
. RESEARCH PAPER .
Special Focus

SCIENCE CHINA
Information Sciences

August 2013, Vol. 56 ******:1–******:13

doi: **************

c© Science China Press and Springer-Verlag Berlin Heidelberg 2013 info.scichina.com www.springerlink.com

How commercial involvement affects open source
projects: three case studies on issue reporting

MA XiuJuan1,2, ZHOU MingHui1,2∗ & RIEHLE Dirk3

1School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China;
2Key Laboratory of High Confidence Software Technologies, Ministry of Education, Beijing 100871, China;

3Friedrich-Alexander-University of Erlangen-Nurnberg, Martensstr. 3, 91058, Erlangen, Germany

Received March 5, 2013; accepted June 28, 2013

Abstract Whereas most research on Internetware has focused on new technologies for keeping track of a

changing Internet, little attention has been paid to the software development process. A large portion of the

software running the Internet is open source software. Open source software is developed both by volunteers and

commercial companies, often jointly. Companies get involved in open source projects for commercial reasons,

and bring with them a commercial software development process. Thus, it is important to understand how

commercial involvement affects the software development process of open source projects. This article presents

case studies of three open source application servers that are being developed jointly by a volunteer community

and one primary software company. We are interested in better understanding developer behavior, specifically

task distribution and performance, based on whether the developer is an external contributor, e.g., a volunteer

working in their spare time, or a commercial developer from inside the primary backing company who is being

paid for their time. To achieve this, we look at issue reporting as an example of commercial involvement in

open source projects. In particular, we investigate the distribution of tasks among volunteers and commercial

developers by studying the source of reported issues and quantify the task performance on user experience via

the issue resolution speed. We construct measures based on historical records in issue tracking repositories.

Our results show that, with intensified commercial involvement, the majority of issue reporting tasks would be

undertaken by commercial developers, and issue resolution time would be reduced, implying a better user expe-

rience. We hope our methods and results provide practical insights for designing an efficient hybrid development

process in the Internetware environment.

Keywords open source software development, commercial involvement, hybrid development, contributor

participation, issue reporting

Citation Ma X J, Zhou M H, Riehle D. How commercial involvement affects open source projects: three case

studies on issue reporting. Sci China Inf Sci, 2013, 56: ******(13), doi: **************

1 Introduction

The successful development of several extraordinary open source software (OSS) systems, such as Apache

HTTP Server and Linux Kernel, has demonstrated the potential for constructing software by mostly

voluntary contributions distributed across the world. Participants in OSS development work together

∗Corresponding author (email: zhmh@pku.edu.cn)



Ma X J, et al. Sci China Inf Sci August 2013 Vol. 56 ******:2

through software repositories, such as issue tracking systems, running over the Internet, and cooperate to

resolve issues and produce good quality software. Over the past two decades, more and more companies

have begun to build various business models around OSS projects in the expectation of benefiting from

both open source and commercial development [1]. In OSS-commercial hybrid projects [2], participants

from both commercial companies and the wider Internet community collaborate together to construct

innovative and high-quality software.

However, it is a challenge to lead hybrid development efficiently. The involvement of a company, par-

ticularly, its for-profit business interests, and the formal way in which they arrange employees and the

development process, may have an unpredictable impact on the behavior of OSS contributors, e.g., chang-

ing the task distribution and performance, attracting or hindering new comers. For example, “there were

many rumors about various people leaving JBoss after its acquisition by Red Hat, including Marc Fleury

[the founder]”1), which would constitute a great loss to the project. This inspired us to study how com-

mercial involvement affects contributors’ participation in hybrid development practices. In particular, we

address whether the task preference of external participants (e.g., external users, participants voluntarily

contributing in their spare time) changes because of the presence of internal developers (who are from

inside the backing company, working on behalf of the commercial entity). We also consider whether the

task performance would be improved, e.g., would user experience receive more attention and improve as

a result. These issues have been subjected to only limited research in the academic community.

Specifically, as suggested by Linus’ Law: “Given enough eyeballs, all bugs are shallow” [3], user issue

reports have commonly been regarded as a crucial contribution in OSS development [4]. These user

reports, which are also the source of the user innovation generally expected in most software production [5],

will help to ensure and improve the functionality and quality of software. Hence, in particular, we look

at issue reporting as an example of commercial involvement in open source projects, and investigate the

following questions:

1) Is the task of issue reporting most commonly undertaken by external participants or internal devel-

opers?

2) Are external user issue reports resolved more quickly than developers’ reports?

There are various ways for companies to engage in hybrid projects. For example, as discussed in [6],

in many present open source projects (e.g., MySQL, Alfresco, SugarCRM, Mulesoft, Jaspersoft, Pen-

taho), a single company performs all the development, similar to the case of Google with Android. The

classification of internal and external participants in such projects might have less significance, as all

the development tasks are undertaken by internal developers. However, this study aims to highlight

the problems faced in another typical class of hybrid projects, where the OSS and commercial software

development are combined and expected to form a new and more efficient software engineering approach,

as illustrated in [2].

Answers to these questions can help us understand the task preference and the effect on user experience

in practice, which will help to improve methods and tools for hybrid development. The open, dynamic

and uncontrollable nature of the Internet has led to a new software paradigm, i.e., Internetware [7,8].

Thus, we believe that understanding hybrid approaches will help to determine the best practice for

Internetware development. Indeed, software that presents the typical characteristics of Internetware,

e.g., an application server, may also be implemented in this way.

Therefore, we conduct an empirical study of three large OSS-commercial hybrid projects developing

JavaEE application servers: JBossAS, Apache Geronimo, and JOnAS. These are the same projects we

selected in a previous study on Internetware development [9]. We follow an experimental procedure of

data filtering similar to that of the Apache study [10]: retrieving and processing historical data from issue

tracking repositories, and constructing quantitative measures based on the extracted data to answer our

specific research questions. Moreover, we investigate the three projects at the granularity of “epochs”,

representing time intervals over which the nature of the commercial involvement and business goals

are relatively stable. In JBossAS and Geronimo, the epochs represent the different extent of company

support, whereas in JOnAS they reflect different technical requirements and, therefore, different business

1) http://www.theserverside.com/discussions/thread.tss?thread id=43410.



Ma X J, et al. Sci China Inf Sci August 2013 Vol. 56 ******:3

strategies. JOnAS is an excellent contrast to the other two projects because, although implementing the

same functionality, it started as a hybrid, and thus may shed light on how much the initial conditions

affect hybrid project practices.

Our results show that, with intensified commercial involvement, the majority of issues are reported by

internal developers, and user issues are resolved more quickly than internal issues. This implies that the

user experience has been enhanced. The results suggest that the current issue tracking systems in these

projects can be improved in several ways, e.g., setting some fields in issue reports to highlight user issues,

or improving the issue resolution process by adding special triage steps.

This paper makes the following main contributions.

1) Hybrid projects and issue-reporting practices, such as survival curves to quantify issue resolu-

tion speed.

2) We quantify the influence of commercial involvement on issue reporting in OSS projects. For

example, commercial involvement is associated with a shift in the majority of issue reporters from external

users to internal developers. User reports will thus be resolved more quickly than developer reports in

some projects, whereas in other projects the opposite is the case.

3) We provide practical insights into the methods and tools that may help to design an efficient hybrid

development with a high level of user experience.

The rest of the paper is organized as follows. Section 2 introduces some related work, and Section 3

describes the context of the three projects and illustrates our data filtering approach. Section 4 presents

the results of the three case studies, and we discuss the limitations of our work in Section 5. Finally, we

present our conclusion in Section 6.

2 Related work

Whereas there has been considerable research into OSS development, little has focused specifically on

hybrid projects and the impact of commercial involvement in issue reporting.

Contributors’ participation in OSS development has been studied by many researchers. For example,

Refs. [11–13] investigated why the participants in OSS contribute without material compensation, and

how such apparently unstructured and distributed organizations survive and succeed. Von Krogh et

al. [14] studied the strategies and processes by which newcomers join the OSS community, while Zhou et

al. [15] observed the impact of the project environment on newcomers’ participation. Our work is most

closely related to the study of Apache web server and Mozilla web browser [2]. This quantified aspects of

OSS development practices, such as developer participation, issue reporters, and issue resolution speed,

using email archives of the source code change history and problem reports. The results were framed as

seven hypotheses that outline key aspects of OSS development. We have also replicated a case study of

the Apache study on Internetware development [9]. In this paper, we confirmed some of the hypotheses on

issue reporting in [2] in the context of hybrid projects, and also found some substantial differences. The

new context of hybrid projects required us to discriminate between volunteer and commercial participa-

tion. In addition, the dynamic nature of commercial involvement and project strategies, combined with

a longer (than in the Apache study) time frame and required us to separate each project into separate

epochs and introduce other methodological innovations.

In the Apache study [10], the authors also suggested that OSS practices may be successfully combined

with commercial practices in hybrid projects. However, the quantification of commercial influence is

rarely addressed. Current research focuses mainly on theoretical models for hybrids, e.g., how projects

may benefit from the coordination mechanism of OSS [16], how the stakeholders make economic profit

from OSS [17], and how to define an innovative software engineering paradigm for large corporations [18].

There are also some empirical studies on successful hybrid projects. These enable us to understand how

to improve upon existing software development practices, e.g., the analysis of business strategies [1,19]

and development methodology [20]. In particular, Wagstrom et al. [21] provided an in-depth analysis of

commercial involvement in the GNOME and Eclipse software projects, and measured the impact of two

kinds of commercial involvement, namely community-focused and product-focused, on the participation



Ma X J, et al. Sci China Inf Sci August 2013 Vol. 56 ******:4

of volunteers. Unlike in prior work, we focus on the impact of commercial involvement on contributors’

participation in the practice of issue reporting.

Moreover, there are several studies that consider the issue reporting practice in other contexts. Hendry

[22] analyzed the role of users in software development, and showed that many users offered creative input

according to personal experience, scenario, and observed use. Ko et al. [23] investigated the interaction

between users and developers of Mozilla, and found that reports that did lead to changes were made by

a relatively small group of experienced, frequent reporters. In our study, we further research the role of

users in the context of hybrid development, which requires us to introduce methodological innovations.

3 Methodology

We employ a quantitative approach to analyze the impact of commercial involvement on contributors’

participation in issue reporting. We first present the context of the projects in Subsection 3.1, and the

quantitative approach in Subsection 3.2.

3.1 Context

The three projects we investigated, JBossAS, Apache Geronimo, and JOnAS, started around 2000 and

remain active. Currently, JBossAS is hosted by Red Hat and is the most popular open source application

server (AS). Geronimo is an Apache project that is heavily supported by IBM. JOnAS is a development

of the OW2 Consortium, which was established by the collaboration of Bull and other organizations.

There are three reasons we selected these projects. First, all three projects are ASs that have been

developed over a similar time period. This allows us to control for external factors such as the application

domain and changes in the technology landscape and the world economy. Second, as companies have

changed the way they shape the community over the last decade, allowing us to observe the effect of such

changes within a single project, thus controlling for project context. Actually, we can isolate nine epochs

over which community strategies are relatively stable for the three projects. Finally, we have several years

of experience working on ASs. The first two authors participated in the development of JOnAS, with

one being on the community council since 2007. This means we are intimately aware of AS technology

and how it has changed over time.

To make comparisons, we first determine the scope of each project in Subsection 3.1.1, divide the

time-line of each project into relatively homogeneous periods (epochs), as described in Subsection 3.1.2,

and then introduce the business strategies of each of the companies involved in the three projects in

Subsection 3.1.3.

3.1.1 Scope

Each AS conforms to the standard specifications of JavaEE AS. In the history of JavaEE AS, there

have been four remarkable evolutions in J2EE technology, namely the “Initial stage (J2EE 1.3 specifi-

cation)”, “J2EE 1.4 specification”, “JavaEE 5 specification” and “Architecture Refactoring”. The latter

two started at a similar time, so we group them into a single “JavaEE 5 and Architecture Refactoring

epoch”. New specifications, with new functionalities and the effect of simplifying development, have been

published and implemented. Meanwhile, since the end of 2006, great effort has been made to refactor the

increasingly large product to achieve a loose coupling of AS components (see, e.g., [24]). Over time, all

three projects grew in size organically and by incorporating other projects. To ensure that we compare

similar functionalities in the JOnAS repository with JBossAS and Geronimo projects, we follow the sug-

gestion of a JOnAS core team member, and consider a combination of repositories for “Carol”, “CMI”,

“Easybeans”, “JASMINe”, “Jotm”, and “JOnAS” to constitute the JOnAS project.

3.1.2 Epochs

During their extended lifespan, the three projects have encountered significant changes in the nature of

commercial involvement (e.g, the change from open source to commercial, from one kind of company



Ma X J, et al. Sci China Inf Sci August 2013 Vol. 56 ******:5

Table 1 Epochs in the three projects

Time span JEE V Backing cmpny. Business strategy

JBossAS

Epoch 1 1999.10–2001.03 1.3 Open source

Epoch 2 2001.06–2004.02 1.3 JBoss Group LLC. Offering professional services

Epoch 3 2004.06–2006.02 1.4 JBoss Inc. Service Business

Epoch 4 2006.10–2010.09 5 Red Hat Service Business

Geronimo
Epoch 1 2003.08–2005.04 1.4 open source

Epoch 2 2005.08–2010.09 1.4, 5 IBM Expert Technical Support for Geronimo

JOnAS

Epoch 1 1999.10–2004.03 1.3 Bull Initial application server

Epoch 2 2004.06–2006.10 1.4 Bull Introduction of JOnAS appliance

Epoch 3 2007.02–2010.09 5 Bull Introduction of a new generation of JOnAS

to another, or changes in company strategy). Therefore, we divide the time-line of each project into

relatively homogeneous periods, from which we can draw comparisons to observe the impact of commercial

involvement.

JOnAS was initiated as a hybrid project, with Bull as its primary backer from the beginning. It

experienced the above-mentioned changes in JavaEE technology, which changes might have caused the

strategy changes described below.

The time-line of JBossAS and Geronimo was divided according to the time at which commercial backing

commenced. Both projects started as OSS and received company support a few years later. JBossAS

has experienced three changes. The JBoss Group LLC was founded in April 2001. Then in March of

2004, JBoss Inc. was founded, before Red Hat acquired JBoss Inc. in April of 2006. Geronimo started

receiving support from IBM in May of 2005.

It is worth noting that the changes in J2EE technology are somewhat similar, and possibly related to

changes in commercial involvement. However, the dates of technology changes are not very precise, and

the project behavior cannot react immediately to a change of commercial involvement. Hence, we exclude

a slice of time immediately prior and just after these change points to reduce potential noise introduced

by the transition. For example, prior to and after the acquisition, some activities that are not relevant

to normal project operations might add unwanted noise. We use SVN commit logs and news on each

project’s website to identify and understand these transitions. As a result, for JBossAS, we ignore two

months during the foundation of JBoss Group LLC, three months during the foundation of JBoss Inc.,

and seven months during the acquisition by Red Hat. For Geronimo, we ignore three months during the

acquisition by IBM. For JOnAS, we ignore three months at the boundary between the two epochs.

Therefore, we have a total of nine epochs. Of these, seven belong to some kind of hybrid project, and

two belong to pure OSS projects. The specific time spans are shown in the second column of Table 1.

3.1.3 Strategies of commercial participation

By comparing epochs within and among projects, we observe differences in development practices with

different types of commercial involvement. Each change in commercial involvement also involves a spe-

cific shift in strategy. These strategies are determined by the relevant business requirements and affect

development practices, e.g., issue reporting.

The strategy in JBossAS can be distinguished by the requirements to offer professional services and

build a “Professional Open Source” business model2). In Epoch II, JBoss Group LLC aimed to provide

support and services for JBossAS server technology directly from the core developers, and generate

revenues that rewarded its employees and, most importantly, JBoss’ developers3). In Epoch III, the

actions of JBoss Inc. are reflected by the employment of leading JBoss developers. In Epoch IV, Red

Hat acquired JBoss Inc. to ensure the continuity of an independent open source AS and integrated it as

2) http://www.jboss.com/pdf/dhbrown0704.pdf.
3) http://web.archive.org/web/20031206230933/, http://www.jbossgroup.com/index.html?module=html&op=userdis-

play &id=en/company/index.



Ma X J, et al. Sci China Inf Sci August 2013 Vol. 56 ******:6

a division of Red Hat4). Both JBoss Inc. and Red Hat sell services, such as, production and development

support, patches and updates, multi-year maintenance policies, and software assurance5), but Red Hat

appears to be more engaged in the commercial dissemination. For example, to provide marketing and

support for JBossAS, Red Hat has organized an annual JBoss World conference since 2005. This is now

co-hosted with the Red Hat Summit, and attracts numerous participants.

IBM provides expert technical support for Apache Geronimo6). IBM works continuously with the

community to ensure that new features are added to Geronimo for the advancement of community

goals. Additionally, all Geronimo bug fixes made by IBM are contributed to the Apache Geronimo

community7). IBM is an active participant in the Apache Geronimo community—of 63 committers listed

on the Geronimo website, more than half work for IBM8). Geronimo is used by IBM to test and obtain

innovations that are transferable to IBM’s commercial products. For example, based on Geronimo, IBM

announced WAS CE, a free edition of its WebSphere application server9).

Bull uses JOnAS as an open source enterprise middleware solution for its customers10). Bull offers

customers advanced professional support for JOnAS, in addition to free online support11). Over its three

epochs, the strategy behind JOnAS has evolved over time, based mainly based on the changes in J2EE

technology. In the first epoch, i.e., the “Initial Epoch”, J2EE technology emerged and thrived. The

JOnAS team focused on developing an early version through cooperation with several French organi-

zations, including France Telecom, Lifl, and INRIA12). In the second “J2EE 1.4 Specification Epoch”,

the namesake specification was implemented while cooperating with those organizations. Furthermore,

Bull appears to be effective at dissemination, because many third-party developers have started to build

applications and products based on JOnAS, such as “NeoLoad” and “Liferay Portal”13). In the “JavaEE

5 and Architecture Refactoring Epoch”, the JOnAS strategy shifted to the development of an innovative

version conforming to new specifications based on OSGiTM14), as well as cooperation with many other

organizations to broaden its influence; e.g., SerLi, University of Fortaleza, and Peking University15),

contributed to the development of JOnAS 5.x in this epoch.

Furthermore, when a company participates in a hybrid project, it generally conducts software devel-

opment in the manner to which it is accustomed. Although volunteer participation is likely to be highly

appreciated, companies are usually inclined to transfer their existing developers and practises to these

projects. For example, the three projects assign responsible owners for projects and sub-projects in their

JIRA16) issue—tracking systems, which implies that the task ownership is enforced. In JBossAS, the

issue tracking system and community forum have played different roles since JBoss Inc. was founded.

After Red Hat acquired JBoss, JIRA was no longer “the place to ask for help”, while the forum became

more active place in terms of users who wished to “ask a question” or have a discussion17). Earlier, it

was more common to report issues through the issue tracking system.

Table 1 summarizes the types (3rd column) and strategies (last column) of the three projects over their

different epochs.

3.2 Quantitative investigation

We follow the experimental procedure of data filtering similar to that of the Apache study [10], which is

a classic study on contributors’ participation in OSS projects. We retrieved and processed historical data

4) http://en.wikipedia.org/wiki/Red Hat.
5) http://www.redhat.com/jboss.
6) http://www-01.ibm.com/software/webservers/appserv/geronimo/.
7) http://www-01.ibm.com/software/webservers/appserv/geronimo/features/?S CMP=wspace.
8) http://geronimo.apache.org/committers.html.
9) http://en.wikipedia.org/wiki/Apache Geronimo.
10) http://www.Bull.com/opensource/index.html.
11) http://www.Bull.com/news/021004jonas.html.
12) http://wiki.jonas.ow2.org/xwiki/bin/view/Main/Contributors.
13) http://wiki.jonas.ow2.org/xwiki/bin/view/Main/3rdPartyProducts.
14) http://www.osgi.org/Main/HomePage.
15) http://wiki.jonas.ow2.org/xwiki/bin/view/MoU/.
16) A type of issue tracking system. http://www.atlassian.com/software/jira.
17) http://community.jboss.org/wiki/HelpBugReport.



Ma X J, et al. Sci China Inf Sci August 2013 Vol. 56 ******:7

Table 2 Number of issue records for the three projects

Project From To Number

JBossAS 2001.03.27 2010.09.14 24 855

Geronimo 2003.8.20 2010-09.14 6 929

JOnAS 2003.02.06 2010-09.14 1 581

from problem tracking repositories, and construct quantitative measures in Section 4. To investigate task

distribution in issue reporting we identify internal and external reporters in Subsection 3.2.2. Table 2

gives a brief summary of the raw data we obtained.

3.2.1 Issue tracking system

JBossAS formerly used Sourceforge to track issues, but switched to JIRA in 2004. JOnAS started with

GForge and switched to JIRA in October 2009, whereas Geronimo used JIRA from the very beginning.

We retrieved all web pages from the above mentioned systems. Irrelevant pages, such as index pages,

were removed from further consideration. We also merged issues from multiple systems to remove du-

plicates, e.g., some issues of JBossAS were in both the JIRA and SourceForge trackers. Eventually, for

each issue, we obtained the tuple of module, issue id, reporter, reported date, assignee, status, resolution,

priority, type (Bug, Feature Request, Patch or some others), component, title, closer (if there was no

closer, we set this attribute to “NULL”), and close date.

3.2.2 Identifying external participants

We used the email domain of the contact email addresses provided in JIRA to identify reporters of the

corresponding commercial companies (internal developers, i.e., internal reporters). We considered the

remaining reporters to be external. For example, reporters with domains “@jboss.org”, “@jboss.com”,

or “@redhat.com” to be internal for JBossAS, while with email domains “@Bull.net”, “@Bull.com”,

“@ow2.org” were considered to be internal for JOnAS, and “@ibm.com” were classed as internal for

Geronimo.

There were some additional issues. For example, internal developers may not use the company’s email

domain when placing a report in JIRA. To validate the results, we verified our derived affiliation through

the project mailing list, manually searched for each developer on the web, and checked whether the first

change a developer made was to modify the “assignee” field to a known internal developer, as this behavior

may point to a team leader or colleague of the internal developer. For Geronimo, we also combined the

committers list on the project website to identify reporters who work for IBM.

4 Results

In this section, we provide answers to the research questions proposed in Section 1. We first investigate

the major sources of issue reporting in Subsection 4.1. We then quantify the resolution speed of user

reports to investigate whether the user experience improved following commercial involvement.

4.1 Major sources of issue reporting

A popular view is that the quality of OSS is ensured by the many users who download, use the software,

and then report issues or even submit patches. As Mockus et al. [2] found, a larger group, beyond the

core team, will discover more defects. These are the extensive user contributions from which companies

involved in hybrid projects wish to benefit. However, when engaging in the projects, companies will bring

in their own arrangements, which could affect the original OSS development practice. This might hinder

user contributions and pose a challenge to the cooperation between internal and external participants. In

this section, we identify who found and report issues during the epochs representing pure-OSS and hybrid

development. This will help us understand how to take advantage of, or learn lessons from, the practice.



Ma X J, et al. Sci China Inf Sci August 2013 Vol. 56 ******:8

(a)                                                                       (b)                                                                          (c)

N
u
m

b
er

2000 2003 2006 2009

N
u
m

b
er

2004 2006 2008 2010

Total reporters #
External reporters #

N
u
m

b
er

2004 2007 2010

80

60

40

20

  0

250

150

  50

    0

120

  80

  40

    0

Figure 1 Number of external reporters in (a) JBossAS, (b) Geronimo, and (c) JOnAS.

(a)                                                                      (b)                                                                         (c)

N
u
m

b
er

2000 2003 2006 2009

N
u
m

b
er

2004 2006 2008 2010

N
u
m

b
er

2004 2007 2010

300

100

    0

150

100

  50

    0

80

60

40

20

  0

Total reports #
External reports #

Figure 2 Number of external reports in (a) JBossAS, (b) Geronimo, and (c) JOnAS.

Figure 1 shows the number of reporters every month for the three projects. We distinguished the

reporters as external and internal participants. Note that JBossAS did not start using issue tracking

until the second epoch. The earliest reports we could retrieve were from March 27th, 2001, when the

second epoch started. Therefore, we could only inspect the issue reporting behavior in the hybrid epochs

of JBossAS. Although there was no first-epoch commercial involvement in Geronimo, we determined

which issues had been reported by developers who were later hired by IBM, so as to distinguish the core

team from peripheral participants.

We can see from Figure 1 that, after the onset of commercial involvement, most of the reporters seem

to be internal rather than external reporters. For example, this is clearly the case in Epoch 4 of JBossAS,

Epoch 2 of Geronimo, and all three epochs of JOnAS (note that there was some commercial involvement

from the beginning of the JOnAS project). This reflects the fact that, with commercial involvement,

internal developers will get to work full-time on the project, whereas external participants may only work

part-time. Moreover, many companies channel participation through selected gatekeepers. This saves

the internal developers the effort of responding to every request, and ensures consistency in feedback, so

a single person may appear to be doing the work of many. This will also cause the number of external

reporters to decrease.

Because external reporters will be more casual, and may have a different level of productivity than

internal reporters, we determined the number of external and internal issues, as shown in Figure 2. We

found a similar trend to that of the source of reported issues (Figure 1), except that the total number of

issues increased more sharply than the number of reporters, a result of the higher productivity of internal

reporters.

Simply looking at the absolute numbers of reporters/issues may reflect changes in the overall devel-

opment activity more than in the external participation. We then considered the percentage of issues

reported by external participants. As shown in Figure 3, in general, in the hybrid epochs of the three

projects, the average proportion of issues reported by external reporters per month is never larger than

43%, with the lowest fraction of 10% in the fourth epoch of JBossAS. Notice that the second epoch of

JBossAS (JBoss Group LLC) is an exception, where the external participants reported almost 70% of

issues. At that time, Marc Fleury (creator of JBossAS) was still leading the community of volunteers,

and was only in the process of starting to provide expert technical support services. In other words, this



Ma X J, et al. Sci China Inf Sci August 2013 Vol. 56 ******:9

(a)

P
ro

p
o
rt

io
n
 o

f 
ex

te
rn

al
 i

ss
u
es

Epoch 2 Epoch 3 Epoch 4

0
.2

0
.4

0
.6

0
.8

1
.0

(b)

Epoch 1 Epoch 2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(c)

Epoch 1 Epoch 2 Epoch 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

P
ro

p
o
rt

io
n
 o

f 
ex

te
rn

al
 i

ss
u
es

P
ro

p
o
rt

io
n
 o

f 
ex

te
rn

al
 i

ss
u
es

Figure 3 Proportion of external reports in (a) JBossAS, (b) Geronimo, and (c) JOnAS for each epoch.

epoch is likely to have more OSS than commercial features. Moreover, the percentage of issues reported

by external reporters dropped in the last two epochs of JBossAS and in the second epoch of Geronimo.

In contrast, in JOnAS, external reporters appear to be responsible for around 40% of issues, which sug-

gests that the sharp drop in this percentage for JBossAS and Geronimo is probably due to changes in

commercial involvement.

The proportion of external reports suggests that with commercial involvement, internal groups reported

most of the issues, which implies that the original situation of OSS issue-reporting practice has changed.

First, these hybrid projects do not seem to be so reliant on user-reports as the early OSS systems.

The internal participants, mostly employees, will have more responsibility for arranging the development

tasks to ensure the quality of software. One of the core developers from JBossAS also confirmed that

they often record issues found in development. Second, because of the features of AS software and the

business services provided by the companies, a number of issue reports will come from consultations with

clients who are using the software. Although these issues are not found by developers themselves, the

internal developers will still have the obligation to record and track them. Finally, because most issues

are reported by internal developers, the issue-tracking process will become more formal and professional.

This might have an impact on user-participation in issue reporting, e.g., deterring some casual and non-

professional external reports. To determine the relationship between the increased internal participation

and external participation in issue reporting, based on the results in Figures 1 and 2, we simply fit a

Generalized Linear Model (GLM) for the over-dispersed Poisson distribution (which is suitable for the

relatively low monthly counts of reporters).

NumreporterEX
∼

∑
i

epochi, (1)

where NumreporterEX
is the number of external reporters, and epochi is an indicator function for each

epoch. We also fit a similar model to the number of external issues NumissuesEX
. From the estimated

coefficients and p-values, we found that the trend of external issue reporting behaved differently in

JBossAS than in the other two projects. In JBossAS, as the number of internal reporters increased, the

number of external reporters decreased. However, rather than dropping as a consequence, the number of

external reports remained relatively stable. This implies that the external reporters each reported more

issues than before. This reflects the reality: in Epoch 2 and Epoch 3 of JBossAS, the companies tried

to resolve important user issues, and paid a lot of attention to maintaining both an active forum and

an issue tracking system to differentiate external issues. Note that the other two projects had no such

mechanism to shunt external issues, and had fewer issues than JBossAS, so it seems that the numbers of

internal and external reporters/issues changed with a similar trend.

In summary:

Observation 1. With commercial involvement, the major source of reported issues has shifted from

users to developers. This suggests that hybrid development does not rely as extensively on user reports

as the early OSS systems did.



Ma X J, et al. Sci China Inf Sci August 2013 Vol. 56 ******:10
P

ro
b
ab

il
it

y
 o

f 
is

su
e 

u
n
re

so
lv

ed

D
D

D

U

U

U

0 1      5 10 20 50 200 Days

D

D

D

U

U

U

0 1     5 10 50 200 1000

D
U

D

D

D

U

U

U

0 1     5 20 50 200 1000

1.0

0.8

0.6

0.4

0.2

0.0

P
ro

b
ab

il
it

y
 o

f 
is

su
e 

u
n
re

so
lv

ed

1.0

0.8

0.6

0.4

0.2

0.0

P
ro

b
ab

il
it

y
 o

f 
is

su
e 

u
n
re

so
lv

ed

1.0

0.8

0.6

0.4

0.2

0.0

(a)                                                                           (b)                                                                             (c)

Internal reports
External reports

Figure 4 Issue resolution speed for (a) JBossAS (Epoch 3), (b) Geronimo (Epoch 2), and (c) JOnAS (Epoch 2).

4.2 Resolution speed of issue reports

Without the strict process of issue resolution and patch publishing in commercial projects, the response

pace to issues in open source projects is much faster, as investigated in [2,25]. Quick issue resolution often

implies a high degree of active project development, and also provides a good user-experience, which allows

for an active and prosperous OSS community. In our previous study [9], the statistical results showed

that all three projects responded to issues slower than Apache and quicker than commercial projects. In

this section we further investigate the resolution speed of user issues and developer issues to identify the

influence of commercial involvement. Note that, because of the openness of the software projects and

lack of obvious identification of the reporters, it is hard to distinguish real software users from the records

in the issue tracking system. To reflect the cooperation between internal and external participants, and

to investigate the commercial impact, we assumed external reporters/reports to be the same as user

reporters/reports, thus distinguishing their participation from that of internal developers.

We first investigated whether more intensified commercial involvement among epochs improved the

speed of issue resolution, but found no obvious trend. Next, we compared the resolution speed of user

issues with that of developer issues in each epoch, and obtained some interesting results.

We have drawn the survival curves of external and internal issues in Figure 4. These curves show the

proportion of issues (y-axis) that were still open over a certain interval (x-axis). If a curve drops rapidly,

it means that issues are being resolved quickly. For example, in Figure 4, more than 40% of external

issues (i.e., user issues) for JBossAS were resolved inside 10 days, compared with nearly 30% for internal

issues (i.e., developer issues). That is, the lower the curve is, the quicker the issues are resolved.

Because all the epochs in each project suggest the same trend for user and developer issue resolution

speed, we illustrate only one epoch for each project in Figure 4. Note that the epoch selected for each

project spanned a similar time period (e.g., 2004–2006 for JBossAS and JOnAS) or technique stage (i.e.,

“JavaEE 4 Specification”) to make the projects as comparable as possible.

From Figure 4, we can see that user issues were resolved more quickly than developer issues in JBossAS.

In the other two projects, however, developer issues were resolved quicker than user issues. In fact, to some

extent, the difference in resolution speed between user issues and developer issues can reflect companies’

user experience policies. Considering most of the issues were reported by developers, they were more likely

to contain sufficient information to be resolved conveniently. This is the usual case in many projects,

and is the case here for Geronimo and JOnAS. Otherwise, if the user issues are resolved quicker than

developer issues, there should be some policy related to the business strategy to ensure a higher priority

for user issues. As discussed in Subsection 3.1.3, the commercial strategy of JBossAS was different from

that of the other two projects. The companies involved with JBossAS hosted the project and directly

profited directly from it. According to the “JBoss Sales Machine” presented by the leaders of the JBoss

project18), the revenue stream of JBoss originated from exploring potential customer resources on the

web, known as “raw leads”. Naturally, the user experience on the websites like JIRA would be carefully

18) http://www.forentrepreneurs.com/lessons-from-leaders/jboss-example/.



Ma X J, et al. Sci China Inf Sci August 2013 Vol. 56 ******:11

nurtured. We interviewed one core developer on JBoss community day19), who confirmed that the usual

way for JBoss developers to handle user issues in the first place. Moreover, shunting external issues to

the forum and keeping the issue tracking system more professional in JBossAS helped with the rapid

resolution of user issues. Note that, in turn, rapid resolutions also help make the project more popular.

Therefore, we have found that:

Observation 2. In hybrid projects, the resolution speed of user reports is influenced by commercial

strategies. In some hybrid projects, e.g., projects from which companies make profits directly, user

reports are resolved more quickly than developer reports.

5 Threats to validity

The primary limitations of our analysis concern the data, the measures, and the approaches used to

interpret the evidence.

• Raw data. There are some limitations to our data collection due to non-artificial reasons, such as

data lost when transferring the old issue system in JBossAS and JOnAS. We retrieved all records in both

the old and new systems, and then removed duplicated records so as to capture as complete a collection

of existing issue reports as possible.

Note that there are other places for users to report problems, such as mailing-lists and forums. For

example, in Geronimo and JOnAS, there are some paying customers who have access to telephone and/or

door-to-door support. These issues will not be recorded in public issue tracking systems such as JIRA.

However, because our study focuses on user participation in the open Internetware environment, we

conducted our investigation based solely on the records in the public issue tracking system.

• Quantitative measures. To quantify the participation of users and developers in issue reporting, we

investigated the participation of external and internal reporters whose identities were derived from email

domain names. To reduce the risk of misidentification, we manually checked the identities of reporters

by searching for other email or related information online (e.g., using Google). Nevertheless, it should

be noted that there were some cases in which it was difficult to determine whether an issue was from

an external or internal source. For example, a user could report a problem over a mailing-list, and a

developer may then enter this in the issue tracking system as necessary. To some extent, this kind of

threat was due to the data, and our study could not avoid this problem.

When quantifying the resolution speed, we included all the issues opened in that epoch. This could

cause errors to be introduced for two kinds of issues: those opened near the end of an epoch, when there

was not enough time to find a resolution, and those issues opened in a former epoch but resolved at the

beginning of the next epoch. Hence, we tried to include only the issues that were both reported and

resolved in a single epoch, and obtained similar results. That is, whether the issues are resolved or not,

the development principle of resolving user issues with high or low priority should be consistent. This

consistency will be reflected in the data analysis. In fact, for both approaches to select issues, we found

the same results: in JBossAS, user issues were resolved more quickly than developer issues. In addition,

if we selected reported issues regardless of whether they had been resolved at the end of the epoch, there

would be less of a limitation on the division of epochs, making our method more apportionable.

Comparing the money spent on OSS projects is a direct and effective way to measure the involvement of

companies. However, there are some practical difficulties in this approach, e.g., obtaining such knowledge,

confidentiality issues, and the duration of the projects. In fact, the money spent on each project is related

to companies’ business goals and strategies. Comparing the money spent would help us understand the

development processes adopted in the projects. Although we were not able to clarify how much money was

involved in the three projects, we can still investigate the business strategies and development processes,

as in Subsection 3.1.3. This enables an understanding of the commercial involvement in the three projects.

• Investigation method. The particular approach of dividing the project time-line into epochs is

debatable. For example, we could have divided the whole project lifespan into epochs of equal duration,

19) http://www.jboss.org/events/JUDCon/2012/china.



Ma X J, et al. Sci China Inf Sci August 2013 Vol. 56 ******:12

or separated all three projects into the same epochs. The approach we have presented is motivated

by actual events within the companies or in the external environment. To exclude noise added by the

transition between epochs, e.g., work handover, we excluded short periods around the epoch boundaries.

The three projects in our investigation are J2EE ASs. This may limit our findings to this domain. We

made this choice to allow a comparison that would exclude the influence of the software domain and,

thus, focus on our research questions.

6 Conclusion

In an earlier era, OSS and commercial software development implied two different philosophies, just like

the bazaar and the cathedral illustrated in [3]. Some of the principles would be in conflict, such as

non-profit vs. for-profit goals, loose vs. rigorous organization, non-paid volunteers vs. paid employees.

Over the past decade, however, OSS projects have evolved: commercial-friendly OSS licenses have been

invented (e.g., Apache license, MIT license), more companies have built business models to profit from

OSS projects [1], many OSS projects are completely developed by companies [6], and OSS volunteers

are being paid to develop OSS projects [13]. That is, current OSS projects have been deeply affected by

commercial elements, and more are emerging. Our work provides elementary research that empirically

shows how commercial software development and OSS development are combined.

Specifically, we investigated the impact of commercial involvement on OSS projects. Case studies

were conducted for three OSS-commercial hybrid projects from the J2EE AS domain: JBossAS, Apache

Geronimo, and JOnAS. We quantified the commercial influence through changes in contributors’ par-

ticipation in issue tracking practice, studying the background of the issue reporters and the resolution

speed. The results demonstrate that a hybrid development approach will change the task distribution

and improve the task performance. The main source of reported issues in an open issue tracking system

has shifted from external to internal participants, with user reports likely to be resolved more quickly

than developer reports.

Our findings provide practical insights for improving hybrid, OSS, and commercial software develop-

ment. In particular, this study enables an understanding of development under the open, dynamic, and

ever-changing Internet environment by utilizing various resources such as commercial involvement and

user innovation. This provides a more in-depth understanding of what should be expected of a good

paradigm for Internetware. However, the construction of more efficient collaboration platforms and tools

(e.g., how to improve issue tracking practice), sufficient use of various Internet resources, and combination

of OSS and commercial software development approaches still require further study.

Acknowledgements

This work was supported by National Basic Research Program of China (973 Program) (Grant No. 2009CB32-

0703) and Nature Science Foundation of China (Grant Nos. 61073016, 61121063).

References

1 Bonaccorsi A, Giannangeli S, Rossi C. Entry strategies under competing standards: hybrid business models in the

open source software industry. Manag Sci, 2006, 52: 1085–1098

2 Mockus A, Fielding R T, Herbsleb J. Two case studies of open source software development: Apache and Mozilla.

ACM Trans Softw Eng Method, 2002, 11: 1–38

3 Raymond E S. The Cathedral and the Bazaar. O’Reilly Media, 1999

4 Hippel E V, von Krogh G. Open source software and the ‘private-collective’ innovation model: issues for organization

science. Organ Sci, 2003, 14: 209–223

5 Von Hippel E. Democratizing innovation: the evolving phenomenon of user innovation. Int J Innov Sci, 2009, 1: 29–40

6 Riehle D. The single-vendor commercial open course business model. Inf Syst e-Bus Manag, 2012, 10: 5–17

7 Yang F Q, Lu J, Mei H. Technical framework for internetware: an architecture centric approach. Sci China Ser F-Inf

Sci, 2008, 51: 610–622



Ma X J, et al. Sci China Inf Sci August 2013 Vol. 56 ******:13

8 Mei H, Huang G, Xie T. Internetware: a software paradigm for Internet computing. IEEE Comput, 2012, 45: 26–31

9 Ma X J, Zhou M H, Mei H. A case study of Internetware development. In: Proceedings of the 2nd Asia-Pacific

Symposium on Internetware. New York: ACM, 2010. 9:1–9:13

10 Mockus A, Fielding R T, Herbsleb J. A case study of open source development: the Apache server. In: 22nd Interna-

tional Conference on Software Engineering, Limerick, 2000. 263–272

11 Yamauchi Y, Yokozawa M, Shinohara T, et al. Collaboration with lean media: how open-source software succeeds.

In: Proceedings of the 2000 ACM conference on Computer Supported Cooperative Work, Philadelphia, 2000. 329–338

12 Ye Y W, Kishida K. Toward an understanding of the motivation open source software developers. In: 25nd International

Conference on Software Engineering, Portland, 2003. 419–429

13 Roberts J A, Hann I, Slaughter S A. Understanding the motivations, participation, and performance of open source

software developers: a longitudinal study of the apache projects. Manag Sci, 2006, 52: 984–999

14 Von Krogh G, Spaeth S, Lakhani K R. Community, joining, and specialization in open source software innovation: a

case study. Res Policy, 2003, 32: 1217–1241

15 Zhou M H, Mockus A. Does the initial environment impact the future of developers? In: ICSE 2011, Honolulu, 2011.

271–280

16 Mockus A, Herbsleb J. Why not improve coordination in distributed software development by stealing good ideas from

open source. In: ICSE’02 Workshop on Open Source Software Engineering, Orlando, 2002. 35–37

17 Riehle D. The economic motivation of open source software: stakeholder perspectives. Computer, 2007, 40: 25–32

18 Dinkelacker J, Garg P K, Miller R, et al. Progressive open source. In: ICSE2002 Proceedings of the 24th International

Conference on Software Engineering, Orlando, 2002. 177–184

19 Munga N, Fogwill T, Williams Q. The adoption of open source software in business models: a Red Hat and IBM case

study. In: the 2009 Annual Research Conference of the South African Institute of Computer Scientists and Information

Technologists, Vanderbijlpark, Emfuleni, 2009. 112–121

20 Gurbani V K, Garvert A, Herbsleb J D. A case study of a corporate open source development model. In: Proceedings

of the 28th International Conference on Software Engineering, Shanghai, 2006. 472–481

21 Wagstrom P, Herbsleb J, Kraut R, et al. The impact of commercial organizations on volunteer participation in an

online community. Presentation at the OCIS Division, Academy of Management Conference, 2010. http://program.

aomonline.org/2010/submission.asp?mode=ShowSession&SessionID=2095

22 Hendry D G. Public participation in proprietary software development through user roles and discourse. Int J

Hum-Comput Studies, 2008, 66: 545–557

23 Ko A J, Chilana P K. How power users help and hinder open bug reporting. In: Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems. New York: ACM, 2010. 1665–1674

24 You C, Zhou M H, Xiao Z, et al. Towards a well structured and dynamic application server. In: 33rd Annual IEEE

International Computer Software and Applications Conference, Seattle, 2009. 427–434

25 Bonaccorsi A, Rossi C. Why open source software can succeed. Res Policy, 2003, 32: 1243–1258


