
91

JULY 2011

INDUSTRY PERSPECTIVE

Published by the IEEE Computer Society0018-9162/11/$26.00 © 2011 IEEE	

while open source software may be
freely available under a license, it
nevertheless has an owner. There are
two main forms of ownership:

•	 Single-vendor open source soft-
ware. This type of software has
a single legal copyright owner,
typically a software firm, that
aggressively maintains its own-
ership rights.

•	 Community open source software.
This type of software either has
a diffuse set of owners (the code
contributors) or is owned by a
foundation acting on behalf of
its members (D. Riehle, “The
Economic Case for Open Source
Foundations,” Computer, Jan.
2010, pp. 86-90).

How then do any of the three types
of software product firms depend on
either of the two types of open source
projects, and what are their business
goals for employing open source?

SOFTWARE PRODUCTS AND
OPEN SOURCE

Every real-world software product
comprises multiple components, all

•	 Single-vendor open source firms
a lso own all competit ively
differentiating components,
but they make some of these
available as open source (D.
R iehle, The Single-Vendor
Commercial Open Source Business
Model, Springer Verlag, 2011).
Examples are Alfresco’s same-
name product, Jaspersoft’s BI
tool suite, and (formerly) MySQL’s
same-name database.

•	 Open source distributors inte-
grate a large set of open source
components and distribute the
assembly for a fee. Distributors
typically don’t own their com-
ponents. Product examples are
Suse’s Linux, Red Hat’s Linux,
and Acquia’s Drupal.

What’s common to these firms
is that they exclusively own some
intellectual property they capitalize
on. In the case of closed source and
single-vendor open source firms,
it’s the software itself; in the case
of distributors, it’s the branded
configuration. Thus, the subject here
isn’t pure services firms.

It’s important to understand that

O pen source software has
become an important
part of the software
business. In a 2009

survey, Forrester Research found
that 46 percent of all responding
enterprises were using or implement-
ing open source software (www.
forrester.com/rb/Research/open_
source_software_goes_mainstream/q/
id/54205/t/2). Moreover, in 2009, the
Gartner Group estimated that by
2012, at least 80 percent of all soft-
ware product firms will use open
source software (www.gartner.com/
DisplayDocument?id=1359127).

Thus, it’s important to understand
how software product firms depend
on open source and how they manage
that dependency to meet their
business goals.

There are three main types of
software product firms:

•	 Closed source firms own all com-
petitively differentiating software
components their product is
based on. Product examples are
Microsoft’s Windows, Oracle’s
database, and the SAP Business
Suite.

Commercial software firms can control or steer open source
software projects to meet their business needs.

Dirk Riehle

Friedrich-Alexander University of Erlangen-Nürnberg

Controlling and
Steering Open
Source Projects

Clo
se

d
Op

en

Owned closed source

Licensed closed source

Single-vendor open source

Community open source

Platform

Figure 1. Software products can have four different types of components.

computer	92

INDUSTRY PERSPECTIVE

To reach these goals, the software
firm must actively manage or at least
influence the open source projects it
depends on.

CONTROL POINTS AND
STEERING MECHANISMS

Software products firms use a
toolbox of resources to manage open
source projects and support their
business goals. There are two basic
types of resources: control points
are enforceable through the legal
system, while steering mechanisms
aren’t enforceable through the legal
system, but are based instead on
social contracts and corresponding
behavior.

Control points
Software firms use several control

points to gain significant control over
an open source project and achieve
their business goals.
Copyright prac tices. W hi le a
software firm can grant third parties
usage rights through an open source
license, it also can retain ownership
of the copyright. As the owner, the
firm can prevent third parties from
using the software under a different
license than the open source license.

Single-vendor open source firms
use copyright practices to minimize
competition. These firms open source
some or all of their product compo-
nents, giving others corresponding
usage rights to their software. How-
ever, for components considered
competitive differentiators, these
firms want to avoid having competi-
tors utilize their work to compete with
them.

Single-vendor open source firms
can maintain effective ownership by
requiring outside code contributors to
sign a copyright transfer agreement.
To hinder the creation of competing
software, they can use an aggressive
reciprocal license for the open
source software that requires any
competitor’s software built on the
open source software to be open
source as well.

An example is Jaspersoft, a single-
vendor open source firm that provides
business intelligence software prod-
ucts, most notably JasperServer, a
report generator. The JasperServer
enterprise edition contains closed
source code that Jaspersoft owns. This
version builds on the open source
community edition of JasperServer,
which Jaspersoft also owns. Jas-
perServer also uses community open
source packages like Hibernate, an
object-to-relational database mapper.
JasperServer runs on both Windows
and Linux.

An analysis of various product
c o m p o n e n t s t a c k s a n d t h e
corresponding firms’ behavior reveals
three strategic business goals:

•	 Reduce development costs. Closed
source and single-vendor open
source firms use community
open source or license closed
source to reduce development
costs.

•	 Maximize customer exposure.
Single-vendor open source firms
actively promote their open
source project with the strategic
goal of selling a superior product
faster at lower costs.

•	 Minimize competition. Open
source invites competition, and
both single-vendor open source
and open source distributors
employ various strategies to keep
competition at bay.

of which may have different licenses
and hence come with different usage
conditions. Figure 1 identifies the four
different types of software product
components.

The product illustrated in Figure
1 has both closed source and open
source components. The closed
source part of the stack contains
components that the firm owns and
licenses from other software firms to
complete its product. The open source
part contains single-vendor open
source components that the firm
owns but makes available to others
under an open source license for stra-
tegic reasons as well as community
open source components owned by
a community of stakeholders—that
is, they aren’t under the control of a
single legal entity.

Closed source software firms don’t
offer open source components; single-
vendor open source firms do so by
definition. All three types of software
product firms use community open
source. Closed source firms and
single-vendor open source firms
prefer community open source that
comes with a permissive license to
avoid the risk of having to open source
their closed source components.
Open source distributors use all types
of open source irrespective of their
license because their competitive
differentiator isn’t the software itself
but their ability to configure and
integrate the components.

93JULY 2011

This includes the early license choice,
the project culture and correspond-
ing practices, and how the release
plan and feature roadmap develop.

A single-vendor open source
firm employs most or all of its key
developers. At least some of them can
fulfill public leadership roles. In this
capacity, developers can nudge the
community to focus their attention
and possible contributions onto
different aspects of the software,
depending on the firm’s needs.

As Eucalyptus Systems CEO (and
former longtime CEO of MySQL)
Marten Mickos observed, actual pro-
gramming expenditures constitute
only a small fraction of the soft-
ware development costs—quality
assurance and testing easily con-
sume as much if not more time and
money (www.parc.com/event/1092/
open-for-business.html). Thus, any
contribution that the firm can gather
from the open source community is
likely to help reduce software devel-
opment costs.

In community open source, a firm
can also gain influence by hiring
developers and putting them to work
on the project. To the extent that
these developers focus on making
the software work for their employer,
the resulting community open source
software will help the firm reduce
development costs. Thus, the work
of a few developers may allow for
the use of a much larger software
component. The more influential
the employed developers, the more
they’ll be able to lead the community
to activities that will benefit their
employer and increase development
cost savings.

A developer’s actual influence in
a community open source project
evolves over time. An important factor
is being a founder of the project. Most
notably, 20 years after starting the
Linux project, thanks to the unique
hierarchical development structure
that he created, Linus Torvalds
remains the final arbiter of technical
decisions over the Linux kernel. Other

Domain ownership prac tices.
Owning domains that users and cus-
tomers look up for information about
a product is an important means of
influencing customer perception.
Trademarks can prevent competi-
tors from using domains with similar
names.

Because software product vendors
use domain ownership to increase
customer exposure, Internet domain
names are typically reflective of the
firm’s products. Like trademarks, this
applies to all three types of firms, but

only single-vendor open source and
open source distributors use domain
ownership to protect their open
source intellectual property.

Both single-vendor open source
firms and open source distributors
maintain domains that represent
their products to interested parties.
By managing the corresponding
websites, they determine what third
parties learn about the software,
which in turn suppor ts their
respective business goals.

These firms then use trademarks to
exclude competitors from buying and
using domains that might infringe on
their trademarks, thus maximizing
customer exposure while minimizing
competition.

Steering mechanisms
The control points are exclusion

rights that are enforceable by
law. However, while not legally
enforceable, the following steering
mechanisms can be equally powerful.
Social leadership practices. Open
source project leaders have substan-
tial leverage to direct that project.

By maintaining copyright owner-
ship, the single-vendor open source
software firm can sell a traditional
commercial license while still reap-
ing the benefits of an open source
strategy.

The det a i l s of cont r ibutor
agreements and open source license
choice depend on the particular
single-vendor open source firm’s
business model. We expect increased
use of the Affero GNU general public
license as the world moves into the
cloud.
Trademark practices. Most software
embeds trademarks in the form of
logos, slogans, or names. Trademark
owners can stop third parties from
using trademarked open source soft-
ware as is, requiring the potentially
expensive removal of the trademarks.

Trademark practices are most
important for open source distribu-
tors, but single-vendor open source
firms also use them. Closed source
software vendors use trademarks as
well, but not in open source projects.
Vendors use trademark practices to
minimize competition. Open source
distributors heavily invest in their
brand and corresponding trade-
marks because that’s what sets them
apart from competitors who use
their work.

Trademarks, like copyrights, are
exclusion rights. Thus, competitors
can’t use a firm’s distribution as is,
but must first remove the distributor’s
trademarks. The original distributor
may want to make it as hard as
possible to remove its trademarks to
maximize the delay between its own
release and a competitor’s rerelease
of the same software.

In addition, removing well-known
branding reduces the software’s value
from the customers’ perspective as
the original firm and its capabilities
obviously no longer stand behind it.
Moreover, certification programs tied
to the branded distribution further
increase its value while decreasing
the value of nonbranded or rebranded
distributions.

Trademark practices
are most important for
open source distributors,
but single-vendor open
source firms also use
them.

computer	94

INDUSTRY PERSPECTIVE

source firms can use the supporting
foundation as a marketing channel to
increase customer exposure.

Software product businesses
seeking to benefit from open
source projects have three

main goals: reduce development
costs, maximize customer expo-
sure, and minimize competition
from open source. To achieve these
goals, software businesses rely on
a toolbox of practices using control
points (enforceable by law) and steer-
ing mechanisms (social contracts).
Such practices, however, need to
be applied judiciously because they
could lead to pushback from the
open source community. A disen-
franchised community might start a
competing open source project that
commoditizes the software vendor’s
offering, ultimately endangering its
business.

Dirk Riehle is the professor for open
source software at the Friedrich
Alexander-University of Erlangen
Nürnberg. Contact him at dirk@riehle.
org.

Sometimes, the firm doesn’t actually
have to do any of these things—the
threat may be enough to discourage
competitors.

Another important reason for these
practices is that firms sometimes
don’t want their competitors to know
early what they’re developing. For
example, hardware firms frequently
perform closed development of the
necessary Linux drivers for their new
devices even though the Linux kernel
community demands that they not
do this (www.kroah.com/log/linux/
stable_api_nonsense.html). Open
development would let competitors
learn early, from the code, about
the specifics of the new devices
and hence reveal the developer’s
competitive strategy.

Employing key developers is
crucial to establishing and following
an appropriate development process
that fits a firm’s business strategy.
Strategic positioning practices. Some
marketing and outreach channels
are better than others. Most notably,
open source foundations provide
important marketing opportunities.
By locking up a project, firms can
improve their customer exposure
while keeping competition at bay.

T h r o u g h s m a r t s t r a t e g i c
positioning, closed source and single-
vendor open source firms can use
community open source to maximize
customer exposure while minimizing
competition. Since they can’t do it by
selling the community open source,
their revenue must come from an
extended or complementary offering.
An example is Actuate, the main
developer of the BIRT report designer.
Actuate’s main revenue is from a
complementary report generator.

Strategic positioning is best done
by creating a community open source
project under the auspices of an
established open source foundation.
The foundation lends credibility and
visibility to the project. By making
one of the two or more components
available as community open source,
closed source and single-vendor open

projects—for example, the Apache
Software Foundation projects—take
a more egalitarian approach.

Social leadership in community
open source projects can also help
expand customer exposure. Highly
visible developers can use their posi-
tion to reach out to the community
open source project’s users and piggy-
back a message onto their outreach.
That message typically conveys how
well a commercial product built on
it works with the community open
source project they’re representing.
The forms of outreach range from
mailing list activities to conference
speaker engagements and industry
publications.
Development process practices. To
the extent that a firm employs the
developers on a project, it can influ-
ence the development process. For
example, actual development may
not be public, code contributions may
be time-delayed, or only snapshots
may be provided.

Both single-vendor open source
firms and open source distributors
use development pract ices to
minimize competition. Common
practices include:

•	 Closed rather than open devel-
opment. This way, competitors
don’t know what’s coming nor
can they adjust their own soft-
ware to trail the changing code
base.

•	 Snapshots of the code base. By
not providing the full history,
maintaining and working with
branches becomes impossible.

•	 Delayed publishing of source code
after release of binaries. The firm
may choose to delay the release
of the source code over the
release of the binary.

The main purpose of such
practices is to gain a time advantage
over any possible competitors. With
a significant delay before they can
catch up, competitors find themselves
at a disadvantage in utilizing the code.

Readers are encouraged to use the
message board at www.computer.
org/industry_perspective to post
comments, offer feedback, or ask
questions.

	 Selected CS articles and columns
	 are available for free at http://	
	 ComputingNow.computer.org.

Editor: Sumi Helal, Department of Computer
and Information Science and Engineering,
University of Florida; helal@cise.ufl.edu

