
Lessons Learned from Using
Design Patterns in Industry Projects

Dirk Riehle

SAP Research, SAP Labs, LLC
3412 Hillview Ave, Palo Alto, CA 94304, U.S.A.

dirk@riehle.org, www.riehle.org

Abstract. Design patterns help in the creative act of designing, implementing,
and documenting software systems. They have become an important part of the
vocabulary of experienced software developers. This article reports about the
author’s experiences and lessons learned with using and applying design pat-
terns in industry projects. The article not only discusses how using patterns ben-
efits the design of software systems, but also how firms can benefit further from
developing a firm-specific design language and how firms can motivate and ed-
ucate developers to learn and develop this shared language.

Keywords. Design pattern, pattern language, design language, design commu-
nication, design collaboration, design implementation, design documentation.

1 Introduction

The notion of design pattern has been defined as the abstraction from a common solu-
tion to a recurring design problem in a given context [1] [2]. A well-known example
is the Observer pattern from the Design Patterns book (a.k.a. the “gang of four” book
[1]) which solves the problem of managing state dependencies between objects
through the introduction of registration and callback interfaces.

A design pattern like Observer introduces terms like “observer” and “subject” that
become part of the language that developers speak when they go about designing, im-
plementing and documenting software systems. This article discusses different uses of
design patterns and how to be effective at them. The article is based on the author’s
experiences with using and applying design patterns in industry projects since 1995
(Section 2). The discussion focuses not only on design patterns, but also on the over-
all vocabulary and language that a software development team or a firm typically
speaks. The article shows how design patterns can fit into such a design language, the
firm’s software architectures, and its programming practices.

Prior work has shown how a firm can benefit from using and applying design pat-
terns [7] [11] [12]. This article discusses how these benefits can be enhanced further

2 Dirk Riehle

through the development and use of a firm-specific design language (Section 3 and 4).
Such a firm’s design language is something that needs to be learned and that keeps
evolving. New employees need to be brought up to speed with the language and new
insights need to work their way into the language. Hence, this article presents the au-
thor’s experiences with running study groups and other educational measures that are
used to make new employees become more productive faster. Finally, the article
presents experiences with advanced study groups and writers’ workshops to refine a
firm’s understanding of its own software patterns and architecture (Section 5).

2 Base of Experiences

The experiences presented in this article are based on the author’s involvement with
the industry projects shown in Table 1. The author was employed full-time with the
respective firm pursuing the project.

Table 1. List of projects the author was involved in from 1995 to 2006

Firm Project Name Time Frame # Developers Author’s Role

UBS KMU Desktop 1995-1996 13 Developer

UBS KMU Desktop 1996-1998 15 In-house Consultant

KMU Desktop stands for “Kleine und Mittlere Unternehmen” i.e. small and medium-size
businesses. This is a banking application for commercial lending [32] [31].

UBS GBO Project 1997-1999 7 In-house Consultant

GBO Project stands “Global Business Objects” and was an attempt to consolidate the globally
distributed applications of UBS, a Swiss Bank, under one object model [32] [34].

Skyva Skyva 1999-2002 15 Architect

Skyva Skyva 1999-2002 45 In-house Consultant

Skyva was the name of both the company and its software product for managing supply
chains. The author’s team focused on the core language, runtime, and tools for a UML virtual
machine [33]. The author consulted to all of development, 45 developers in total.

Bayave Bayave 2004-2006 5 Chief Architect

Bayave Software GmbH develops on-demand business software for small businesses.

The core of the experiences reported about is based on the time frame from 1995-
2002 when the author started systematically introducing design patterns into the soft-
ware development processes he was involved in.

Lessons Learned from Using Design Patterns in Industry Projects 3

After leaving UBS and joining Skyva, the author made specific choices and con-
sulted in-house to foster the creation of a firm-specific design language based on de-
sign patterns. His later work at Bayave repeated some of those experiences.

Typically, the author was both a developer and/or architect and an in-house consul-
tant, to build trust and to ensure his feet were on the ground.

Since 2006, the author has only been involved with smaller research projects that
did not influence the experiences presented in this article in any significant way.

3 Uses of Design Patterns

This section reviews the key uses of design patterns the author has found in industrial
software development projects. It also discusses some common misconceptions.

The dominant uses of patterns in software development are to facilitate

• communication,
• implementation (by hand),
• and documentation of software systems

as documented before [7] [10] [11] [12] [13].
In addition, some research and development efforts have gone into pattern-based

code generation, which is now supported by commercially available tools like IBM
Rational’s Software Modeler or Borland’s Together. However, the pattern-oriented
features of these tools have yet to reach maturity, in particular in their expressiveness
for capturing design patterns as well as in their support for round-trip engineering. In
the author’s opinion, design pattern based code generation has not had any significant
impact on the industry’s design practices; the article discusses some of the reasons for
this in Section 3.4 on misconceptions.

3.1 Communication

By far the dominant use of design patterns the author has seen in his projects is in in-
formal and creative communication between software developers [13] [7]. Working
on a white-board or discussing a design at the water cooler, developers use pattern-
based vocabulary to refer to their prior and shared design experiences as well as the
generally known descriptions of one or more patterns. By referring to such prior expe-
riences, developers bundle knowledge about design constraints, the contexts in which
they apply, and their solution in one apt name. They use this knowledge in evaluating
and deciding on design options to solve the design problems at hand.

Consider Figure 1. Here, on a white-board, a developer might be explaining to a
colleague how he intends to handle incoming user requests to a web server in such a
way that these requests can be undone, bundled into multi-step requests, made persis-
tent, and replayed at some later time on some other server. The developer explains
how he encapsulates a request as a command object, how he creates composite com-

4 Dirk Riehle

mand objects to bundle atomic steps into more comprehensive actions, and how a
command processor keeps track of the sequence of overall user actions such that mul-
ti-step undo and replay becomes possible.

Figure 1. An illustration of a design described using the Command and related patterns.

The second developer, who knows the Command, Composite, and Command Pro-
cessor patterns [1] [3] and who has previously used these patterns, is likely to grasp
the idea of the design quickly. She proceeds to provide feedback, points to problems
and suggests alternative solutions, using equally refined professional language. In the
well-known back and forth of a creative discussion, design patterns make software
developers more efficient and more effective. This is simply because they need fewer
words to refer to comprehensive problem solutions and yet remain clear about what
they are saying while using design ideas that have been proved to work well.

The goal of using design patterns in informal communication is to make develop-
ers more effective. In the author’s projects, developers typically settled quickly into a
work mode where ambiguities are removed as they surface by refining what has been
said. Completeness and correctness were not primary goals. The point was to have a
discussion that lead to an incomplete but shared understanding of some design aspects
of the overall system. This shared understanding allowed developers to continue on
their paths, working forward, and reconvening as they run into problems with the de-
sign some time down the road.

Lessons Learned from Using Design Patterns in Industry Projects 5

3.2 Implementation

The second most important use of design patterns lies in implementing software sys-
tems. One misconception with design patterns is that they are on the “design level”
only and are disconnected from the code. This is clearly not true [4] [7] [22] [25]. De-
sign patterns, as the descriptions in the Design Patterns book vividly show, are closely
connected to code [1]. There is not a single design pattern description in the seminal
work that doesn’t come with comprehensive code examples. This is not to say that
there is only one way of turning a pattern into source code (see Section 3.4 on com-
mon misconceptions). An experienced developer has multiple templates in the back of
his or her mind that he uses and adapts as he translates the results of a design discus-
sion into code.

Consider the white-board discussion from Section 3.1. After the developers decide
that the sketched-out design is a good way forward, the first developer returns to his
workstation to define the interfaces and class structures, followed by an initial imple-
mentation and some test cases. While writing the code, the developer balances in his
head the specifics of the discussed design, the canonical implementations described in
the respective pattern descriptions, some other implementations that only this devel-
oper may have seen, and the general needs of the problem at hand. During this imple-
mentation, the developer faces design and implementation problems that were not dis-
cussed with the other developer, but that come up as he is working on the code. Most
of these problems are solved on the spot using informed judgment, but a few may be
so tricky that they are left unsolved and reserved for future discussion with other de-
velopers.

The role of design patterns in this activity is to inform the details of writing source
code: What methods to group together and to put on what interface or class, what the
exact signature of a method should look like, in what order to call other methods, and
so on. Design patterns inform such decisions, because they provide a more compre-
hensive “bigger” picture of the design and yet are specific enough to lead to code
based on prior experiences. In the example from Section 3.1, the developer has to de-
cide whether the undo/redo methods of the Command interface are visible to every-
one or only the CommandProcessor, whether the addChildCommand method is on the
Command or CompositeCommand interface, and so on.

Figure 2 shows the ValueReader interface from the Serializer design pattern im-
plementation in the JValue framework for Value Objects [14] [15] [16]. A developer
familiar with the Serializer pattern can immediately recognize the purpose of the in-
terface and derive the structure and behavior of its implementations.

6 Dirk Riehle

Figure 2. The ValueReader interface of the Serializer pattern implementation
in the JValue framework.

In the author’s projects, experienced software developers used their knowledge of
design patterns and their implementation variants on a continued on-going basis to
transfer a design into code. This benefits everyone: Because other developers know
these stylized design pattern implementations as well, they can more quickly under-
stand from the code which pattern is being implemented and what the consequences
for the system’s structure and behavior are. Thus, using and applying design patterns
made implementing designs and comprehending source code easier.

3.3 Documentation

The third main use of design patterns the author has found is to aid documentation.
For example, in a typical word processor document, a developer might describe a de-
sign by showing its class structure. He or she explains that the class structure imple-
ments a set of design patterns and then shows how that structure achieves its purpose
by referring to the elements of the design patterns, their structural relationships, and
their protocols of interaction. Basically, design patterns give a developer a vocabulary
that he can use to document a design in a more succinct way than possible with only
regular prose.

Figure 3 illustrates such informal documentation using a design pattern annotation
form suggested by Erich Gamma [10]. The figure displays several core classes from

Lessons Learned from Using Design Patterns in Industry Projects 7

the JHotDraw framework for graphical editors [17]. A blue box next to a class anno-
tates the class as playing a particular participant role in the pattern application, as de-
scribed in the original design pattern documentation. Where it says “Observer: Sub-
ject-2” the Figure class plays the Subject role from the Observer pattern. It says ‘2’
because there is more than one application of the Observer pattern in this design (not
shown in Figure 3).

Figure 3: Documentation of the core design of the JHotDraw framework
using design pattern annotations.

In some projects, developers documented object-oriented designs in a more formal
fashion using UML tools. UML’s design pattern feature was used to annotate collabo-
rations as design pattern instances. Frequently, the author found that developers took
these class diagrams from the UML tool and copied them over into a word processor
document or a wiki where they were explained in prose again. Wherever or whatever
the master document, the lesson is clear: Experienced developers use design patterns
to express the structure and dynamics of their designs. It speaks to them and those
who are reading the design.

Like in design pattern guided implementation, it is the author’s experience that us-
ing design patterns in documenting designs makes developers more effective and
helps readers comprehend designs faster.

3.4 Misconceptions

By far the most common mistake that surfaced in the projects was to confuse a design
pattern with a design template or even a code template. This mistake is easy to make;
after all, the structure diagram in the Design Patterns book suggests that there is only

8 Dirk Riehle

one particular structure that is to be considered as the pattern. This is an incorrect in-
terpretation. The structure diagram in the Design Patterns book is an illustration of the
most common form the pattern may take when it gets applied, but it really is only one
of many forms [1] [4] [10], as confirmed by John Vlissides, one of the authors of the
Design Patterns book [22].

Figure 4 shows three different structure illustrations of the Composite pattern. The
first one is the structure diagram of the original description. The second one is dis-
cussed as a variant in the implementation section of the original description. The third
one is a variant of the pattern used in one of the firms the author worked for. (See
Section 4 on firm-specific design languages.) All three illustrations are truthful to the
idea and description of the Composite design pattern.

Component

Composite

1

* Component

1

* Component

Group

1

*

1

*

(1) (3)(2)

Figure 4: Three different illustrations of common variations of the Composite design pattern.

It is important to note that these illustrations are just that: illustrations. There is no
well-defined pattern specification language underlying these class diagrams. These di-
agrams are specific designs with classes that have general names for the purpose of
invoking the idea of how an application of the pattern could look like: They are an il-
lustration, not a (formal and precise) specification.

It should not come as a surprise that design patterns can be implemented in differ-
ent ways. Not even the authors of the Design Patterns book could foresee all the pos-
sible circumstances in which to find a solution to a recurring problem. For example,
the Design Patterns book was written when multi-threading was less common than to-
day; thus, most of the patterns ignore this contextual force. In a multi-threaded con-
text, however, the Singleton pattern is likely to fail when implemented as illustrated
in the book. For the successful use of the Singleton pattern in multi-threaded applica-
tions, according to this author’s experience, the notion of single exemplar needs to be
changed to a context-specific singleton, which typically leads to a rather different im-
plementation.

The UML 2.0 specification suggests using the modeling concept of Collaboration
to illustrate design patterns. However, UML collaborations are limited in many ways.

Lessons Learned from Using Design Patterns in Industry Projects 9

First, the notion of a pattern in UML is that of a specific (template-like) design ele-
ment and is therefore too specific to allow for the many variations in which a pattern
can come. Second, the notion of pattern in UML is constrained to collaborations, that
is, descriptions of how objects collaborate to achieve some purpose. The author’s
work on using collaborations (a.k.a. role models) to describe patterns [5] supports the
idea that many design patterns are best viewed as abstractions from recurring collabo-
rations between objects. However, not all patterns are behavioral in nature. The Null
Object pattern, for example, is wholly structural [18] and cannot be illustrated well by
the UML notion of pattern.

To resolve the conflict between the original notion of a pattern as an idea that may
take many forms and the desire to have exactly one precise specification, the author’s
projects have found it useful to distinguish between a design pattern, its variations,
templates for those variations, and implementations or applications of those templates
[6] [13]. A pattern is the idea that solves a problem, and that idea can show itself in
many different variations, depending on the context. Formal specifications of these
variations are viewed as templates that can be instantiated to give users a specific de-
sign and a specific implementation. The relationship between pattern and template is
1-to-n, and the relationship between template and application is 1-to-n as well. This
distinction solves the conflict between the desire to formalize and the need for flexi-
bility.

4 A Firm’s Design Language

The author’s projects benefited from using and applying design patterns as discussed
in the previous section. However, the projects went further: They adapted design pat-
terns and design vocabulary to their specific processes and products. The author saw
this happening in the projects at UBS and he actively supported and steered this
process while working at Skyva and Bayave, see Table 1 and Section 5. This section
discusses the additional benefits projects harvested from investing into project and
firm-specific design languages.

Design patterns are an important part of the language that experienced software
developers use when talking about system design and implementation. Other compo-
nents of this language that the author found are

• project and firm-specific variations of design patterns,
• project and firm-specific patterns discovered in the firm’s products and systems,
• the architecture of the firm’s products and systems, and
• the firm’s programming practices.

In a well-working software organization, these parts come together to form what
the author of this article, inspired by [8] [23], is calling a “design language”. A design
language consists of the words and concepts that developers use to effectively com-
municate about the design and implementation of their work products. It is rooted in

10 Dirk Riehle

everyday natural language and enhanced by the technical concepts developers are
dealing with in software design.

4.1 Firm-specific pattern variations

Recall the definition of design pattern given in the introduction: “An abstraction from
a common solution to a recurring design problem in a given context.” Often neglect-
ed, understanding a pattern’s context is important. This is because the forces that rep-
resent a context shape what a good solution for the problem is.

In a firm that provides a particular product or system that system and its require-
ments represent the main set of forces, or context, of any pattern application. The sys-
tem and its architecture, whether it is object-oriented, event-driven, or data-flow-ori-
ented, details many of the forces and leads to firm-specific variations of design pat-
terns. These are general design patterns that have found a specific recurring variation
in the system or product of a software organization.

Figure 4 shows variations of the Composite pattern. The Composite pattern lets
developers represent and manage an object tree. Each object is a component (node in
the tree), and some components are composite objects consisting of further compo-
nent objects, some of which may be composites, etc. An object tree emerges from this
common problem solution.

On the right, Figure 4 shows a firm-specific variation of the Composite pattern
that was used at Skyva. Rather than having components (nodes) maintain links to
their sub-components (child nodes), an intermediate Group object maintains these
links. Thus, a component has a group object which in turn holds the links to the next
lower level of objects in the tree.

This indirection may seem like unnecessary complexity in the general situation,
however, it was a necessity for the meta-data driven software system under develop-
ment. This system had a description layer that determined the system structure at run-
time and could also change at runtime. For that reason, it couldn’t be known exactly
how many different types of trees an object might be a node in. Rather, the developers
had to assume it could be any number. An example of such a situation is the modeling
of a firm’s organizational structure. Here, one may need to represent a person’s posi-
tion in many different hierarchies: First, there is the regular line reporting hierarchy,
then there maybe any number of projects each of which introduces its own reporting
hierarchy, there may be a technical reporting relationship, etc. Organizational model-
ing is one situation where this design pattern variant is used, business process model-
ing is another.

The firm-specific variation shown in Figure 4 solves this problem by letting a
node have multiple group objects, each of which provides access to the sub-nodes in a
different tree. You can see this by the 1-to-n relationship between Component and
Group in the UML diagram of this pattern variation.

For the project at Skyva, recognizing this variation of the Composite pattern as a
firm-specific variation of the pattern represented a major step forward. We quickly

Lessons Learned from Using Design Patterns in Industry Projects 11

standardized our vocabulary on terms like Component and Group and became more
effective at discussing our designs wherever this pattern variation showed up.

4.2 Firm-specific design patterns

It is not just variations of known patterns: At Skyva and Bayave the developers also
found new and not yet documented patterns. Developers documented them when they
felt they were relevant for their work. At Skyva, the author’s team not only discov-
ered the Composite pattern variation of Figure 4, but also discovered what was called
the Navigator pattern. The Navigator pattern describes a generalized traversal algo-
rithm over an object graph using meta-data to find the next target of the navigation.
The team used “a navigator” to find a particular component in the graph. Using “navi-
gator” and ancillary terms, the team could quickly and effectively discuss its designs.

Later the author’s team learned that this pattern could also be found in implemen-
tations of the XPath/XQuery specification, which are a part of most XML processing
engines these days. Hence, what was thought of as a firm-specific pattern apparently
was not, and there were other people who had discovered the same pattern or at least
were using it.

It is likely that a firm-specific pattern or a firm-specific pattern variation isn’t that
firm-specific after all and can be generalized. However, as long as there is no general-
ly known description of these patterns available, a firm does well to come up with its
own description (see Section 5.2 on study groups). Once more, the lesson that the au-
thor learned was that recognizing patterns and standardizing vocabulary makes devel-
opers more effective.

4.3 Firm-specific architecture and coding practices

A firm’s design vocabulary and language comprises not only design patterns but also
architecture and programming. It is not important whether an architectural style is
called an architecture pattern or whether a coding trick is called a programming pat-
tern [7]. What is important is that a firm’s developers recognize a recurring theme as
such and develop a common vocabulary around it, most likely by writing up the pat-
tern and discussing it among themselves.

Prior work has shown how firms can benefit from using design patterns [11] [12].
During his work at UBS, the author observed that using design pattern terminology is
part of a more comprehensive domain- and firm-specific language that developers
speak when going about their work. At Skyva then, as well as at Bayave later, he ex-
plicitly developed this language using an on-going elicitation process. Uncommon
terms, or common terms with specific meanings, were called out and discussed and
documented on the firm’s wiki, just like the design patterns.

In the author’s experience, developing and maintaining a shared firm-specific de-
sign language can enhance the benefits derived from using design patterns greatly.
When asked how design patterns had helped them, developers almost always provid-

12 Dirk Riehle

ed positive responses. When asked how important the firm-specific design language
was, responses were always enthusiastic, because the design language was custom-
made to support the projects’ daily work routines and usually did so well.

5 Learning the Language

During the work at UBS it had became clear that projects could become more effec-
tive by developing and using a shared design language. However, it was unclear what
exactly the language consisted of and how to learn and refine it. Consequently, at
Skyva, the author experimented with different forms of learning and reflection [8] to
help new developers learn the design language, to refine the language together with
experienced developers, to promote design patterns, and to discover yet hidden pat-
terns.

The main vehicles of helping learning and reflection employed are

• individual tutoring,
• study groups (a.k.a. reading groups) [19] and
• writers’ workshops [9].

Both the study groups and the writers’ workshops groups were both internal and
external to the firm, serving different purposes.

5.1 Individual tutoring

In the author’s experience, an open and collaborative atmosphere that encourages
sharing of design ideas, discussion of these ideas, and conclusions that lead to stan-
dardized vocabulary requires an atmosphere of trust, where ideas are welcome and
everyone benefits.

The best way that to create this atmosphere is to lead by example and to give ideas
and experience away freely. Whenever a new developer got on board, the author
would sit down with the developer, helping them understand design patterns in gener-
al as well as our firm-specific variations.

This demonstrated the value of design patterns and that the firm cares about it.
Once a new developer recognized these benefits, the developer was ready to join the
foundational study group. The study group in turn would relieve the author and other
senior technical members of the team from the time burden that such tutoring creates.

5.2 Study groups

A study group is a voluntary typically weekly get-together of 1-2 hours that would
study a pattern or paper. At Skyva, the author instituted two types of study groups.

Lessons Learned from Using Design Patterns in Industry Projects 13

One studied well-established foundational material like the Design Patterns book, and
one covered new and advanced patterns, concepts, and techniques.

The first type of study group, the foundational study group, tried to get new peo-
ple up to speed, both on general as well as firm-specific material, including but not re-
stricted to design patterns. Through this study group and the ensuing discussions, de-
velopers automatically soaked up the firm’s language, as the natural thing was to dis-
cuss and discover applications of the design patterns in our day-to-day work.

The author has found that the following aspects were critical to making a study
group a success and to maintain its momentum:

• At least one senior technical member of the team participated and facilitated the
study group;

• The material chosen for review was relevant to the participants’ work;
• Senior management clearly supported the study group and its activities.

This type of study group started over after about a year. There was no fixed cur-
riculum, but the material the group reviewed was generally foundational and included
patterns from the Design Patterns book. Members could join and leave as they
pleased, and the group had many developers attending only sessions of particular in-
terest to them.

The second type of study group, the advanced study group, reviewed current ma-
terial from outside the company like new patterns from the annual Pattern Languages
of Programming conference. In addition, the advanced group reviewed and discussed
new material from the firm itself in a writer’s workshop, see Section 5.3.

Firm-internal study groups can learn from outside efforts. The longest running
cross-firm patterns study group that the author is aware of is the Silicon Valley Pat-
terns group [20]. When asked by the author of this article, the group provided the fol-
lowing best practices for keeping the study group alive and interesting [21]:

1. Bring in authors (of the material under review)
2. Provide a safe setting (in particular, stop trouble makers early)
3. Say your names (to create a community atmosphere)
4. Insist on preparation (so meetings can be effective)
5. Encourage everyone (so nobody feels left behind)
6. Reflect and experiment (with the way the group works)
7. Meet in a comfortable place (in a cafe, not at work!)
8. One person at a time (give everyone room to speak)
9. Bring in laptops (to gather material or experiment on the side)
10. Select by consensus (so the group supports the curriculum)

The author of this article can confirm the Silicon Valley Patterns group experi-
ences from his own study groups. Additional lessons learned in the author’s firm-in-
ternal study groups were:

• Have a motivated group leadership that sticks with the group
• Be current on what’s going on and bring it into the group
• Have a good connection to authors and don’t be afraid to invite them

14 Dirk Riehle

• Have at least one good moderator and facilitator
• Welcome everyone and discourage arrogance
• Organize through a mailing list and/or a wiki
• Meet consistently and regularly

The firm-internal study groups that the author started had no end date but just kept
meeting regularly. There was always something new to discuss. Of particular interest
were patterns that came out of the firm itself, enhancing and sharpening the firm’s de-
sign language.

5.3 Writers’ Workshops

Study groups typically study other people’s material. Writers’ workshops are a means
for studying someone else’s work with the goal of providing the writer with candid
feedback [9]. In a writers’ workshop, writer joins a group of readers who are review-
ing the writer’s work. The writer is not allowed to speak but can observe how work-
shop participants struggle with the material. From this, the writer learns how to im-
prove the material. Richard P. Gabriel brought writers’ workshops into the patterns
community, where they have become an important part of patterns conferences [24].

In all cases, this article’s author introduced writers’ workshops to his firm-internal
advanced study group meetings with the goal of developing and refining firm-specific
material. The aforementioned Composite pattern variation and the Navigator pattern,
as well as other published patterns like Value Object, Serializer, and Role Object
went through such writers’ workshops and benefited greatly, both in terms of contents
and presentation.

A firm-internal workshop can be pragmatic, and pattern descriptions and other
materials can be run through it multiple times, before they are considered polished
documentation. Feedback always included both form and contents. The author has
found participants to be quite enthusiastic about it, mostly because they were familiar
with the material and the examples and can provide excellent feedback, refinement,
and generalization.

The firm itself benefits from better documentation, a standardized vocabulary, and
in the end more effective software developers.

6 Related Work

The main body of this article already mentions most of the related work, and this Sec-
tion summarizes it and relates it to the work presented in this article.

In general, the usefulness of patterns in software systems design has been anecdo-
tally reported about many times [1] [3] [6] [7] [10] [11] [12].

Also, many have reported on the breadth of applicability of patterns [2] [3] [7]
[13] [24] that goes beyond design and extends to architecture and programming as

Lessons Learned from Using Design Patterns in Industry Projects 15

well as specific domains like user interfaces and business processes [24] [27] [28]
[29] [30].

Other disciplines have made a case for design languages and a broader focus on
the vocabulary used in innovation and design [8] [10] [23] without necessarily apply-
ing this thinking to software design or design patterns.

This article goes beyond this related work by summarizing the benefits of using
and applying software patterns, as learned in industry projects (Section 3). It extends
these experiences into the broader realm of design languages, which have been con-
sidered and worked upon, but to the best of this author’s knowledge not in this form
for software design (Section 4). Finally, this article presents specific lessons learned
and guidance for using and applying design patterns through building up firm-internal
know-how around a firm’s design language using study groups and writers’ work-
shops (Section 5). While study groups and writers’ workshop have been researched in
general, to the best of this author’s knowledge they have not been as coherently inte-
grated with the software development process and the use and application of design
patterns as presented in this article.

7 Conclusions

Core activities of software development like design discussions on a white-board, im-
plementation of such designs in code, as well as their documentation can greatly ben-
efit from design patterns and the shared vocabulary they provide. Effective use of de-
sign patterns depends on avoiding common mistakes like those that equate a design
pattern with its structure diagram and generated code. Combined with other software
design concepts and embedded in a firm’s design language, patterns are an important
contribution to making software development more effective. This article confirms
prior work on the general benefits of using design patterns and adds to it experiences
with developing and maintaining a firm-specific design language. Such a design lan-
guage needs to be nurtured through study groups and writers’ workshops. The experi-
ences of this article’s author show that such a design language can make software de-
velopment even more effective and more enjoyable than possible with standard de-
sign patterns alone.

Acknowledgments

I would like to thank the anonymous reviewers for helping me improve this article.

16 Dirk Riehle

References

1. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns. Addison
Wesley, 1995.

2. Christopher Alexander, S. Ishikawa, M. Silverstein. A Pattern Language. Oxford Universi-
ty Press, 1977.

3. Frank Buschmann, Regine Meunier, Hans Rohnert, Pete Sommerlad, Michael Stahl. Pat-
tern-Oriented Software Architecture. Wiley, 1995.

4. Uwe Zdun, Paris Avgeriou. “Modeling Architectural Patterns Using Architectural Primi-
tives.” In Proceedings of OOPSLA 2005. ACM Press.

5. Dirk Riehle. “Composite Design Patterns.” In Proceedings of OOPSLA 1997. ACM Press,
1997.

6. Dirk Riehle. “The Perfection of Informality: Tools, Templates, and Patterns.” Cutter IT
Journal 16, 9. Page 22-26.

7. Dirk Riehle and Heinz Züllighoven. “Using Patterns in Software Development.” TAPOS
2, 1. Wiley, 1996.

8. Donald Schön. The Reflective Practitioner. 1983.
9. Richard P. Gabriel. Writers’ Workshops and the Work of Making Things. Addison Wes-

ley, 2004.
10. John Vlissides. Pattern Hatching. Addison-Wesley, 1998.
11. Kent Beck, James O. Coplien, Ron Crocker, Lutz Dominick, Gerard Meszaros, Frances

Paulisch. “Industrial Experience with Design Patterns.” In Proceedings of the 18th Inter-
national Conference on Software Engineering, IEEE Press,1996.

12. Douglas C. Schmidt. “Experience Using Design Patterns to Develop Reusable Object-Ori-
ented Communication Software.” Communications of the ACM (October 1995).

13. F. Buschmann, K. Henney, D.C. Schmidt. Pattern-Oriented Software Architecture Volume
5: On Patterns and Pattern Languages. John Wiley and Sons, 2007.

14. Dirk Riehle. “Value Object.” In Proceedings of the 2006 Conference on Pattern Lan-
guages of Programming (PLoP ’06). ACM Press, 2006.

15. Dirk Riehle. The JValue Framework for Java Value Objects. See http://www.jvalue.org.
16. Dirk Riehle, Wolf Siberski, Dirk Bäumer, Daniel Megert, Heinz Züllighoven. “Serializer.”

In Pattern Languages of Program Design 3. Addison-Wesley, 1998. Chapter 17.
17. Erich Gamma. JHotDraw. See http://www.jhotdraw.org.
18. Bobby Woolf. “Null Object.” In Pattern Languages of Program Design 3. Addison-Wes-

ley, 1998. Chapter 1.
19. Joshua Kerievsky. “A Learning Guide to Design Patterns.” See http://www.industriallog-

ic.com/papers/learning.html.
20. The Sillicon Valley Patterns Group. See http://www.siliconvalleypatterns.org.
21. Tracy Bialik and Russ Ruffer. Personal Communication, 2005.
22. John Vlissides. Personal Communication, 2001.
23. Stewart Brand. How Buildings Learn: What Happens After they are Built. Penguin, 1994.
24. James Coplien, Douglas Schmidt (editors). Pattern Languages of Program Design. Addi-

son-Wesley, 1995.
25. Paris Avgeriou, Uwe Zdun. “Architectural Patterns Revisited – A Pattern Language.” In

Proceedings of the 10th European Pattern Languages of Programming Conference. Uni-
versitatsverlag Konstanz, 2005.

26. Neil Harrison. “Organizational Patterns for Teams.” In Pattern Languages of Program De-
sign 2. Addison Wesley, 1996.

Lessons Learned from Using Design Patterns in Industry Projects 17

27. John Vlissides, James Coplien, Norm Kerth (editors). Pattern Languages of Program De-
sign 2. Addison-Wesley, 1996.

28. Robert Martin, Dirk Riehle, Frank Buschmann (editors). Pattern Languages of Program
Design 3. Addison-Wesley, 1998.

29. Neil Harrison, Brian Foote, Hans Rohnert (editors). Pattern Languages of Program Design
4. Addison-Wesley, 2000.

30. Dragos Manolescu, Markus Voelter, James Noble (editors). Pattern Languages of Program
Design 5. Addison Wesley, 2005.

31. Dirk Riehle, Bruno Schäffer, Martin Schnyder. “Design of a Smalltalk Framework for the
Tools and Materials Metaphor.” Informatik/Informatique (February 1996). Page 20-22.

32. Dirk Riehle. Framework Design: A Role Modeling Approach. Dissertation, No. 13509.
Zürich, Switzerland, ETH Zürich, 2000.

33. Dirk Riehle, Steven Fraleigh, Dirk Bucka-Lassen, Nosa Omorogbe. “The Architecture of a
UML Virtual Machine.” In Proceedings of the 2001 Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA ‘01). ACM Press, 2001. Page
327-341.

34. Walter Bischofberger, Michael Guttman, and Dirk Riehle. "Global Business Objects: Re-
quirements and Solutions." In Proceedings of the 1996 Ubilab Conference, Zürich. Edited
by Kai-Uwe Mätzel and Hans-Peter Frei. Konstanz, Germany: Universitätsverlag Kon-
stanz, 1996. Page 79-98.

