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Abstract. A fundamental unit of work in programming is the code con-
tribution (“commit”) that a developer makes to the code base of the
project in work. We use statistical methods to derive a model of the
probabilistic distribution of commit sizes in open source projects and
we show that the model is applicable to different project sizes. We use
both graphical as well as statistical methods to validate the goodness of
fit of our model. By measuring and modeling a fundamental dimension
of programming we help improve software development tools and our
understanding of software development.

1 Introduction

Free/libre/open source software (FLOSS) has been adopted widely by industry
in recent years. In 2008, 85% of all enterprises were using open source software
[8]. A 2010 study estimated that 98% of all enterprises were using open source
software [24].

Given the significance of open source, it is surprising that there are few
representative statistical analyses of open source projects, and that there are
no high quality models of the fundamental dimensions of programming in open
source projects.

In this paper we present a model of one important dimension of programming
in open source software development, the distribution of the sizes of code con-
tributions made to open source projects. This so-called commit size distribution
describes the probability that a given commit is of a particular size.

A commit is an individual code contribution of a developer. [14] show that
lines of code are a good proxy for work spent on that code. Hence, a commit is
a basic unit of work performed by a developer.

The commit size distribution is therefore a model of fundamental units of
work performed in open source programming.

Understanding the work performed in open source programming is helpful
for building better software development tools and understanding software de-
velopment in general. Moreover, case studies suggest that open source is similar
to closed source in terms of growth, project complexity or modularity [19]. Thus
the results of this paper are likely to apply not only to open source but to closed
source as well.



The contributions of this paper are:

1. A high quality analytical model of the commit size distribution of open
source.

2. An in-depth validation of the model using appropriate statistical measures.
3. A comparison of commit size distributions of different project sizes.

The rest of the paper is organized as follows. Section 2 describes the necessary
terms. Section 3 defines and analyzes the commit size distribution. Section 4
discusses the potential threats to validity and section 5 discusses prior and related
work. We consider potential extensions in section 6, and present our conclusions
in section 7.

2 Commit Sizes

A software project is typically developed in multiple iterations, in a series of
changes to its artifacts, for instance, code, documentation, or artwork. If a project
is managed using a version control system (also known as a source code man-
agement system), these changes are organized into sets known as commits.

In this paper we address programming, hence we are only concerned with
source code commits. We measure the commit size in terms of lines of code
(LoC). We distinguish between source code lines, comment lines, and empty
lines. We use the following definitions:

1. a source code line (SLoC) is one line of program code,
2. a comment line (CL) is a line consisting only of comments,
3. an empty line contains only whitespace, and
4. a line of code (LoC) is either a source code line or a comment line.

Measuring the size of a commit is a non-trivial task. The main tool for as-
sessing commit sizes is the “diff” tool which tells the user which lines have been
added and which lines have been removed. Unfortunately, a diff tool cannot iden-

lower bound(a, r) = max(a, r)

full overlap, highest number of changed lines (1)

upper bound(a, r) = a+ r

no overlap, no changed lines in diff chunk (2)

diff chunk size(a, r) =
(lower bound(a, r) + upper bound(a, r))

2
mean value of lower and upper bound (3)

Fig. 1: Equations used to compute a commit’s size from input lines added and
removed



tify with certainty whether a line was changed, because a changed line is always
counted as one line removed and one line added. However, a changed line should
count as one line of work, while an added and a separately removed line of code
should count as two lines of work.

[4] developed an algorithm for identifying changed lines of code from added
and removed lines of code. They use the Levenshtein distance algorithm which
is a metric for measuring the distance between two strings. While helpful this
approach has one major disadvantage: it is computationally expensive and does
not scale to large amounts of source code. Because our analysis covers about
30% of all of open source code at its time, we need another approach.

We use the sample data from Canfora et al. to derive a simple function
for estimating diff chunk sizes where the diff chunk size is a function of two
variables: lines of code added and lines of code removed. This function provides
a statistically valid estimate for the size of a given diff output as shown in
[13]. However, our evaluation based on Canfora’s sample data revealed that the
regression performs only trivially better than estimating the diff chunk size by
taking the mean of the minimum possible and the maximum possible sizes. Thus,
a more plausible and unbiased algorithm for estimating the statistically expected
value is simply to take the mean of the minimum and maximum possible values.

Figure 1 provides the necessary equations. In these equations, a represents the
number of lines added and r represents the number of lines removed according
to the diff tool.

In this paper we compute commit sizes by adding up the diff chunk sizes
computed using equation 3 of figure 1. A diff chunk size is the size of the diff of
one file in the commit. After calculating the size of every commit in our data set
we compute the commit size distribution. The commit size distribution describes
the relative likelihood that a commit has a particular size. The commit size
distribution of some commit population is the distribution of the probabilities
(or number of occurrences) of all possible commit sizes.

3 Commit Size Distribution

3.1 Data Source and Research Method

This paper uses the database of the Ohloh.net open source project index. Our
database snapshot is dated March 2008. It contains 11,143 open source projects
with a total of 8,705,118 commits. [6] estimates that there were 18,000 active
open source projects in September 2007 worldwide. The total number of projects
is much larger, but most open source projects are not active and by our activity
definition have to be excluded. We use the same definition of “active project” as
Daffara: A project is active at a given point in time if the number of commits
in the preceding 12 months is at least 60% of the number of commits in the 12
months before that. Using this definition our data set contains 5,117 active open
source projects. We therefore estimate that our database contains about 30% of
all open source projects considered active in March 2008.



Our analysis is descriptive: we are discovering existing characteristics in our
data rather than starting off with a hypothesis and attempting to invalidate
or validate it. We provide details not only of our final findings but also of the
attempted distributions that did not fit. We also split our analysis along project
sizes and provide the characteristics of commit size distributions by project size.

3.2 Measurements

We determined the total commit size distribution of our open source sample
population using the definition of section 2. In statistics a distribution can be
represented as a probability distribution function (PDF) or a cumulative distri-
bution function (CDF). The PDF in our case describes the relative likelihood
that a commit of a certain size occur at a given point. The CDF can be com-
puted by integrating the PDF. Integrating the PDF over an interval provides the
probability that a commit is of the size determined by the interval boundaries.
For example, integrating over the interval [1, 10] provides the probability that a
commit has between 1 and 10 lines of code, 1 and 10 included.

The empirical result of our measurements is the empirical probability distri-
bution function (EPDF) as shown in figure 2. The EPDF is a density estimation
based on the observed data. It describes the probability that a certain commit
has a certain commit size. The EPDF is not a closed model, it is just a repre-
sentation of the observed data. The statistical key characteristics are shown in
table 1.
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Fig. 2: The EPDF of the commit size distribution up to the 95th percentile of
about 30% of all active open source projects (March 2008)



Key Parameter Value

Mean 465.72
Median 16

90th percentile 261
95th percentile 604.5

Table 1: Statistical key characteristics of the open source commit size distribution

The form of the EPDF, in particular that it is monotonically falling suggests
the following possible probability distributions:

– Biexponential
– Exponential
– Generalized Pareto
– Pareto
– Simple Power Law
– Weibull
– Zipf’s

To determine the analytically closed form of the PDF and CDF we calculated
the empirical cumulative distribution function (ECDF) and fitted the different
possible distributions to the ECDF based on Newman’s advice to choose the
CDF for analytical purposes [17]. This approach is robust and allows us to use
different regression techniques without binning. Thus we prevent the introduc-
tion of biases and information loss that comes with binning. We then fitted the
different distributions (see enumeration above).

After reviewing the different fits and the residual plots as well as the P-P plots
(“P” stands for percentile) we found that the Generalized Pareto Distribution
(GPD) provides the best fit.

The GPD is broadly applicable and incorporates both exponential and Pareto
distributions when certain parameters are fixed [15].

The Generalized Pareto Distribution is difficult to fit using the maximum
likelihood approach, as the location parameter is unbounded (see [22] and [21]).
We therefore decided to use a least square fit on the ECDF. The location pa-
rameter is chosen manually, attempting to fit the other two parameters with
increasing values of location in increments of 0.5 (the granularity of commit size
estimates, since they are averages of two integral values). We find that a value
of 0.5 minimizes the difference between CDF and ECDF at the mode commit
size of 1.

f(x) =

{
1
σ

(1 + ξ x−θ
σ

)
−1− 1

ξ for ξ 6= 0
1
σ
exp(− (x−θ)

σ
) for ξ = 0

(4)

Fig. 3: PDF formula for the Generalized Pareto Distribution.



F (x) =

{
1− (1 + ξ(x−θ)

σ
)−1/ξ for ξ 6= 0

1− exp(−x−θ
σ

) for ξ = 0
(5)

Fig. 4: CDF formula for the Generalized Pareto Distribution.

The result of our fit is the CDF of the commit size distribution in closed
form, which is shown next to the ECDF in figure 5.

The parameters of the Generalized Pareto Distribution are shown in table 2,
the equations for the Generalized Pareto Distribution are shown in figure 3 and
4. Where θ is the location parameter, it controls how much the distribution is
shifted. σ is the scale parameter it controls the dispersion of the distribution,
while ξ is the shape parameter which controls the shape of the generalized pareto
distribution [5].
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Fig. 5: The Generalized Pareto Distribution of the CDF up to the 95th percentile
of about 30% of all active open source projects (March 2008)



Parameter Value

ξ (xi) / Shape 1.4617
θ (theta) / Location 0.5
σ (sigma) / Scale 13.854

Table 2: Model parameters of Generalized Pareto Distribution as calculated from
least squares

Figure 6 shows the P-P plot that compares our model to the empirical data.
A P-P plot is a graphical method to compare two probability distributions by
plotting their percentiles against each other; here, we compare the percentiles
of our model (i.e. the CDF) to the percentiles of the empirical data (i.e. the
ECDF).

As can be observed by examining the CDFs of our model and empirical data,
both distributions are long-tailed; thus, per [10], the P-P plot is more appropriate
than the more familiar Q-Q (quantile-quantile) plot.

To show the goodness of our fit we also compute quantitative measures such
as R-square and Pearson’s R as shown in table 3.

Parameter Value

R-square on CDF 0.9949
Pearson’s R on CDF 0.99755

Table 3: Goodness of Fit Indicators calculated up to the 95th percentile.

3.3 Comparison by Project Size

We also want to understand how the commit size distribution varies by project
size. One might hypothesize that small projects are different from medium sized
and large projects. However, we found that the GPD not only fits when ana-
lyzing all projects, it also fits to subsets of different sizes in terms of number of
developers.

We classify the projects into small, medium, and large sized projects based
on the number of involved developers. [3] provide an analysis of the number of
developers in a random sample of projects included in the Debian GNU/Linux
distribution. We use their proposed partitioning to group our projects accord-
ingly (see table 4).

We can now measure how the commit size distribution correlates with project
sizes. We found that the commit size distribution of small, medium, and large
projects are also best characterized as generalized Pareto distributions. Figures
10, 11, and 12 show the cumulative distribution functions respectively.



Fig. 6: P-P plot comparing the percentiles of the model and the empirical per-
centiles

Parameter Minimum number of developers Maximum number of developers

Small 1 5
Medium 6 47

Large 48 ∞
Table 4: Project size boundaries



The parameters of these distributions (see Table 5) are close to the param-
eters of the total distribution. Figure 13 compares the EPDFs of the different
subsets. After comparing the plots and the model parameters we came to the
conclusion that the location parameters is invariant to the number of developers
in a project. The shape parameters have no obvious correlation with the number
of developers and the differences are small, while the scale parameter falls as
the number of developers increases. A possible explanation for this is that when
more and more developers join a project the average commit size goes down
to prevent merge conflicts. Another explanation is the observation of [23] that
small patches are more likely to be accepted then large ones; we posit that this
affects larger projects more since they are more likely to have a formalized code
review process.

The effect is not very big; in fact, in the region of commit sizes with the
most pronounced difference (commits smaller than 13 LoC), the difference in
proportion of commits in this category between large and small projects is 6.03
%. For commits in this region, both models have errors (the difference between
the respective model and the empirical data) smaller than 3%.
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Fig. 7: EPDF for small projects.
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Fig. 8: EPDF for medium projects.
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Fig. 9: EPDF for large projects.
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Fig. 10: Generalized Pareto Distribution as CDF of small open source projects
(March 2008).
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Fig. 11: Generalized Pareto distribution as CDF of medium open source projects
(March 2008).
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Fig. 12: Generalized Pareto distribution as CDF of large open source projects
(March 2008).
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Parameter Small projects Medium projects Big projects

ξ (xi) / Shape 1.5969 1.6008 1.5708
θ (theta) / Location 0.5 0.5 0.5
σ (sigma) / Scale 14.249 12.199 10.822

Table 5: Model parameters of the Generalized Pareto Distribution as calculated
for different project sizes.

4 Threats to validity

4.1 Poor support for multiple enlistments

The Ohloh 2008 dataset has limited support for multiple enlistments [18]. Projects
that have changed their SCM, either moving it to a new URL or transitioning to
newer technology (e.g. CVS → SVN → Git or Mercurial) thus face either having
their commits listed multiple times (resulting in older commits being given too
much weight). But in practice this is not a problem because there is no difference
in the distribution of old and new commits [7].

4.2 Model errors

The slight over- and undercutting is an indication for a systematic error in our
model. We cannot explain this systematic error, but the goodness of fit calcula-
tions and the P-P plot show that it is sufficiently small. That is the reason why
we do not address it further. There might be a second underlying distribution
that is responsible for this error but we have not been able to determine it. We
also think that removing that error would come at the risk of overfitting our
model.

4.3 Bias of the Ohloh data

As mentioned earlier we rely on the Ohloh data for our analysis. The Ohloh data
has two self-selection biases:

Projects that die very early probably never make it into the Ohloh database
and are therefore underrepresented in our analysis. Projects from non-English
speaking countries are also less likely to be included in Ohloh.

We think the first bias is not an issue because for such projects it would
be difficult to derive a statistically significant measure as there are almost no
commits yet. We also think that the language bias is unproblematic because we
do not think that there are differences in the commit size distribution whether
a project is done in an English- or non-English-speaking environment.

5 Related work

We previously presented a preliminary analysis of the commit size distribution
[2]. Compared to this work our current analysis adds a closed model and a



validation of this model as well as an analysis of the commit size distribution by
project size.

[1] present an analysis of “a typical commit” using the version history of
9 open source projects. They mostly focus on the number of files changed
(and how), but also provide chunk and line-size data. They compute line size
changes by adding lines added and removed, thus overestimating sizes by ignoring
changed lines of code. Still, they find “quite small” commit sizes without giv-
ing more details. Interestingly, they find a strong correlation between diff chunk
and size. Alali et. al.’s 9 projects are large well-known open source projects.
In contrast to Alali we focus solely on commit size, use a more precise mea-
sure and compute a derived function, the commit size distribution, on a more
representative sample rather than 9 selected projects.

[20] analyze the impact that small changes have on various quality attributes
of the software under consideration. Their data is derived from a single large
closed source project. They find that one-line changes represent the majority
of changes during maintenance, which is in line with our results. [12] analyze
2,000 large commits from 9 selected open source projects and they find that
small commits are more corrective while large commits are more perfective.
Unfortunately, the authors do not discuss as to what extent their results might be
representative of open source. [23] look at the patch submission and acceptance
process of two open source projects. They find that small patches are more likely
to get accepted into the code base than large patches. An obvious reason may be,
that smaller patches are easier to review than large patches which, if not handled
quickly, get harder to review and accept with time. While not representative,
Weißgerber’s observation is interesting to us, as it might explain why the commit
size distribution is skewed towards small commits, and why this skewness is more
pronounced in larger projects.

The analysis of code repositories for various purposes is an important research
area that has given birth to the annual Mining Software Repositories conference
series, usually co-located with ICSE [11]. A 2009 IEEE Software special issue on
Mining Software Archives [16] was followed by a symposium of the same name
in 2010. Ghezzi and Gall propose not only to undertake such research but to
provide a platform that allows for the distributed composition of services for
such analysis work [9].

Our research has one key distinguishing feature when compared to other open
source data analysis research: The size of our sample population is much larger
than any other published data set and brings us close to being representative of
open source.

6 Future work

6.1 Study of proprietary software

We would like to extend our analysis to that of proprietary software projects. In
order to do this we require access to commit statistics of proprietary software



projects, and this in turn requires collaboration with software vendors to get
access to their statistics.

6.2 Validation by accessing software repositories

For the open-source projects that we analyze it would be desirable to validate our
findings by picking several key projects, mining their revision history ourselves
(rather than depending on the Ohloh statistics) and comparing the results to
the same statistics computed over the Ohloh data (for the same projects).

6.3 Extended analysis

Some analysis are not possible with the Ohloh data, and like those above require
direct access to the software repositories:

Certain version control systems, like Git allow a commit to have an author,
multiple signatories, and a committer. With certain others (e.g. SVN) it’s not
built-in, and projects have to resort to informal conventions for marking commit
authorship if the author does not have commit access. Thus it is not possible to
reliably reconstruct this data.

With direct access we could better characterize projects based on write access
to code – whether BSD-style (a core team with commit bit can touch any part of
the codebase; centralized development), Linux-style (a hierarchical system with
lieutenants in charge of certain parts of the codebase; distributed development,
changes can still be made to the entire tree, but commits tend to be accepted
only if they are within the developer’s competence), commercial open source
(most development is done by paid employees; external fixes might be accepted
but are committed by a paid employee)

7 Conclusions

This paper shows that small commits are much more likely than large commits
with 50% being 16 lines of code or less.

The actual commit size distribution of open source is best modeled by a
Generalized Pareto Distribution and we have found the same kind of distribution
fits for different project sizes, with the likeliness of small commits increasing with
the number of developers.

The fact that it is a Pareto Distribution, which is a distribution with a long
tail, also shows that large commits happen although they are less likely.

The empirical knowledge gained from actually measuring the commit size
distribution is the first step to creating hypotheses for future research to improve
software development tools. It can be used as a benchmark to compare projects
as well.

The mathematical model presented in this paper is one step towards a more
precise model of software development. It is also important for developing new
software development methodologies and to develop a general model of software
development.
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