
The Commenting Practice of Open Source

Oliver Arafat
Siemens AG, Corporate Technology
Otto-Hahn-Ring 6, 81739 München

oarafat@gmail.com

Dirk Riehle
SAP Research, SAP Labs LLC

3410 Hillview Ave, Palo Alto, CA 94304, USA
dirk@riehle.org

Abstract
The development processes of open source software are
different from traditional closed source development proc-
esses. Still, open source software is frequently of high
quality. This raises the question of how and why open
source software creates high quality and whether it can
maintain this quality for ever larger project sizes. In this
paper, we look at one particular quality indicator, the den-
sity of comments in open source software code. We find
that successful open source projects follow a consistent
practice of documenting their source code, and we find
that the comment density is independent of team and pro-
ject size.

Categories and Subject Descriptors D.2.8 [Metrics]:
Software Science

General Terms: Measurement, Documentation, Languages

1. Introduction
Open source software has become an important part of
commercial software development and use. Its continued
growth emphasizes this importance [1]. Projects like the
Linux kernel and the Apache web server demonstrate that
open source software can be of high quality. Most interest-
ingly, open source projects have reached a size and com-
plexity that rivals the size of some of the largest commer-
cial projects [2], yet they are being developed in a manner
quite different from traditional software engineering proc-
esses.

Our research goal is to understand the processes and
practices of open source software development and to as-
sess whether they can be applied in a corporate environ-
ment. This has become particularly important because
most well-known processes find it hard to scale up to lar-
ger project sizes. Traditional life-cycle processes like the
waterfall model are best used in contexts where the prob-

lem domain is well understood [15]. Agile software devel-
opment methods can cope with changing requirements and
poorly understood problem domains, but typically require
co-location of developers and fail to scale to large project
sizes [16].

A host of successful open source projects in both well
and poorly understood problem domains and of small to
large sizes suggests that open source can cope both with
changing requirements and large project sizes. In this pa-
per we focus on one particular code metric, the comment
density, and assess it across 5,229 active open source pro-
jects, representing about 30% of all active open source
projects. We show that commenting source code is an on-
going and integrated practice of open source software de-
velopment that is consistently found across all these pro-
jects. This practice is independent of the chosen program-
ming language, the age of project, the size of the project in
lines of code, and their team sizes.
The contributions of this paper are the following:

• It assesses the metric of comment density for the first

time for open source projects on a broad scale;
• It shows that commenting source code is a consis-

tently exercised practice of open source software de-
velopment;

• It reviews a variety of dependencies between proper-
ties of open source projects and their comment den-
sity.

The paper is organized as follows. Section 2 reviews our
data source and the taken approach. Section 3 gives an
aggregate overview of comment density in open source
projects, discusses how it varies by programming lan-
guage, and shows how commenting source code is a con-
sistently followed practice in open source. Section 4 re-
views the dependencies of comment density on multiple
variables relevant to scaling up projects. Section 5 summa-
rizes our conclusions and discusses threats to their validity.
Section 6 reviews related work and Section 7 ends the pa-
per with some final conclusions and an outlook on future
work.

2. Data source, filters, and definitions
Our analyses use the database of the open source analytics
firm Ohloh, Inc. [9]. The data is accessible through an API

Permission to make digital or hard copies of all or part of this work for not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee
OOPSLA 2009 October 25-29, 2009, Orlando, Florida, USA
Copyright © 2009 ACM 978-1-60558-768-4/09/10…$10.00.

[10]. We work with a database snapshot of March 2008,
but have cut off all analysis data after December 31st,
2007. The database contains data from about 10,000 open
source projects, including project name, description, com-
mitter information, and the code contribution history of a
project.

In this paper we are interested in active well-working
open source projects, not dead projects. We define and
apply an active project filter to let a project pass only if it
is at least two years old and if the code activity of the last
year has been at least 60% of the activity of the previous
year. This active project filter reduces the original 10,000
projects to 5,229 projects. Using a comparable approach,
Daffara estimates that there were about 18,000 active open
source projects in the world by August 2007 [7], so our
sample size represents about 30% of the total population.

The code contribution history is a time series of com-
mits (code contributions) to the source code repository. A
commit represents a set of changes to the source code per-
formed as one chunk of work. When analyzing commits
we apply filters to improve data quality. For example, we
filter out file rename and move operations where no real
work has been done.

A commit consists of multiple diffs. A diff describes
the differences between two consecutive versions of the
same file as changed in the commit. It is split into three
parts: The number of lines of source code that have been
added to the file or removed from it, the number of com-
ment lines that have been added or removed, and the num-
ber of empty lines that have been added or removed.

• A source line of code, or SLoC, is a physical line in a

source file that contains source code.

• A comment line, or CL, is a physical line in a source
file that represents a comment.

• A line of code, or LoC, is either a source line of code
or a comment line.

• An empty line is just that.
The Ohloh diff tool recognizes every comment character
and characters respectively that are defined and valid
within one particular programming language such as the
triple quotes in Ruby.Furthermore, it also accounts for
external mark up languages such as Plain Old Documenta-
tion (POD) which is widely used in Perl. Additionally, the
Ohloh diff tool recognizes comments that span multiple
lines [11]. It does not, however, recognize whether a code
line was changed; rather, it counts a changed line as an old
line removed and a new line added. While it is not possible
to determine a posteriori whether a line was changed or
removed and then added, heuristics exist to predict which
variant was the case. Most variants of the Unix tool diff,
for example, implement such a heuristic by solving the
Longest Common Subsequence problem. We have devel-
oped a statistic that determines the probabilities of whether
a line was changed or removed and added [12]. Our algo-
rithms use this statistic to determine aggregate values like
commit sizes and comment densities.

The commit size of a commit is the number of lines of
code affected in a commit, whether added, removed, or
changed. When calculating commit sizes we apply the sta-
tistic explained above.

The comment density of a file or a group of files or
the whole source code base of a project is defined as the
number of comment lines divided by the number of lines
of code of the same code body [4].

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

Project Size in Lines of Code (LoC = CL + SLoC)

C
om

m
en

t D
en

si
ty

mean = 0.1867
median = 0.1674
stdev = 0.1088
correl = -0.00787

Figure 1: Comment density as a function of lines of code for a given project.

 Comment lines
as a function of project size

Comment density
as a function of project size

Binned distribution of projects
as a function of comment density

y = 0.1516x
R2 = 0.8863

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+0

Project Size in Lines of Code (CL + SLoC)

C
om

m
en

t L
in

es

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Project Size in Lines of Code (CL + SLoC)

C
om

m
en

t D
en

si
ty

mean = 0.1760
median = 0.1652
stdev = 0.0832

0.1478

0.5438

0.2324

0.0540
0.0166 0.0043 0.0012 0.0000 0.0000

0%

10%

20%

30%

40%

50%

60%

70%

[0.0, 0.1[[0.1, 0.2[[0.2, 0.3[[0.3, 0.4[[0.4, 0.5[[0.5, 0.6[[0.6, 0.7[[0.7, 0.8[[0.8, 0.9[

Comment Density

Pe
rc

en
ta

ge
 o

f O
cc

ur
re

nc
es

C and
C++

y = 0.1516x; R2 = 0.8863; mean = 0.1760; median = 0.1652; stdev = 0. 0832; population size = 1621

y = 0.2798x
R2 = 0.9334

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+0

Project Size in Lines of Code (CL + SLoC)

C
om

m
en

t L
in

es

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Project Size in Lines of Code (CL + SLoC)

C
om

m
en

t D
en

si
ty

mean = 0.2587
median = 0.2566
stdev = 0.1111

0.0841

0.2450

0.3327

0.2340

0.0841

0.0165 0.0037 0.0000 0.0000
0%

10%

20%

30%

40%

50%

60%

70%

[0.0, 0.1[[0.1, 0.2[[0.2, 0.3[[0.3, 0.4[[0.4, 0.5[[0.5, 0.6[[0.6, 0.7[[0.7, 0.8[[0.8, 0.9[

Comment Density

Pe
rc

en
ta

ge
 o

f O
cc

ur
re

nc
es

Java

y = 0.2798x; R2 = 0.9334; mean = 0.2587; median = 0.2566; stdev = 0.1111; population size = 1085

y = 0.0692x
R2 = 0.5923

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+0

Project Size in Lines of Code (CL + SLoC)

C
om

m
en

t L
in

es

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Project Size in Lines of Code (CL + SLoC)

C
om

m
en

t D
en

si
ty

mean = 0.1150
median = 0.1022
stdev = 0.0803

0.4944

0.4052

0.0781

0.0167 0.0019 0.0019 0.0019 0.0000 0.0000
0%

10%

20%

30%

40%

50%

60%

70%

[0.0, 0.1[[0.1, 0.2[[0.2, 0.3[[0.3, 0.4[[0.4, 0.5[[0.5, 0.6[[0.6, 0.7[[0.7, 0.8[[0.8, 0.9[

Comment Density

Pe
rc

en
ta

ge
 o

f O
cc

ur
re

nc
es

Python

y = 0.0692x; R2 = 0.5923; mean = 0.1150; median = 0.1022; stdev = 0.0803; population size = 534

y = 0.1861x
R2 = 0.829

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+0

Project Size in Lines of Code (CL + SLoC)

C
om

m
en

t L
in

es

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Project Size in Lines of Code (CL + SLoC)

C
om

m
en

t D
en

si
ty

mean = 0.1642
median = 0.1528
stdev = 0.0935

0.2645

0.5036

0.1486

0.0435 0.0362
0.0036 0.0000 0.0000 0.0000

0%

10%

20%

30%

40%

50%

60%

70%

[0.0, 0.1[[0.1, 0.2[[0.2, 0.3[[0.3, 0.4[[0.4, 0.5[[0.5, 0.6[[0.6, 0.7[[0.7, 0.8[[0.8, 0.9[

Comment Density

Pe
rc

en
ta

ge
 o

f O
cc

ur
re

nc
es

JavaSc
ript

y = 0.1861x; R2 = 0.829; mean = 0.1642; median = 0.1528; stdev = 0.0935; population size = 276

y = 0.1602x
R2 = 0.9464

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+0

Project Size in Lines of Code (CL + SLoC)

C
om

m
en

t L
in

es

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Project Size in Lines of Code (CL + SLoC)

C
om

m
en

t D
en

si
ty

mean = 0.1044
median = 0.0902
stdev = 0.0713

0.5855

0.3382

0.0582

0.0073 0.0109 0.0000 0.0000 0.0000 0.0000
0%

10%

20%

30%

40%

50%

60%

70%

[0.0, 0.1[[0.1, 0.2[[0.2, 0.3[[0.3, 0.4[[0.4, 0.5[[0.5, 0.6[[0.6, 0.7[[0.7, 0.8[[0.8, 0.9[

Comment Density

Pe
rc

en
ta

ge
 o

f O
cc

ur
re

nc
es

Perl

y = 0.1602x; R2 = 0.9464; mean = 0.1044; median = 0.0902; stdev = 0.0713; population size = 273

Figure 2: Comment density of projects with different dominant programming languages.

3. Comment density in open source
This Section provides an overview of comment density in
open source projects, discusses how it varies by program-
ming language, and investigates the practice of comment-
ing source code. We find the commenting code is a com-
mon consistently exercised practice of open source pro-
jects.

3.1 Overview

As we have already shown in [18] and depicted in figure 1
the average comment density in our sample distribution is
about 19% so about one line of code in five lines is a
comment line varying widely per individual project with a
standard deviation of 10.88%. The amount of comments in
a given source code body can be interpreted as an indicator
of its quality and maintainability [4] [5].

3.2 Influence of programming languages

The comment density varies significantly by programming
language. Figure 2 shows the graphs, their models, and
mean, median, and standard deviation for five popular lan-
guages. Of the five languages, Java has the highest mean
of comment lines per source lines at 25.87% or one com-
ment line for three source code lines. Perl has the lowest
mean with 10.44% or about one comment line for nine
source code lines.

It is interesting to discuss the differences between
programming languages. It appears to be less a difference
between any two particular programming languages, but
rather it seems to be a difference between categories of
languages.

One way of categorizing the five languages is by
whether they are statically or dynamically typed. This puts
C/C++ and Java in one category and Python, JavaScript,
and PERL in the other. All three dynamically typed lan-
guages have a lower average comment density than the
two statically typed languages.

Another way of categorizing the programming lan-
guages is by lineage. C/C++, Java, and JavaScript fall into
the dominant C-paradigm of programming languages,
while PERL and Python do not. This choice might be justi-
fied by the closeness of the average comment density be-
tween C/C++ (17.60%) and JavaScript (16.42%).

Example factors that might influence the amount of
comment lines in source code:

• Expressiveness of language (and hence the need (or

lack thereof) for more documentation);
• The use of IDEs and auto-generate comment features

of such IDEs.

Without a detailed analysis of each programming lan-

guage and the dominant practices around it we cannot pre-
dict what percentage of comment lines are real content
lines and which are just empty stubs. Here, we drop further
investigation into the reasons of such variation and post-
pone it to future work.

3.3 The commenting practice in open source

Figure 3 shows the comment density as a function of the
amount of source lines of code in a given commit. This
Figure is rich in information.

First, for those commits with zero SLoC, the comment
density is naturally 100%. Not shown in the graph, the
average number of comment lines for zero-SLoC commits
is 47.55 comment lines with a standard deviation of 570.1.
Moreover, of the 6,622,901 commits in our database after
the filters, the zero-SLoC commits count is 164,054, repre-
senting 2.477% of all commits. In other words, about 2.5%
of the code contributions in our sample population of open
source projects, or about every 20th commit, exclusively
serve documentation purposes.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90 100

Source Lines of Code in Commit [SLoC]

C
om

m
en

t D
en

si
ty

Comment Density by SLoC Size
Total Average Comment Density

sloc size = 1-100
mean = 0.2513
median = 0.2340
stdev = 0.0626

sloc size = 50-100
mean = 0.2234
median = 0.2190
stdev = 0.0169

sloc size = 80-100
mean = 0.2224
median = 0.2171
stdev = 0.0209

Figure 3: Comment density as a function of source code lines in a given commit.

Next, for those commits with one SLoC, the comment
density is 62.50%. In other words, for every one-liner (of
source code) contributed, on average 1.667 comment lines
are contributed. Or more poignantly, when developers are
making minimal source code changes, they thoroughly
document them with comment lines. For commits with two
SLoC, the comment density falls to 48.90%, meaning that
for almost every source code line there is a comment line.

Finally, we can see that for increasing source code lines
in a commit, the comment density keeps falling, approaching
asymptotically the total average comment density of 18.67%
graphed by the dashed line. The high value at 39 SLoC is
caused by a single commit with 364,438 comment lines; the
sample size for the 39 SLoC commits bin is 16,534.

Thus, we conclude that successful open source projects
like those in our sample population follow a practice of on-
going and integrated documentation of their code base. This
activity is bipolar in that developers both perform documen-
tation as a separate housekeeping activity as well as inte-
grated with regular source code lines (SLoC) contributions.

4. Functional dependencies
This Section discusses the influence of several variables of
open source software projects on their comment density
relevant to scaling up projects. Specifically, this Section
looks at the relationship between comment density and pro-
ject size, team size, and age of project.

4.1 Project size and comment density

Figure 1 already displays the comment density as a function
of project size. The comment density remains constant at

18.67% for most project sizes but those of the largest pro-
jects. Also, the correlation between project size and com-
ment density is -0.0079, suggesting they are independent of
each other.

For large projects, the comment density appears to be
decreasing. However, the data for large projects (> 10 mil-
lion SLoC) is getting sparse. We only have 18 such projects
in our dataset, out of 5,229, representing 0.3% of the total
population. Thus, variation in comment density for these few
select projects may unduly distort the model. Also, some of
the large projects have unusual properties. For example, the
Debian distribution of Linux is mostly generated code, re-
peating the same patterns over and over.

Thus, for all practical purposes, we conclude that the
comment density is independent of project size and that its
average remains a constant over a wide range of project
sizes.

4.2 Team size and comment density

Figure 4 shows the comment density as a function of team
size. We define team size as the number of committers to a
given project. The committers are those people who have
write access to the code repository and have made a contri-
bution at least once.

The average comment density for team sizes 1-20 is
19.14%, for team sizes 1-50 is 19.22% and for team sizes 1-
100 is 18.56% with standard deviations between 2.6% and
6.4%. Of all projects, projects with team sizes 1-10 represent
80.99% and projects with team sizes 1-20 represent 89.96%.
Projects with team sizes 101 and higher represent 1.32%.
Thus, the bulk of projects are in the 1-20 people team range

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0 10 20 30 40 50 60 70 80 90 100

Team Size [Number of Committers]

C
om

m
en

t D
en

si
ty

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%
Comment Density by Team Size

Total Average Comment Density

Percent Projects with Team Size

team size = 1-20
mean = 0.1914
median = 0.1878
stdev = 0.0255

team size = 1-50
mean = 0.1922
median = 0.1906
stdev = 0.0425

team size = 1-100
mean = 0.1856
median = 0.1857
stdev = 0.0641
correl = -0.0550

Figure 4: Comment density as a function of team size of open source projects.

and the comment density of these projects dominates the
average comment density.

However, despite the dominance of the smaller teams,
we find little variation around the average comment density
of 18.67%. The mean for projects of team sizes 20-100 is
18.40%, the median is 18.55% and the standard deviation is
7.16%. While the variance for the comment density of pro-
jects run by larger teams is going up due to the increasing
sparseness of data points, the average comment density is
roughly staying the same. In addition, the correlation be-
tween team size and comment density is -0.0550, suggesting
independence of the two variables.

We conclude that in open source software the comment
density is by and large independent of team size. This sug-
gests that successful open source projects are capable of
maintaining a commenting discipline as their teams grow
larger.

5. Discussion of findings
We summarize our finding and discuss potential threats to
their validity. We then discuss future work.

5.1 Conclusions

We have found and demonstrated that commenting source
code is a consistently followed practice of successful open
source projects. It has led to an average comment density of
about 19%. This density is maintained by dedicated com-
menting activities (about 2.5% of all code contributions) as
well as a regular part of on-going software development. We
have also found that the average comment density varies by
programming language but remains constant on several other
dimensions.

In particular, we have found that the average comment
density is independent of team size and project size, suggest-
ing that as teams and projects get larger, successful open
source projects maintain their commenting discipline.

5.2 Threats to validity

Our sample population represents about 30% of the total
population of active open source projects. Our database was
initially seeded with popular projects by Ohloh, Inc. After
this, it was opened up for community editing. There is no
apparent bias in the selection of projects; however, Ohloh’s
crawler can only cope with the configuration management
systems CVS, Subversion, and Git. These are the most popu-
lar configuration management systems, so we feel that this
does not unduly bias the overall sample.

We only count physical lines and do not analyze their
contents. Thus, in terms of actual comment contents our
numbers may be misleading, in particular if a large number
of comments in open source software was auto-generated or
if the comments refer to the license that is used within the
project for example. We do not feel that this is a major issue
right now, however, with features like comment stub genera-

tion in modern Java IDEs this issue may become more im-
portant in the future.

In all analyses that rely on counting the exact number of
lines affected in a commit, there is a risk of miscounting
these lines because it is not possible, a posteriori, to deter-
mine whether a line was changed or whether it was removed
and then added. Given our statistic over these changes and
the large sample size of commits in our population, we be-
lieve that this problem is not a serious issue [12].

5.3 Future work

Future work might include a more thorough analysis of the
semantic content of comment lines to see whether the differ-
ences in comment densities between programming lan-
guages reflect real content or were created by auto-
generation features of IDEs.

We intend to compare the comment density of open
source projects with those of closed source projects found at
SAP. We are currently preparing such a comparison. Our
hope is that such comparison and the resulting insight can
help us better define corporate code metrics that in turn aid
in the management of software development projects.

We have yet to correlate comment density with project
success. We started out with successful projects ignoring
unsuccessful projects. It would be interesting to look at the
comment density of failed projects and analyze to what ex-
tent commenting behavior of software developers can be a
predictor of project success of failure.

6. Related work
We did not find many studies of comment densities in open
source or software development at all. We found no study
that assesses comment density on the level of scale as pre-
sented in this paper.

Prechelt reports about a controlled experiment per-
formed from 1997-1999 [4] [13]. 91 teams implemented the
same set of requirements using different programming lan-
guages, including C, C++, Java, Perl and Python. The goal
was the comparison of scripting languages with non-
scripting languages. In contrast to our results in Section 3,
Prechelt found that the scripting language solutions were
significantly better documented (had a higher comment den-
sity) than the non-scripting language solutions. Values for
the comment densities were in the 20-30% range. Our main
explanation for the differences is that the study is just too
different from ours. Prechelt’s subjects were students, and
the programs were throw-away exercises. The study is over
10 years old and has a much smaller sample size. May be
most importantly, the implementers of the C, C++, and Java
versions were paid, while the implementers of the Perl and
Python solutions volunteered.

In his 2001 M.S. Thesis, Sundbakken assess the com-
ment density of maintenance phase code contributions to
components of four open source projects [5]. Sundbakken
observes in his data that consistent commenting correlates

highly with maintainability of the components. The meas-
ured comment density, however, is much lower than what
we have found: It ranges from 0.09% for poorly maintain-
able components to 1.22% for highly maintainable compo-
nents. We mostly attribute this discrepancy to the small
sample size of his study.

In a study on the comment density of a closed-source
compiler project in its maintenance phase, Siy and Votta find
a consistent comment density around 50% [6].

In another study of 100 Java open source classes, Elish
and Offutt find an average comment density of 15.2% with a
standard deviation of 12.2% [8]. Again, while closer to our
numbers, the small size makes it hard to compare this study
with our work.

Spinellis assesses the comment density for four operat-
ing system kernels, namely FreeBSD, Open Solaris, Linux,
and the Windows Research Kernel [2]. His data is not com-
parable with our data nor the data of any of the other studies,
as he uses a semantic (statement) based definition of com-
ment density and not a line-based one. The comment density
of the four kernels varies widely.

Fluri et al. assess three open source projects (Azureus,
ArgoUML and JDT Core) and describe how code and com-
ments co evolve [17]. Specifically, they observe whether the
comment density remains stable over time and whether de-
velopers maintain a strong commenting discipline over a
project’s lifetime. They also find that open source develop-
ers consistently comment their code base as 97% of all
common changes between source code and comments are in
the same revision. Regarding the comment ratio over a pro-
ject’s lifetime they find that it does not stay at a consistent
value. In one case they observe a significant upwards trend
while they find a significant downwards trends in the two
remaining projects. However, the small sample size of three
projects makes it hard to compare this study with our work.

We did not find any work that discusses how the com-
ment density of open source projects correlates to other rele-
vant variables of the involved projects.

7. Conclusions
This paper shows that successful open source projects are
consistently well documented with an average comment
density of 18.67%. We have found that this comment den-
sity varies by programming language but remains invariant
with respect to team size and project size (as measured in
source code lines). Maybe most importantly, we have found
that commenting source code is an integrated activity in the
development of open source software and not a separate
activity or an afterthought. These results shed further light
on how open source software is being developed. In future
work we will relate it to closed source software development
to improve corporate software development processes.

8. References
[1] Amit Deshpande, Dirk Riehle. “The Total Growth of Open

Source.” In Proceedings of Fourth Conference on Open
Source Systems. Springer Verlag, 2008. Page 197-209.

[2] Diomidis Spinellis. “A Tale of Four Kernels.” In Proceedings of
the 2008 International Conference on Software Engineering
(ICSE ’08). IEEE Press, 2008. Page 381-390.

[3] Lutz Prechelt. “Are Scripting Languages any Good? A
Validation of Perl, Python, Rexx, and Tcl against C, C++, and
Java.” Advances in Computers 57 (2003). Page 207-271.

[4] N. E. Fenton. Software Metrics: A Rigorous and Practical
Approach. Thomson Computer Press, 1996.

[5] Marius Sundbakken. Assessing the Maintainability of C++
Source Code. M.S. Thesis, Washington State University,
2001.

[6] Harvey Siy, Lawrence Votta. “Does the Modern Code
Inspection have Value?” In Proceedings of the 17th IEEE
International Conference on Software Maintenance (ICSM
’01). IEEE Press, 2001. Page 281-290.

[7] Carlo Daffara. “How Many Stable and Active Libre Software
Projects?” See http://flossmetrics.org/news/11.

[8] Mahmoud Elish, Jeff Offutt. “The Adherence of Open Source
Java Programmers to Standard Coding Practices.” In
Proceedings of the 6th IASTED International Conference
Software Engineering and Applications (SEA ’02). Page 193-
198.

[9] Ohloh, Inc. See http://www.ohloh.net.

[10] Ohloh, Inc. Ohloh API. See http://www.ohloh.net/api.

[11] Ohloh, Inc. ohcount. See http://labs.ohloh.net/ohcount.

[12] Philipp Hofmann, Dirk Riehle. “A Statistic for Calculating
Commit Size Probabilities in Open Source Projects.”
Technical Report, forthcoming.

[13] Lutz Prechelt. “An empirical comparison of C, C++, Java,
Perl, Python, Rexx, and Tcl for a search/string-processing
program.” Technical Report 2000-5, Universität Karlsruhe,
Fakultät für Informatik, Germany, March 2000.

[14] Amit Deshpande, Dirk Riehle. “Continuous Integration in
Open Source Software Development.” In Proceedings of the
Fourth Conference on Open Source Systems (OSS 2008).
Springer Verlag, 2008. Page 273-280.

[15] Barry W. Boehm. “A spiral model of software development
and enhancement.” Computer vol. 21, no. 5 (May 1988). Page
61-72.

[16] Kent Beck. Extreme Programming Explained: Embrace
Change. Addison Wesley, 1998.

[17] B. Fluri, M. Wümrsch, and H.C. Gall, "Do Code and
Comments Co-evolve? On the Relation between Source Code
and Comment Changes," Proc. 14th Working Conf. Reverse
Eng., IEEE CS Press, 2007, pp. 70–79.

[18] Oliver Arafat, Dirk Riehle. In Companion to Proceedings of
the 31st International Conference on Software Engineering
(ICSE 2009). IEEE Press, 2009. Page 195-198.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

