
In Proceedings of the 42nd Hawaiian International Conference on System Sciences (HICSS-42, track on Open
Movements: FLOSS, Open Contents, and Open Communities). IEEE Press, 2009. To appear.

The Commit Size Distribution of Open Source Software

Oliver Arafat, Dirk Riehle
SAP Research, SAP Labs LLC

3410 Hillview Ave, Palo Alto, CA, 94304 U.S.A.
oarafat@gmail.com, dirk@riehle.org

Abstract
With the growing economic importance of open

source, we need to improve our understanding of how
open source software development processes work.
The analysis of code contributions to open source pro-
jects is an important part of such research. In this pa-
per we analyze the size of code contributions to more
than 9,000 open source projects. We review the total
distribution and distinguish three categories of code
contributions using a size-based heuristic: single fo-
cused commits, aggregate team contributions, and
repository refactorings. We find that both the overall
distribution and the individual categories follow a
power law. We also suggest that distinguishing these
commit categories by size will benefit future analyses.

1. Introduction

Over the last 10 years, open source software has
become an important cornerstone of the software in-
dustry. Commercial users use open source software as
stand-alone applications and software vendors embed
it into their products. Surprisingly, from a commercial
perspective, open source software is being developed
in ways that are different from the way corporations
typically develop software. Research into open source
best practices illustrates the desire to understand how
open source software development works [1]. Once
understood, corporations could learn from open source
processes and adapt best practices to their needs.

The public nature of open source software devel-
opment makes a quantitative approach to analyzing
open source software development processes possible.
Data about the actual behavior of software developers
is readily available to researchers in source code re-
positories, in mailing list archives, and on project web-
sites. This is in sharp contrast to closed source pro-
jects, which typically remain hidden behind corporate
firewalls. As a consequence, much effort is being spent
on mining open source code repositories, as for exam-
ple the workshop series on "mining software reposito-
ries" shows [2] [3] [4] [5] [6].

Software development consists of making code
contributions, also known as commits, to a source code
repository that hosts the project. A particular challenge
for analyzing software developer behavior and better
understanding the open source software development
process is to understand the intent of these code con-
tributions. In particular, any of these commits may
have a different intent [9] [10] [15]. Some commits fix
bugs; others provide new features. Some remove code
to clean up a project; others add whole new libraries in
one go. Some commits are the result of a single devel-
opment step by a single developer; other commits are
the result of a whole team providing a year's worth of
work in the form of a new component.

In this paper we define three main categories of
commits. We present a size-based heuristic for deter-
mining into which category a commit falls. We base
our discussion and conclusions on the analysis of the
commit histories of 9,363 open source projects, pro-
viding more than 8 million commits. The main contri-
bution of this paper is

• to present the overall commit size distribution on a
level of scale that has not been done before,

• to split it up into three main parts, and to show that
these distributions all follow a power law.

Section 2 introduces our database and approach,
Section 3 presents the analysis of the commit size dis-
tribution, Section 4 discusses the limitations of our
approach, Section 5 presents related work, and Section
6 discusses some final conclusions.

2. Data Source and Approach

We use the database of the open source analytics
firm Ohloh Inc. [13]. Ohloh provides information from
project websites and source code repositories. The data
is stored in a relational database and is available to the
interested public [16]. The database contains high-
level data, such as the name of a project and its devel-
opers as well as fine-grain data like every individual
code contribution ever made to the project. We only

2

use data that was derived from the original project
websites and ignore data available from Ohloh only.

Initially, Ohloh seeded its database with the 5,000
most popular open source projects. After this, Ohloh
opened up its service for community editing in 2006.
By March 2008, another 6,000 projects had been
added by the community. This article is based on a
March 2008 database snapshot, which contains 9,363
completely crawled and analyzed projects covering a
time frame from January 1990 to February 2008.

The Ohloh database provides the complete con-
figuration management history of each crawled project
(to the extent available on the web). Thus, every single
commit action of all the projects over their entire his-
tory is available. A commit is the action with which a
developer contributes a piece of code to the project’s
repository. A commit consists of a set of file modifica-
tions that may encompass any of the following three
actions: the addition of code, the removal of code, and
the changing of existing code.

We measure the size of commits in this paper in
source lines of code (SLoC) using Ohloh’s own open
source diff tool [18]. SLoC consist only of actual pro-
gram code, omitting empty and comment lines. For the
purposes of this paper, we assume that one line of
source code added constitutes about the same amount
of work as one line of code removed or one line of
code changed. Thus, we add up the number of lines
added, removed, or changed to calculate the size of a
given commit.

A commit consists of several diffs each affecting
one file. For a given diff, the database provides the
following raw data:

• number of source lines of code added, and
• number of source lines of code removed.

We call one source code line of code added, re-
moved, or changed “one modification”. A commit
typically includes multiple modifications.

Unfortunately, a changed line of code is counted
as one line added and one line removed. This is a com-
mon problem in source code analytics, as there is no
certain way of determining whether a changed source
line of code isn’t really one line removed and a new
one added (short of asking the developer).

For example, the tuple (1 SLoC added, 1 SLoC
removed) might represent any of the two commit
events displayed in Table 1. Similarly, the tuple (4
SLoC added, 3 SLoC removed) might represent any of
the four commit events displayed in Table 2.

Let ac be the number of SLoC added in commit c,
and rc be the number of SLoC removed in commit c.
We can then define the lower and upper bound for the
number of modifications in the commit:
• lower bound: lbc = max(ac, rc)
• upper bound: ubc = ac + rc

The probabilities for modification sizes are un-
evenly distributed. Thus, an assumption of equal dis-
tribution does not hold in general. By using a subset of
our data and the changed line heuristic of the diff tool
(based on solving the Longest Common Subsequence
problem) we calculated the probability distribution for
any such modifications [17]. In this paper, we use this
distribution for calculating the size of the individual
commits as we add them up to derive the overall com-
mit size distribution of our project population.

Table 1: Interpretation of the database entry 1 SLoC added, 1 SLoC removed.

(1, 1) Number of
SLoC added

Number of
SLoC removed

Number of
SLoC changed

Number of
Modifications

Commit event 1 0 0 1 1

Commit event 2 1 1 0 2

Table 2: Interpretation of the database entry 4 SLoC added, 3 SLoC removed.

(4, 3) Number of
SLoC added

Number of
SLoC removed

Number of
SLoC changed

Number of
Modifications

Commit event 1 1 0 3 4

Commit event 2 2 1 2 5

Commit event 3 3 2 1 6

Commit event 4 4 3 0 7

3

3. Analysis and Discussion

In total, our database snapshot encompasses
8,556,036 commits. Of these, 215,531 commits have a
size of zero. A commit size of zero occurs if no source
lines of code are modified and only empty or com-
mented lines of code are affected. In addition, 22,429
commits only move files from one location to another.
With our focus on source code analysis we omit these
commits for the rest of the analysis. This results in a
total of 8,318,076 commits that are taken into consid-
eration for further analysis.

Figure 1 shows the total commit size distribution
of our sample population on a log/log-scale. The com-
mit sizes range from 1 modification to 7,881,674
modifications. We used logarithmic binning to reduce
the raw data to a data set more easily manageable for
display in Figure 1.

3.1 Total Commit Size Distribution

Prior work has categorized commits by semantic
intent, for example, whether a bug was fixed or a new
feature was added, see Section 5. In this paper, we are
interested in reviewing commits by size, so we decided
to distinguish the following three main categories:

• Single individual developer contribution (single
commit). In this case, a software developer makes

a code contribution that (ideally) deals with ex-
actly one semantic issue, for example, fixes a bug
or works towards contributing a feature.

• Aggregate developer contribution (aggregate
commit). In this case, a developer or a team of de-
velopers contributes a consolidated set of commits
they had been working on separately, for example
in another repository. An aggregate commit typi-
cally consists of multiple single commits.

• Component or repository refactoring or consoli-
dation. In this case, a typically large commit re-
sulted from integrating a whole library or branch-
ing a project.

Without prior knowledge, there is no certain way
of determining into which of these mutually exclusive
categories a given commit falls. However, for the
analysis of behavior of open source software develop-
ers we would like to distinguish these commits from
each other.

We suggest distinguishing commit types by their
size, using the following simple heuristic:

• single commits—1 to 100 SLoC,
• aggregate commits—101 to 10000 SLoC, and
• repository refactorings—more than 10000 SLoC.

The following discussion is structured along the
lines of these three categories.

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

7

26
21

4

52
42

8

1E
+0

6

2E
+0

6

4E
+0

6

8E
+0

6

2E
+0

7

Commit Size [SLoC]

N
um

be
r o

f O
cc

ur
re

nc
es

Figure 1: The total distribution of commit sizes after logarithmic binning (log/log scale).

4

3.2 Single Commits

Figure 2 shows the distribution of commit sizes
for single commits, defined as commits with less than
or equal to 100 commits, on a log/log scale. A power
relationship based curve has been fitted, providing an
R2 value of 0.9895. The good fit with the model sug-
gests that single commits follow a power law.

These commits in the range of 1-100 SLoC consti-
tute 83.54% of our total commit population. One-liners
constitute 12.13% of the total sample population, two-
liners constitute 8.964% of the population, three-liners
constitute 5.449%, and so on. Figure 3 displays the
percentage (of all commits) of commit sizes 1 to 10.
The smaller the size of a commit, the more likely it is.

The dominance of small commits and their (almost
strictly) falling probabilities as commit sizes get larger
is somewhat surprising. This may be a result of the
specifics of open source software development proc-
esses where many contributors cannot directly commit

code but rather have to channel it through a committer
[19]. This may have led to the dominance of small
commits; a comparison with closed source software
development is on our agenda for future work.

Table 3 shows a power relationship based model
for the data in Figure 2. It adds a second model for the
SLoC range of 11-100 SLoC, omitting the ten smallest
commit sizes. The R2 value for this second model is
even better than for the first model, suggesting that the
smallest commit sizes may involve their own types of
commit, warranting further investigation.

3.3 Aggregate Commits

We distinguish single commits, which represent
focused contributions like fixing a particular bug or
implementing a feature, from aggregate commits,
which represent larger aggregated chunks of work.
Such aggregate commits may be the result of

y = 2E+06x-1.1326

R2 = 0.9895

1.E+04

1.E+05

1.E+06

1.E+07

1 10 100

Commit Size [SLoC]

N
um

be
r o

f O
cc

ur
re

nc
es

Figure 2: The distribution of commit sizes in the range 1 to 100 SLoC (log/log scale).

Table 3: Models for single commits.

Model SLoC Range Function R-square

1 1-100 y = 2E+06x-1.1326 0.9895

2 11-100 y = 3E+06x-1.2464 0.9971

where x = commit size in SLoC and y = number of occurrences of the commit size

5

• a single developer or a team of developers delay-
ing commits to finish a complex feature, or

• a development process using distributed configu-
ration management systems.

Other explanations are possible as well. The result
is the same: The commit is a collection of prior com-
mits, typically single commits made separately from
the main code repository. The key distinguishing fea-

y = 7E+07x-1.8700

R2 = 0.9510

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

100 1000 10000

Commit Size [SLoC]

N
um

be
r o

f O
cc

ur
re

nc
es

Figure 4: Distribution of commit sizes in the range of 101-10,000 SLoC (log/log scale).

12.13%

8.96%

5.45%
4.96%

3.52% 3.35%
2.55% 2.57%

2.05% 1.94%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

1 2 3 4 5 6 7 8 9 10

Commit Size [SLoC]

Pe
rc

en
ta

ge
 o

f N
um

be
r o

f O
cc

ur
re

nc
es

Figure 3: Absolute percentage of 1-10 SLoC commit sizes of total sample population.

6

ture from single commits is the size, and we suggest
that size to cover the range of 101-10,000 SLoC.

Figure 4 shows the number of occurrences of
commit sizes in the range of 101-10,000 SLoC. When
fitting a curve using a power relationship based model
to Figure 4, we get an R2 value of 0.9510, suggesting
that this section of the overall commit size distribution
also follows a power law.

3.4 Repository Refactorings

Figure 5 shows the remaining commit occurrences
for sizes above 10,000 SLoC. This Figure uses an
equal distribution of commit size probabilities ap-
proximation, cf. [17]. We intend to refine the model in
future work.

Such large commits may be the result of

• a large copy and paste, for example the inclusion
of an existing library, or

• the initial check-in or branching or forking of an
existing project, or

• the merging of separate repositories in distributed
configuration management system.

These large commits represent aggregate commits
as well. Fitting a power relationship leads to an ap-
proximate model with an R2 of 0.7025. We attribute
the limited goodness of fit to the sparseness of data and
our equal distribution approximation.

3.5 Fitting to Power Law Models

Fitting a power relationship for Figure 1, the total
sample population (after logarithmic binning), pro-
vides the model and R2 shown in Table 4. The high R2
for the overall distribution suggests once more that it
follows a power law. The individual sections discussed
in this paper have an equal or even better fit, though
this is not surprising given the constrained range.
However, we take the overall goodness of fit as a
strong indicator that a power relationship based model
is a good approximation of the overall distribution.

Given the frequent use of visualizations in this pa-
per, one might suspect that we derived the power-law
model for the commit size distribution using graphical
interpolation for linear functions on the log/log-scale
graph. This has been shown to lead to inaccurate re-
sults [14]. In contrast to such approaches, we used
least-square fitting for determining the best matching

y = 9E+09x-2.3659

R2 = 0.7025

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+04 1.E+05

Commit Size [SLoC]

N
um

be
r o

f O
cc

ur
re

nc
es

Figure 5: Distribution of commit sizes above 10,000 SLoC (approximation, log/log scale)

Table 4: Model for total distribution.

y = 1E+07x-1.8612

R2 = 0.9782

where
 x = commit size in SLoC and
 y = number of occurrences of the commit size

7

function for the raw distribution data. Goodness of fit,
i.e. R2, is calculated as the coefficient of determination,
here specifically the Pearson Correlation Coefficient,
as provided by the worksheet function of Microsoft
Excel. Given the amount of data and the goodness and
smoothness of fit, we are confident in confirming the
power-law relationships we found.

4. Strengths and Limitations

A key strength of the presented work is the large
sample size. The projects represented in our database
draw broadly across all of open source, with no appar-
ent bias towards any particular source. If any, the bias
is towards current and popular projects. As mentioned,
Ohloh’s database was seeded with the top 5000 popu-
lar open source projects using Yahoo! search engine
in-links as the main measure. We had no control over
this algorithm. The subsequent enlistment of further
projects was done by the community which given the
young age of the Ohloh service suggests a bias towards
current popular open source projects rather than dead
ones. Thus, we feel confident in claiming that our re-
sults are representative for the current state of open
source.

The cut-off values we provide to categorize com-
mits into three different distinct categories represent a
simple heuristic only. We gained some confidence in
these values from the observation that each individual
segment seems to be best explained by a power law.
We concur with Madey et al. who observed that power
laws dominate many relationships we can find in peer
production based systems like open source [8].

Still, using size as the classification criterion only
will inadvertently miss-classify many commits. For
example, it is safe to assume that there will be many
single commits with more than 100 SLoC. Our intent
here is to demonstrate a pragmatic filter for further
open source analysis and to explore its properties.
Whether our heuristic is appropriate or not will depend
on the particular analysis being undertaken.

Also, while our three-category classification is in-
tuitively appealing, not all software developers behave
in such clean-cut ways, and there may be many com-
mits that mix purposes, for example, adding an exter-
nal component, fixing a bug, and implementing a new
feature all in one commit.

Maybe most significantly, our cut-off values of
100 SLoC and 10,000 SLoC are more based on obser-
vation and intuition and less based on statistical analy-
sis. The refinement of this heuristic will be a next step
to be undertaken, perhaps using discriminant analysis
to determine models for the different categories and

finding optimal cut-off values to distinguish the cate-
gories from each other.

5. Related Work

Purushothaman and Perry discuss the impact of
small changes on software projects [9]. They observe
that during maintenance, nearly 10% of all changes
made to the project under investigation were one-line
changes. This is close to our finding in Section 3.2 that
one-liners constitute slightly more than 12% of all
commits.

Hindle et al. analyzed nine open source projects
for the size of their commits, distinguishing small from
large commits [10]. They found that small commits are
more corrective while large commits are more perfec-
tive. Finally, they classified large commits by intent,
creating more than 20 categories for large commits.
Their notion of large commit is based on the number of
files touched and not of the number of source lines of
code involved, and hence is hard to compare with our
approach. In general, the types of large commits they
found seem similar to our notion of large component
or repository refactoring or consolidation.

Mockus and Votta looked at reasons for software
changes in the version histories of two closed source
projects [15]. The focus of their work was deriving the
reasons of changes from the commit comments. In the
process of their research, they (re-)discovered the three
well-known types of adaptive, corrective, and perfec-
tive changes. Of these changes, they found that correc-
tive changes (“bug fixes”) are the smallest. All of these
maintenance activities led to comparatively small
changes and would mostly correspond to what we
identified as single commits in this paper.

Some amount of work has been spent on more ac-
curately tracking actual changes in software projects.
As noted, most configuration management systems
only let you track the number of lines added and re-
moved and loose the information whether a line was
changed and how. Canfora et al. have developed a dis-
tance metric and algorithm for determining code simi-
larities between two source file revisions [11]. How-
ever, such work represents a statistical measure and
not a certain way of determining a source line of code
change over a combined removal/addition. Moreover,
it is computationally so expensive that we did not con-
sider it for our analysis. Robbes enhanced an IDE to
track the changes and a configuration management
system to store them [12]. Unfortunately, this system is
not in widespread use and data was not available.

8

6. Conclusions

In this article, we show how code contributions to
source code repositories in open source software de-
velopment follow a power-law distribution and can be
split into three distinct categories. We provide a simple
size-based heuristic for distinguishing between the
three categories. In future work we intend to improve
the statistical analysis on the various aspects presented.
For example, we intend to use discriminant analysis to
further distinguish commit types and to improve our
SLoC-based heuristic. Such distinct types may stem
from different development processes, different phases
in the process, differences in tooling, etc. Finally, we
are working on comparing these and other properties
of open source software with data gathered from
closed source code repositories.

Acknowledgements

We would like to thank Amit Deshpande, James
Noble, Ewan Tempero as well as the anonymous re-
viewers for helping us improve this paper through their
constructive feedback.

References

[1] Walt Scacchi. "Free/Open Source Software Develop-
ment: Recent Research Results and Emerging Opportuni-
ties." In Proceedings of ESEC/FSE 2007. ACM Press, 2007.

[2] MSR 1. Proceedings of the 1st International Workshop
on Mining Software Repositories. IEEE Press, 2004.

[3] MSR 2. Proceedings of the 2st International Workshop
on Mining Software Repositories. IEEE Press, 2005.

[4] MSR 3. Proceedings of the 3rd International Work-
shop on Mining Software Repositories. IEEE Press, 2006.

[5] MSR 4. Proceedings of the 4th International Work-
shop on Mining Software Repositories. IEEE Press, 2007.

[6] MSR 5. Proceedings of the 5th International Work-
shop on Mining Software Repositories. IEEE Press, 2008.

[7] James Howison and Kevin Crowston. "The Perils and
Pitfalls of Mining SourceForge" In Proceedings of MSR 1,
see [2].

[8] Gregory Madey, Vincent Freeh, Renee Tynan. "Mod-
eling the Free/Open Source Software Community: A Quanti-
tative Investigation" In Free/Open Source Software Devel-
opment, ed., Stephan Koch, Idea Publishing, 2004.

[9] Ranjith Purushothaman and Dewayne E. Perry. "To-
wards Understanding the Rhetoric of Small Changes." In
Proceedings of MSR 1, see [2].

[10] Abram Hindle, Daniel M. German, and Ric Holt.
"What Do Large Commits Tell Us? A taxonomical study of
large commits." In Proceedings of MSR 5, see [6].

[11] Gerardo Canfora, Luigi Cerulo, Massimiliano Di
Penta. "Identifying Changed Source Code Lines from Ver-
sion Repositories." In Proceedings of MSR 4, see [5].

[12] Romain Robbes. "Mining a Change-Based Software
Repository." In Proceedings of MSR 4, see [5].

[13] Ohloh, Inc. See http://www.ohloh.net.

[14] Michel L. Goldstein, Steven A. Morris, Gary G. Yen.
“Problems with Fitting to the Power-Law Distribution.” See
http://arxiv.org/abs/cond-mat/0402322.

[15] Audris Mockus, Lawrence G. Votta. “Identifying Rea-
sons for Software Changes Using Historic Databases.” In
Proceedings of the 2000 International Conference on Soft-
ware Maintenance (ICSM 2000). IEEE Press, 2000. Page:
120-130.

[16] Ohloh, Inc. Ohloh API. See http://www.ohloh.net/api.

[17] Philipp Hofmann, Dirk Riehle. “A Statistic for Calcu-
lating Commit Size Probabilities in Open Source Projects.”
Technical Report, forthcoming.

[18] Ohloh, Inc. ohcount. See http://labs.ohloh.net/ohcount.

[19] Dirk Riehle. “The Economic Motivation of Open
Source: Stakeholder Perspectives.” IEEE Computer, vol. 40,
no. 4 (April 2007). Page 25-32.

