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Abstract 
With the growing economic importance of open 

source, we need to improve our understanding of how 
open source software development processes work. 
The analysis of code contributions to open source pro-
jects is an important part of such research. In this pa-
per we analyze the size of code contributions to more 
than 9,000 open source projects. We review the total 
distribution and distinguish three categories of code 
contributions using a size-based heuristic: single fo-
cused commits, aggregate team contributions, and 
repository refactorings. We find that both the overall 
distribution and the individual categories follow a 
power law. We also suggest that distinguishing these 
commit categories by size will benefit future analyses. 

1. Introduction 

Over the last 10 years, open source software has 
become an important cornerstone of the software in-
dustry. Commercial users use open source software as 
stand-alone applications and software vendors embed 
it into their products. Surprisingly, from a commercial 
perspective, open source software is being developed 
in ways that are different from the way corporations 
typically develop software. Research into open source 
best practices illustrates the desire to understand how 
open source software development works [1]. Once 
understood, corporations could learn from open source 
processes and adapt best practices to their needs. 

The public nature of open source software devel-
opment makes a quantitative approach to analyzing 
open source software development processes possible. 
Data about the actual behavior of software developers 
is readily available to researchers in source code re-
positories, in mailing list archives, and on project web-
sites. This is in sharp contrast to closed source pro-
jects, which typically remain hidden behind corporate 
firewalls. As a consequence, much effort is being spent 
on mining open source code repositories, as for exam-
ple the workshop series on "mining software reposito-
ries" shows [2] [3] [4] [5] [6].  

Software development consists of making code 
contributions, also known as commits, to a source code 
repository that hosts the project. A particular challenge 
for analyzing software developer behavior and better 
understanding the open source software development 
process is to understand the intent of these code con-
tributions. In particular, any of these commits may 
have a different intent [9] [10] [15]. Some commits fix 
bugs; others provide new features. Some remove code 
to clean up a project; others add whole new libraries in 
one go. Some commits are the result of a single devel-
opment step by a single developer; other commits are 
the result of a whole team providing a year's worth of 
work in the form of a new component. 

In this paper we define three main categories of 
commits. We present a size-based heuristic for deter-
mining into which category a commit falls. We base 
our discussion and conclusions on the analysis of the 
commit histories of 9,363 open source projects, pro-
viding more than 8 million commits. The main contri-
bution of this paper is  

• to present the overall commit size distribution on a 
level of scale that has not been done before,  

• to split it up into three main parts, and to show that 
these distributions all follow a power law. 

Section 2 introduces our database and approach, 
Section 3 presents the analysis of the commit size dis-
tribution, Section 4 discusses the limitations of our 
approach, Section 5 presents related work, and Section 
6 discusses some final conclusions. 

2. Data Source and Approach 

We use the database of the open source analytics 
firm Ohloh Inc. [13]. Ohloh provides information from 
project websites and source code repositories. The data 
is stored in a relational database and is available to the 
interested public [16]. The database contains high-
level data, such as the name of a project and its devel-
opers as well as fine-grain data like every individual 
code contribution ever made to the project. We only 
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use data that was derived from the original project 
websites and ignore data available from Ohloh only. 

Initially, Ohloh seeded its database with the 5,000 
most popular open source projects. After this, Ohloh 
opened up its service for community editing in 2006. 
By March 2008, another 6,000 projects had been 
added by the community. This article is based on a 
March 2008 database snapshot, which contains 9,363 
completely crawled and analyzed projects covering a 
time frame from January 1990 to February 2008. 

The Ohloh database provides the complete con-
figuration management history of each crawled project 
(to the extent available on the web). Thus, every single 
commit action of all the projects over their entire his-
tory is available. A commit is the action with which a 
developer contributes a piece of code to the project’s 
repository. A commit consists of a set of file modifica-
tions that may encompass any of the following three 
actions: the addition of code, the removal of code, and 
the changing of existing code. 

We measure the size of commits in this paper in 
source lines of code (SLoC) using Ohloh’s own open 
source diff tool [18]. SLoC consist only of actual pro-
gram code, omitting empty and comment lines. For the 
purposes of this paper, we assume that one line of 
source code added constitutes about the same amount 
of work as one line of code removed or one line of 
code changed. Thus, we add up the number of lines 
added, removed, or changed to calculate the size of a 
given commit. 

A commit consists of several diffs each affecting 
one file. For a given diff, the database provides the 
following raw data: 

• number of source lines of code added, and 
• number of source lines of code removed. 

We call one source code line of code added, re-
moved, or changed “one modification”. A commit 
typically includes multiple modifications. 

Unfortunately, a changed line of code is counted 
as one line added and one line removed. This is a com-
mon problem in source code analytics, as there is no 
certain way of determining whether a changed source 
line of code isn’t really one line removed and a new 
one added (short of asking the developer). 

For example, the tuple (1 SLoC added, 1 SLoC 
removed) might represent any of the two commit 
events displayed in Table 1. Similarly, the tuple (4 
SLoC added, 3 SLoC removed) might represent any of 
the four commit events displayed in Table 2. 

Let ac be the number of SLoC added in commit c, 
and rc be the number of SLoC removed in commit c. 
We can then define the lower and upper bound for the 
number of modifications in the commit: 
• lower bound:  lbc = max(ac, rc) 
• upper bound:  ubc = ac + rc 

The probabilities for modification sizes are un-
evenly distributed. Thus, an assumption of equal dis-
tribution does not hold in general. By using a subset of 
our data and the changed line heuristic of the diff tool 
(based on solving the Longest Common Subsequence 
problem) we calculated the probability distribution for 
any such modifications [17]. In this paper, we use this 
distribution for calculating the size of the individual 
commits as we add them up to derive the overall com-
mit size distribution of our project population. 

Table 1: Interpretation of the database entry 1 SLoC added, 1 SLoC removed. 

(1, 1) Number of  
SLoC added 

Number of  
SLoC removed 

Number of  
SLoC changed 

Number of  
Modifications 

Commit event 1 0 0 1 1 

Commit event 2 1 1 0 2 

Table 2: Interpretation of the database entry 4 SLoC added, 3 SLoC removed. 

(4, 3) Number of  
SLoC added 

Number of  
SLoC removed 

Number of  
SLoC changed 

Number of  
Modifications 

Commit event 1 1 0 3 4 

Commit event 2 2 1 2 5 

Commit event 3 3 2 1 6 

Commit event 4 4 3 0 7 



3 

3. Analysis and Discussion 

In total, our database snapshot encompasses 
8,556,036 commits. Of these, 215,531 commits have a 
size of zero. A commit size of zero occurs if no source 
lines of code are modified and only empty or com-
mented lines of code are affected. In addition, 22,429 
commits only move files from one location to another. 
With our focus on source code analysis we omit these 
commits for the rest of the analysis. This results in a 
total of 8,318,076 commits that are taken into consid-
eration for further analysis. 

Figure 1 shows the total commit size distribution 
of our sample population on a log/log-scale. The com-
mit sizes range from 1 modification to 7,881,674 
modifications. We used logarithmic binning to reduce 
the raw data to a data set more easily manageable for 
display in Figure 1. 

3.1  Total Commit Size Distribution 

Prior work has categorized commits by semantic 
intent, for example, whether a bug was fixed or a new 
feature was added, see Section 5. In this paper, we are 
interested in reviewing commits by size, so we decided 
to distinguish the following three main categories: 

• Single individual developer contribution (single 
commit). In this case, a software developer makes 

a code contribution that (ideally) deals with ex-
actly one semantic issue, for example, fixes a bug 
or works towards contributing a feature. 

• Aggregate developer contribution (aggregate 
commit). In this case, a developer or a team of de-
velopers contributes a consolidated set of commits 
they had been working on separately, for example 
in another repository. An aggregate commit typi-
cally consists of multiple single commits. 

• Component or repository refactoring or consoli-
dation. In this case, a typically large commit re-
sulted from integrating a whole library or branch-
ing a project. 

Without prior knowledge, there is no certain way 
of determining into which of these mutually exclusive 
categories a given commit falls. However, for the 
analysis of behavior of open source software develop-
ers we would like to distinguish these commits from 
each other. 

We suggest distinguishing commit types by their 
size, using the following simple heuristic: 

• single commits—1 to 100 SLoC,  
• aggregate commits—101 to 10000 SLoC, and  
• repository refactorings—more than 10000 SLoC. 

The following discussion is structured along the 
lines of these three categories. 

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

7

26
21

4

52
42

8

1E
+0

6

2E
+0

6

4E
+0

6

8E
+0

6

2E
+0

7

Commit Size [SLoC]

N
um

be
r o

f O
cc

ur
re

nc
es

 
Figure 1: The total distribution of commit sizes after logarithmic binning (log/log scale). 
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3.2  Single Commits 

Figure 2 shows the distribution of commit sizes 
for single commits, defined as commits with less than 
or equal to 100 commits, on a log/log scale. A power 
relationship based curve has been fitted, providing an 
R2 value of 0.9895. The good fit with the model sug-
gests that single commits follow a power law. 

These commits in the range of 1-100 SLoC consti-
tute 83.54% of our total commit population. One-liners 
constitute 12.13% of the total sample population, two-
liners constitute 8.964% of the population, three-liners 
constitute 5.449%, and so on. Figure 3 displays the 
percentage (of all commits) of commit sizes 1 to 10. 
The smaller the size of a commit, the more likely it is. 

The dominance of small commits and their (almost 
strictly) falling probabilities as commit sizes get larger 
is somewhat surprising. This may be a result of the 
specifics of open source software development proc-
esses where many contributors cannot directly commit 

code but rather have to channel it through a committer 
[19]. This may have led to the dominance of small 
commits; a comparison with closed source software 
development is on our agenda for future work. 

Table 3 shows a power relationship based model 
for the data in Figure 2. It adds a second model for the 
SLoC range of 11-100 SLoC, omitting the ten smallest 
commit sizes. The R2 value for this second model is 
even better than for the first model, suggesting that the 
smallest commit sizes may involve their own types of 
commit, warranting further investigation. 

3.3  Aggregate Commits 

We distinguish single commits, which represent 
focused contributions like fixing a particular bug or 
implementing a feature, from aggregate commits, 
which represent larger aggregated chunks of work. 
Such aggregate commits may be the result of  
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Figure 2: The distribution of commit sizes in the range 1 to 100 SLoC (log/log scale). 

Table 3: Models for single commits. 

Model SLoC Range Function R-square 

1 1-100 y = 2E+06x-1.1326 0.9895 

2 11-100 y = 3E+06x-1.2464 0.9971 

where x = commit size in SLoC and y = number of occurrences of the commit size 
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• a single developer or a team of developers delay-
ing commits to finish a complex feature, or 

• a development process using distributed configu-
ration management systems. 

Other explanations are possible as well. The result 
is the same: The commit is a collection of prior com-
mits, typically single commits made separately from 
the main code repository. The key distinguishing fea-
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Figure 4: Distribution of commit sizes in the range of 101-10,000 SLoC (log/log scale). 
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Figure 3: Absolute percentage of 1-10 SLoC commit sizes of total sample population. 
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ture from single commits is the size, and we suggest 
that size to cover the range of 101-10,000 SLoC. 

Figure 4 shows the number of occurrences of 
commit sizes in the range of 101-10,000 SLoC. When 
fitting a curve using a power relationship based model 
to Figure 4, we get an R2 value of 0.9510, suggesting 
that this section of the overall commit size distribution 
also follows a power law. 

3.4  Repository Refactorings 

Figure 5 shows the remaining commit occurrences 
for sizes above 10,000 SLoC. This Figure uses an 
equal distribution of commit size probabilities ap-
proximation, cf. [17]. We intend to refine the model in 
future work. 

Such large commits may be the result of 

• a large copy and paste, for example the inclusion 
of an existing library, or 

• the initial check-in or branching or forking of an 
existing project, or  

• the merging of separate repositories in distributed 
configuration management system. 

These large commits represent aggregate commits 
as well. Fitting a power relationship leads to an ap-
proximate model with an R2 of 0.7025. We attribute 
the limited goodness of fit to the sparseness of data and 
our equal distribution approximation. 

3.5  Fitting to Power Law Models 

Fitting a power relationship for Figure 1, the total 
sample population (after logarithmic binning), pro-
vides the model and R2 shown in Table 4. The high R2 
for the overall distribution suggests once more that it 
follows a power law. The individual sections discussed 
in this paper have an equal or even better fit, though 
this is not surprising given the constrained range. 
However, we take the overall goodness of fit as a 
strong indicator that a power relationship based model 
is a good approximation of the overall distribution. 

Given the frequent use of visualizations in this pa-
per, one might suspect that we derived the power-law 
model for the commit size distribution using graphical 
interpolation for linear functions on the log/log-scale 
graph. This has been shown to lead to inaccurate re-
sults [14]. In contrast to such approaches, we used 
least-square fitting for determining the best matching 
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Figure 5: Distribution of commit sizes above 10,000 SLoC (approximation, log/log scale) 

Table 4: Model for total distribution. 

y = 1E+07x-1.8612 

R2 = 0.9782 

where 
 x = commit size in SLoC and 
 y = number of occurrences of the commit size 
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function for the raw distribution data. Goodness of fit, 
i.e. R2, is calculated as the coefficient of determination, 
here specifically the Pearson Correlation Coefficient, 
as provided by the worksheet function of Microsoft 
Excel. Given the amount of data and the goodness and 
smoothness of fit, we are confident in confirming the 
power-law relationships we found. 

4. Strengths and Limitations 

A key strength of the presented work is the large 
sample size. The projects represented in our database 
draw broadly across all of open source, with no appar-
ent bias towards any particular source. If any, the bias 
is towards current and popular projects. As mentioned, 
Ohloh’s database was seeded with the top 5000 popu-
lar open source projects using Yahoo! search engine 
in-links as the main measure. We had no control over 
this algorithm. The subsequent enlistment of further 
projects was done by the community which given the 
young age of the Ohloh service suggests a bias towards 
current popular open source projects rather than dead 
ones. Thus, we feel confident in claiming that our re-
sults are representative for the current state of open 
source. 

The cut-off values we provide to categorize com-
mits into three different distinct categories represent a 
simple heuristic only. We gained some confidence in 
these values from the observation that each individual 
segment seems to be best explained by a power law. 
We concur with Madey et al. who observed that power 
laws dominate many relationships we can find in peer 
production based systems like open source [8]. 

Still, using size as the classification criterion only 
will inadvertently miss-classify many commits. For 
example, it is safe to assume that there will be many 
single commits with more than 100 SLoC. Our intent 
here is to demonstrate a pragmatic filter for further 
open source analysis and to explore its properties. 
Whether our heuristic is appropriate or not will depend 
on the particular analysis being undertaken. 

Also, while our three-category classification is in-
tuitively appealing, not all software developers behave 
in such clean-cut ways, and there may be many com-
mits that mix purposes, for example, adding an exter-
nal component, fixing a bug, and implementing a new 
feature all in one commit. 

Maybe most significantly, our cut-off values of 
100 SLoC and 10,000 SLoC are more based on obser-
vation and intuition and less based on statistical analy-
sis. The refinement of this heuristic will be a next step 
to be undertaken, perhaps using discriminant analysis 
to determine models for the different categories and 

finding optimal cut-off values to distinguish the cate-
gories from each other. 

5. Related Work 

Purushothaman and Perry discuss the impact of 
small changes on software projects [9]. They observe 
that during maintenance, nearly 10% of all changes 
made to the project under investigation were one-line 
changes. This is close to our finding in Section 3.2 that 
one-liners constitute slightly more than 12% of all 
commits. 

Hindle et al. analyzed nine open source projects 
for the size of their commits, distinguishing small from 
large commits [10]. They found that small commits are 
more corrective while large commits are more perfec-
tive. Finally, they classified large commits by intent, 
creating more than 20 categories for large commits. 
Their notion of large commit is based on the number of 
files touched and not of the number of source lines of 
code involved, and hence is hard to compare with our 
approach. In general, the types of large commits they 
found seem similar to our notion of large component 
or repository refactoring or consolidation. 

Mockus and Votta looked at reasons for software 
changes in the version histories of two closed source 
projects [15]. The focus of their work was deriving the 
reasons of changes from the commit comments. In the 
process of their research, they (re-)discovered the three 
well-known types of adaptive, corrective, and perfec-
tive changes. Of these changes, they found that correc-
tive changes (“bug fixes”) are the smallest. All of these 
maintenance activities led to comparatively small 
changes and would mostly correspond to what we 
identified as single commits in this paper. 

Some amount of work has been spent on more ac-
curately tracking actual changes in software projects. 
As noted, most configuration management systems 
only let you track the number of lines added and re-
moved and loose the information whether a line was 
changed and how. Canfora et al. have developed a dis-
tance metric and algorithm for determining code simi-
larities between two source file revisions [11]. How-
ever, such work represents a statistical measure and 
not a certain way of determining a source line of code 
change over a combined removal/addition. Moreover, 
it is computationally so expensive that we did not con-
sider it for our analysis. Robbes enhanced an IDE to 
track the changes and a configuration management 
system to store them [12]. Unfortunately, this system is 
not in widespread use and data was not available. 
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6. Conclusions 

In this article, we show how code contributions to 
source code repositories in open source software de-
velopment follow a power-law distribution and can be 
split into three distinct categories. We provide a simple 
size-based heuristic for distinguishing between the 
three categories. In future work we intend to improve 
the statistical analysis on the various aspects presented. 
For example, we intend to use discriminant analysis to 
further distinguish commit types and to improve our 
SLoC-based heuristic. Such distinct types may stem 
from different development processes, different phases 
in the process, differences in tooling, etc. Finally, we 
are working on comparing these and other properties 
of open source software with data gathered from 
closed source code repositories. 
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