beuche, “Minimally invasive
migration to software product lines,” in Proc. 11th Int. Software
Product Line Conf., Sept. 2007, pp. 203–211.

[40] P. Keyani. The All-Night Hackathon Is Back! Retrieved March 12,
2015, from https://code.facebook.com/posts/ 573666012669084/
the-all-night-hackathon-is-back-/, 2008.

[41] J. Lindman, M. Rossi, and P. Marttiin, “Applying open source
development practices inside a company,” in Proc. IFIP 20th World
Computer Congress Open Source Develop. Communities Quality, 2008,
pp. 381–387.

[42] J. Lindman, M. Rossi, and P. Marttiin, “Open source technology
changes intra-organizational systems development—a tale of two
companies,” in Proc. Eur. Conf. Inform. Syst., 2010.

[43] J. Lindman, M. Riepula, M. Rossi, and P. Marttiin, “Open source
technology in intra-organisational software development—private
markets or local libraries,” in Managing Open Innovation Technolo-
gies, Berlin, Heidelberg, Germany: Springer, 2013, pp. 107–121.

[44] M. Lombard, J. Snyder-Duch, and C. C. Bracken, “Content analy-
sis in mass communication: Assessment and reporting of inter-
coder reliability,” Human Commun. Res., vol. 28, no. 4, pp. 587–
604, 2002.

[45] K. Martin, and B. Hoffman, “An open source approach to devel-
oping software in a small organization,” IEEE Software, vol. 24,
no. 1, pp. 46–53, Jan./Feb. 2007.

[46] C. Melian, and M. M€ahring, “Lost and gained in translation:
Adoption of open source software development at Hewlett-
Packard,” in Proc. IFIP 20th World Comput. Congress Open Source
Develop. Communities Quality, 2008, pp. 93–104.

[47] C. Melian, C. B. Ammirati, P. Garg, and G. Sevon, “Building net-
works of software communities in a large corporation. technical
report,” Hewlett Packard, 2002.

[48] A. Neus, and P. Scherf, “Opening minds: Cultural change with the
introduction of open-source collaboration methods,” IBM Syst. J.,
vol. 44, no. 2, pp. 215–225, 2005.

[49] L. Passos, K. Czarnecki, S. Apel, A. Wąsowski, C. K€astner, and
J. Guo, “Feature-oriented software evolution,” in Proc. 7th Int. Work-
shopVariabilityModelling Software-Intensive Syst., Jan. 2013, p. 17.

[50] K. Pohl, G. B€ockle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Berlin,
Germany: Springer, 2005.

[51] E. Raymond, “The cathedral and the bazaar,” Knowl. Technol. Pol-
icy, vol. 12, no. 3, pp. 23–49, 1999.

[52] D. Riehle, J. Ellenberger, T.Menahem, B.Mikhailovski, Y.Natchetoi,
B. Naveh, and T. Odenwald, “Open collaboration within corpora-
tions using software forges,” IEEE Software, vol. 26, no. 2, pp. 52–58,
Mar./Apr. 2009.

[53] D. Riehle, “The economic case for open source foundations,” IEEE
Comput., vol. 43, no. 1, pp. 86–90, Jan. 2010.

[54] D. Riehle, and D. Kips, “Geplanter Inner Source: Ein Weg zur
Profit-Center-€ubergreifenden Wiederverwendung,” Comput. Sci.
Dept., Friedrich-Alexander-Univ. Erlangen-N€urnberg, Tech. Rep.
CS-2012—05, May 2012.

[55] A. B. S�anchez, S. Segura, and A. Ruiz-Cort�es, “The Drupal frame-
work: A case study to evaluate variability testing techniques,” in
Proc. 8th Int. Workshop Variability Modelling Software-Intensive Syst.,
Jan. 2014, p. 11.

[56] K. Schmid, “A comprehensive product line scoping approach and
its validation,” in Proc. 24th Int. Conf. Software Eng., May 2002,
pp. 593–603.

[57] C. Schwanninger, I. Groher, C. Elsner, and M. Lehofer,
“Variability modelling throughout the product line lifecycle,” in
Proc. 12th Int. Conf. Model Driven Eng. Languages Syst., 2009,
pp. 685–689.

[58] S. Sharma, V. Sugumaran, and B. Rajagopalan, “A framework for
creating hybrid-open source software communities,” Inform. Syst.
J., vol. 12, no. 1, pp. 7–25, 2002.

[59] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki, “The
variability model of the Linux kernel,” VaMoS, vol. 10, pp. 45–51,
2010.

[60] M. Sinnema, and S. Deelstra, “Classifying variability modeling
techniques,” Inform. Software Technol., vol. 49, no. 7, pp. 717–739,
2007.

[61] P. Smith, and C. Garber-Brown, “Traveling the open road: Using
open source practices to transform our organization,” in Proc.
IEEE Agile Conf., Aug. 2007, pp. 156–161.

[62] K. J. Stol, M. A. Babar, P. Avgeriou, and B. Fitzgerald, “A compar-
ative study of challenges in integrating open source software and
inner source software,” Inform. Software Technol., vol. 53. no. 12,
pp. 1319–1336, 2011.

[63] K. J. Stol, P. Avgeriou, M. A. Babar, Y. Lucas, and B. Fitzgerald,
“Key factors for adopting inner source,” ACM Trans. Software Eng.
Methodology, vol. 23, no. 2, p. 18, 2014.

[64] R. Torkar, P. Minoves, and J. Garrig�os, “Adopting free, libre, open
source software practices, techniques and methods for industrial
use,” J. Assoc. Inform. Syst., vol. 12, no. 1, pp. 88–122, 2011.

[65] F. J. van der Linden, K. Schmid, and E. Rommes, Software Product
Lines in Action: The Best Industrial Practice in Product Line Engineer-
ing. Berlin, Germany: Springer, 2007.

[66] F. van der Linden, “Applying open source software principles in
product lines,” Upgrade, vol. 10, pp. 32–41, 2009.

[67] F. van der Linden, “Inner source product line development,” in
Proc. 13th Int. Software Product Line Conf., 2009, p. 317.

[68] F. van der Linden, B. Lundell, and P. Marttiin, “Commodification
of industrial software: A case for open source,” IEEE Software,
vol. 26, no. 4, pp. 77–83, Jul./Aug. 2009.

[69] F. van der Linden, “Open source practices in software product
line engineering,” in Proc. Int. Summer Schools Software Eng., 2013,
pp. 216–235.

[70] P. Vitharana, J. King, and H. S. Chapman, “Impact of internal
open source development on reuse: Participatory reuse in action,”
J. Manag. Inform. Syst., vol. 27, no. 2, pp. 277–304, 2010.

[71] J. Wesselius, “The bazaar inside the cathedral: Business models
for internal markets,” IEEE Software, vol. 25, no. 3, pp. 60–66,
May/Jun. 2008.

[72] J. A. Whittaker, J. Arbon, and J. Carollo, How Google Tests Software.
Reading, MA, USA: Addison-Wesley, 2012.

[73] R. K. Yin, Case Study Research: Design and Methods. Thousand Oaks,
CA, USA : Sage, 2013.

Dirk Riehle received the PhD degree in com-
puter science from the ETH Z€urich and the MBA
degree from the Stanford Graduate School
of Business. He is the Professor of Open
Source Software, Friedrich-Alexander University
Erlangen-N€urnberg. Before joining academia, he
led the Open Source Research Group at SAP
Labs, LLC, in Palo Alto, California (Silicon Val-
ley). He founded the Wiki Symposium, and more
recently, the Open Symposium, now the joint
international conference on open collaboration.

He was also the lead architect of the first UML virtual machine. His
research interests include open source and inner source software engi-
neering, agile software development methods, complexity science and
human collaboration, and software system architecture, design, and
implementation.

1176 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 12, DECEMBER 2016

Maximilian Capraro received the BEng degree
in information and communication technology
from the BA Eisenach and the MSc degree in
computer science from the Friedrich-Alexander-
University. He is a researcher and working
toward the PhD degree at the Open Source
Research Group at Friedrich-Alexander-Univer-
sity Erlangen-N€urnberg. He is alumnus of the Sie-
mens Masters Program. In parallel to his studies,
he interned at a variety of software development
firms including Black Duck Software Inc. where

he measured and analyzed collaboration in open source projects’ issue
trackers. His research interests include inner source and open source
software engineering, software code and process metrics, and software
architecture, design and implementation.

Detlef Kips received the Diplom and the
PhD degree from Friedrich-Alexander-University
Erlangen-N€urnberg where he also has been
teaching as an honorary professor since 2001.
He is a founder and CEO of develop group, a
software technology consulting company based
in Erlangen, Germany. During the last 25 years,
he worked as a consultant and project leader in
numerous large software development projects
for companies like Siemens, Volkswagen or
Bosch. His interests include methods and lan-

guages for software and systems modeling, tool-based modeling and
execution of development processes and practical approaches for orga-
nizing large software development projects. He welcomes email at
kips@develop-group.de.

Lars Horn graduated from the Friedrich-
Alexander-University Erlangen-N€urnberg in 2013
with a master degree in computer science. He is
currently a software engineer at e-solutions
GmbH, a joint venture of Elektrobit and Audi.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

RIEHLE ET AL.: INNER SOURCE IN PLATFORM-BASED PRODUCT ENGINEERING 1177

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

