
)111�;@GGK=�>gjme�gf�GZb][l%Gja]fl]\�Kg^loYj]�9j[`al][lmj]&
BYe]k�G&�;ghda]f2�Gj_YfarYlagf�Yf\�9j[`al][lmj]&

-%)

Organization and
Architecture

James O. Coplien
Software Production Research,
Bell Labs

cope@research.bell-labs.com

In 1968, Mel Conway postulated that the structure of any information
system is isomorphic to the structure of the organization that built it.
Since then, we’ve been through several changes in technology and
design paradigm on the architecture side of software, and through many
management fads on the organizational side of software. Has anything
changed?

This talk looks at some of the important relationships between software
architecture and software development organization. The talk is based
in part on a career of anecdotal evidence, but it draws most directly on
seven years of empirical research in organization structure. The talk
addresses questions that loom important to software development
today.

Is geographically distributed development feasible? Does code
ownership help or hurt? What is the architect’s role, and how should
expertise be allocated to roles in development organizations? If
Conway’s law holds absolute sway, what does this portend for new
design paradigms?

CHOOSE Forum, 16:30 - 18:00, 11 March 1999, University of Bern,
Main Building, Room 31.

)111�;@GGK=�>gjme�gf�GZb][l%Gja]fl]\�Kg^loYj]�9j[`al][lmj]&
BYe]k�G&�;ghda]f2�Gj_YfarYlagf�Yf\�9j[`al][lmj]&

-%*

Introduction
■ Software Architecture as a third-order

affect
◆ Architecture
◆ Organizational Structure
◆ Value systems

■ Going deeper: Understand the
organization

■ Cultural artifacts come from culture

Computer science loves to focus on design and things related to
design: languages that express design, paradigms that shape design,
methods that guide design. The products of design are an architecture
and an implementation. Because of our preoccupation with these
deliverables, we focus on the tools and techniques that support their
creation and nurturing.

Yet architecture is less an echo of the tools and methods that create it
than of the organization that built it. This parallelism is called Conway’s
law, about which we’ll say more in following slides. More generally, the
product of any group reflects the structure of the group. The Tower of
Babel couldn’t be built because it had to be a single structure, yet its
builders were structured into several groups that couldn’t communicate
with each other.

Even more important — but beyond the scope of this talk — is the
underlying value system. Value systems generate structure, and
structure generates process. This layering is well known to cultural
anthropologists and sociologists, students of human behavior.

Software is an intensely social and human activity. It bears study
through the eyes of the human sciences much more than from the
perspective of so-called computer science. In this talk, we’ll examine
some empirical findings that underscore this perspective.

)111�;@GGK=�>gjme�gf�GZb][l%Gja]fl]\�Kg^loYj]�9j[`al][lmj]&
BYe]k�G&�;ghda]f2�Gj_YfarYlagf�Yf\�9j[`al][lmj]&

-%+

Why do architecture?

■ Good coupling and cohesion?
■ The code doesn’t care
■ Goal: Team/programmer autonomy
■ Organizations produce products that

reflect their own structure

Why do we care about architecture, and what do we focus on? We try
to minimize coupling and maximize cohesion. The original reasons for
this focus are almost lost to history: the goal was to allow groups to
work independently on their modules. The code doesn’t care whether
it’s cohesive or not. In fact, highly coupled code tends to perform better
than code with more layers of abstraction.

We need to focus beyond cohesion and coupling in their own right and
look to the needs of the organization. Organizations produce products
that reflect their own structure.

)111�;@GGK=�>gjme�gf�GZb][l%Gja]fl]\�Kg^loYj]�9j[`al][lmj]&
BYe]k�G&�;ghda]f2�Gj_YfarYlagf�Yf\�9j[`al][lmj]&

-%,

At one time, this was one of the most recognizable trademarks in the
world. In the beginning, the Bell System had beauty, elegance,
symmetry, monopoly...

)111�;@GGK=�>gjme�gf�GZb][l%Gja]fl]\�Kg^loYj]�9j[`al][lmj]&
BYe]k�G&�;ghda]f2�Gj_YfarYlagf�Yf\�9j[`al][lmj]&

-%-

This is an aerial photograph of a plot of ground near Naperville, Illinois,
in 1963.

)111�;@GGK=�>gjme�gf�GZb][l%Gja]fl]\�Kg^loYj]�9j[`al][lmj]&
BYe]k�G&�;ghda]f2�Gj_YfarYlagf�Yf\�9j[`al][lmj]&

-%.

By 1976, a large company had built a large R&D site on the property.

By the way, I’ve shown these slides in an auditorium in the above
building, and only about 20% of the people in the audience knew about
this architectural artifact of the building.

If you work inside a large system whose major architectural structures
are not known to you, bad things happen...

)111�;@GGK=�>gjme�gf�GZb][l%Gja]fl]\�Kg^loYj]�9j[`al][lmj]&
BYe]k�G&�;ghda]f2�Gj_YfarYlagf�Yf\�9j[`al][lmj]&

-%/

And, by 1988, the architecture had lost much of its symmetry.

)111�;@GGK=�>gjme�gf�GZb][l%Gja]fl]\�Kg^loYj]�9j[`al][lmj]&
BYe]k�G&�;ghda]f2�Gj_YfarYlagf�Yf\�9j[`al][lmj]&

-%0

By 31 March, 1994, it was even more misshapen — and one can see
the advent of a new parking lot in the back.

Today, there is yet another parking lot in back behind the one being
built here, and there are two new buildings below the bell clanger.

)111�;@GGK=�>gjme�gf�GZb][l%Gja]fl]\�Kg^loYj]�9j[`al][lmj]&
BYe]k�G&�;ghda]f2�Gj_YfarYlagf�Yf\�9j[`al][lmj]&

-%1

Topics of Discussion
■ Organizational Patterns
■ Distributed Development
■ Code Ownership
■ Architecture
■ The affect of paradigms
■ Promising avenues: aspects, domain

engineering, patterns, and process

In this talk, I’ll cover what I’ve found to be the important links between
organization and architecture. The talk is based in organizational
pattern research at Bell Labs over the past 8 years. The major topics of
the talk are distributed development, code ownership, architecture, the
affect of paradigms, and promising new technologies that embrace the
challenges of structuring organizations in large projects.

)111�;@GGK=�>gjme�gf�GZb][l%Gja]fl]\�Kg^loYj]�9j[`al][lmj]&
BYe]k�G&�;ghda]f2�Gj_YfarYlagf�Yf\�9j[`al][lmj]&

-%)(

Organizational
Patterns
■ The Bell Labs Pasteur project
■ A reaction against the shortcomings of

ISO 9000
■ Look at (communication) structure for

recurring patterns of success
■ Social network theory and the study of

culture

The Pasteur research project at Bell Labs was a large, long-running
effort to document the communication structure of software
development organizations and associated professional organizations.
The project gathered empirical data from dozens of development
projects, using a role-playing technique based on CRC cards. This
technique captured the instrumental structure of the organization — not
what appeared on the organizational chart.

We found that the patterns in these pictures spoke more about the
health of the organization than any ISO 9000 process spec did, and we
started cataloging and exploring the patterns. We soon discovered that
we had, in essence, reinvented social network theory, and we adopted
many of that discipline’s metrics and measures.

)111�;@GGK=�>gjme�gf�GZb][l%Gja]fl]\�Kg^loYj]�9j[`al][lmj]&
BYe]k�G&�;ghda]f2�Gj_YfarYlagf�Yf\�9j[`al][lmj]&

-%))

This is the social network of the Borland QPW project. Each box
corresponds to a role in the process. The brighter red a box is, the
more central it is to the communication network. The diagram is called
a social network diagram or adjacency diagram.

Yellow lines indicate paths of intense communication; red lines, paths
of moderate communication; green lines, paths of light communication.
These lines come from an aggregate weighting of individual interactions
between roles as related by the participants. The measure is
subjective, based on frequency, importance, and bandwidth.

The roles are placed on the page using a force-based two-dimension
relaxation algorithm. The most central roles (those most engaged in
communication) move to the center; those that are most decoupled
move to the outer edges.

This graph is more devoid of strong patterns than other pictures we
have. In fact, the evenness is the sign of a successful organization.
We can see a central architect and a highly engaged QA function, the
presence of a patron, and other configurations indicative of patterns we
find in successful organizations.

)111�;@GGK=�>gjme�gf�GZb][l%Gja]fl]\�Kg^loYj]�9j[`al][lmj]&
BYe]k�G&�;ghda]f2�Gj_YfarYlagf�Yf\�9j[`al][lmj]&

-%)*

Distributed
Development
■ Architecture Follows Organization

◆ Conway was right: “If you have four
groups working on a compiler, you’ll
get a four-pass compiler.”

■ Organization Follows Location
◆ Bürgi Study: allegiance and time
◆ The Thomas Allen studies

■ Political forces for geographically
distributed development

Large projects divide into multiple groups. The resulting product will
always reflect the structure of those groups — an observation made
many years ago (1968 or earlier) by Mel Conway. Our organizational
studies found that Architecture Follows Organization (pattern names are
underscored and italicized in this talk): just a restatement of Conway’s
Law. We also found that Organization Follows Location, no matter what
the organizational chart says.

In a study of geographically distributed development (across the Atlantic
Ocean), anthropologist Peter Bürgi found that the dominant forces
driving interaction between cultures were allegiance (local) and time
(shear).

Thomas Allen at Sloan School has mapped social distance as a
function of physical distance; it’s very nonlinear. A staircase is an
almost impenetrable barrier. Even a hallway corner is bad. In short,
distribution destroys communication.

This is a crucial consideration in today’s markets, where vendors are
encouraged to make a vested economic presence in countries where
they wish to establish a market.

)111�;@GGK=�>gjme�gf�GZb][l%Gja]fl]\�Kg^loYj]�9j[`al][lmj]&
BYe]k�G&�;ghda]f2�Gj_YfarYlagf�Yf\�9j[`al][lmj]&

-%)+

A technological fix?

■ CORBA Brokers
■ Programming in Pairs (a pattern, it

must be good) — between the U.S.
and China...

■ Teleconferencing (more on that later)

Of course, being engineers, we feel that technology triumphs over all. I
watched one project try to overcome geographic distribution (three
states and two countries) using a CORBA broker; the project because
so dependent on the idiosynchracies of the broker that it died under its
own weight.

Another favorite was a project where management decided that
Programming in Pairs was a good idea, so they paired good
programmers in one country with others on the other side of the Pacific
Ocean…

Teleconferencing is another supposed technological solution to an
organizational problem — but more about that later.

)111�;@GGK=�>gjme�gf�GZb][l%Gja]fl]\�Kg^loYj]�9j[`al][lmj]&
BYe]k�G&�;ghda]f2�Gj_YfarYlagf�Yf\�9j[`al][lmj]&

-%),

Code Ownership
■ Conway’s Law in-the-small
■ Successful organizations that do

complex software have code
ownership and architects
◆ Code ownership: Specialization

◆ Architects: Avoid tunnel vision

■ Domain Expertise in Roles: key
success correlator

■ It’s all about communication

Large projects that thrive over time usually practice code ownership.
It’s a form of Conway’s Law in the small. Code ownership builds on
specialization: when the domain expertise is too broad for the mind of a
single person, code ownership makes it possible to leverage the
separate skills of multiple individuals. Architects provide the high-level
glue that avoids tunnel vision.

The key expertise isn’t in the solution domain technology, but in the
application or business domain.

)111�;@GGK=�>gjme�gf�GZb][l%Gja]fl]\�Kg^loYj]�9j[`al][lmj]&
BYe]k�G&�;ghda]f2�Gj_YfarYlagf�Yf\�9j[`al][lmj]&

-%)-

Ownership supports
reuse
■ Law and property goes all the way

back to Rousseau
■ Reuse is about an economic model

and about good architectural and
organizational separation

■ A common pitfall: “swallowing the
platform”

Reuse is one of the Holy Grails of modern software, and it is largely a
myth. Having little to do with technology, reuse is about organizational,
political, economic, and social issues. Yes, there is an architectural
component, but it’s subservient to the economics.

One pattern I’m seeing more and more is that:

1. An organization sets out to build reusable assets;

2. They obtain a customer;

3. The customer insists on control and swallows the organization
building the reusable artifact;

4. The artifact becomes so contextualized in the parent organization
that it can’t be reused anywhere.

Only by keeping the organizations separate can reuse be achieved. It’s
not a matter just of architecture and design.

)111�;@GGK=�>gjme�gf�GZb][l%Gja]fl]\�Kg^loYj]�9j[`al][lmj]&
BYe]k�G&�;ghda]f2�Gj_YfarYlagf�Yf\�9j[`al][lmj]&

-%).

Architect Role
■ Architect Also Implements
■ The Big Picture Person
■ Not so much the keeper of the

system as the keeper of the
architectural style

■ Organizations tend towards an
architectural style — architecture
changes, style doesn’t

■ Styles and idioms permit graceful,
local adaptation

As mentioned before, architects make up in the broad view what
specialists lack in their local view. But the architect is not a deity nor a
repository of all knowledge about structure. The architect is just the
master builder, the keeper of the pattern language for the system
structure: the keeper of the architectural style.

A development organization that follows an architectural style. A large
project in Lucent started in 1978 and first deployed in 1982 with about
26 subsystems comprising a total of a few hundred thousand lines of
code. The system had an architecture that followed a certain
architectural style. Today, that system still thrives — at 60 million lines
of code, still growing and serving larger markets. Can one imagine that
any vestige of that original architecture remains anywhere hidden in
those 60 million lines? Probably not — but much of the style is the
same.

Styles, and the idioms/patterns that go with them, permit designers to
work autonomously in a way that leads to graceful evolution. There
may be replication, but that, too, gets cleaned up along the way in a
healthy project — which is why Code Ownership can’t be too strong.

)111�;@GGK=�>gjme�gf�GZb][l%Gja]fl]\�Kg^loYj]�9j[`al][lmj]&
BYe]k�G&�;ghda]f2�Gj_YfarYlagf�Yf\�9j[`al][lmj]&

-%)/

How to get shared
vision
■ The Boeing story

Larry Constantine tells the story of the Boeing 777 project, which felt it
was important to gather all project members under one roof at one time,
several times during the project. I think the numbers were close to
10,000 people. Well, if you’re an airline company, you find a place big
enough to do that: a large airline hangar. And you have the means to
bring them there: fly them from all around the world. This coming
together led to an intangible sense of common purpose, and led to
relationships that eased communication throughout the project.

If one were a telecommunications company, one wonders if it comes
down to a 10,000 person conference call...

)111�;@GGK=�>gjme�gf�GZb][l%Gja]fl]\�Kg^loYj]�9j[`al][lmj]&
BYe]k�G&�;ghda]f2�Gj_YfarYlagf�Yf\�9j[`al][lmj]&

-%)0

Paradigms and
Partitioning
■ Distributed-Looking Processing

◆ A common OO metaphor (Actor)
◆ Leads to tunnel vision

■ Abstract does not imply vague;
partitioning is not abstraction

The industry seems to hold onto a fascination with distributed
processing. One often finds analysis model that assume infinite
processors, ostensibly for the sake of not over-constraining the solution.
However, this leads to a strange cargo cult style of programming that
seems to have few practical benefits.

Early OO methods — and many facets of contemporary OO practice —
emphasize this pseudo-distributed nature of the problem. Forcing
distribution adds accidental complexity that isn’t germane to the
problem.

)111�;@GGK=�>gjme�gf�GZb][l%Gja]fl]\�Kg^loYj]�9j[`al][lmj]&
BYe]k�G&�;ghda]f2�Gj_YfarYlagf�Yf\�9j[`al][lmj]&

-%)1

Rising to the task
■ Aspects
■ Domain Engineering
■ Patterns
■ Organizations

Most of the recent advances in software design directly tackle these
organizational issues by considering the parallels between
organizations and the factorings supported by the technology at hand.
Aspect-oriented programming separates out cross-cutting concerns that
normally exacerbate group independence. Domain engineering
overcomes the artificial coupling that arises from the application of one
shape of partitioning criteria to another shape of problem. Patterns
explicitly focus on wholeness, on systemic relationships. And first-class
organizational practices can tackle many of these problems first-hand.

)111�;@GGK=�>gjme�gf�GZb][l%Gja]fl]\�Kg^loYj]�9j[`al][lmj]&
BYe]k�G&�;ghda]f2�Gj_YfarYlagf�Yf\�9j[`al][lmj]&

-%*(

Aspects (AOP)

■ Factoring out system properties that
can’t be modularized

■ Largely an engineering discipline
■ Unlikely to be a panacea

Aspect-oriented programming provides “a better handle on managing
cross-cutting concerns.” The idea is tantalizing: take any perspective
of a system and factor it out as a self-contained entity. However,
aspects can be only a stopgap measure, particularly for systems with
many non-orthogonal “tops”. No matter how you cut the aspects, some
of them will interfere with each other at the specification level.

AOP is likely to go a long way in extending the facilities of MOPs and of
application generators to provide flexibility in complex designs, and for
dealing with non-functional requirements. The organizational benefits
can be substantial.

)111�;@GGK=�>gjme�gf�GZb][l%Gja]fl]\�Kg^loYj]�9j[`al][lmj]&
BYe]k�G&�;ghda]f2�Gj_YfarYlagf�Yf\�9j[`al][lmj]&

-%*)

Domain Engineering

■ Commonality and Variability Analysis
■ AOLs: the “universal paradigm”
■ Focus on domains (specialization)
■ Multi-Paradigm Design

◆ Admits many different kinds of
factorings

◆ Likely to have the most value in lower
level design within teams

Domain engineering goes back to basics: how do we create
abstractions, and how do we express them? Going to the primitive level
of commonality and variability analysis, we go beyond paradigm into a
meta-paradigm world where, in theory, everything can be custom-fit.
Indeed, one possible output of domain engineering is an application-
oriented language. But even without an AOL, domain engineering helps
the designer divide things cleanly along lines of expertise — along
domain boundaries.

Many projects try to impose an object structure on a problem no matter
how good or bad the fit. The misfit between object partitioning criteria,
and the natural creases in the problem, leads to dependencies between
modules that wouldn’t be there if another paradigm were used. Multi-
paradigm design optimizes the choice of paradigms to maximize
autonomy of modules.

While multi-paradigm design most often is associated with a small
number of primitive paradigms (object, procedural, functions and rules,
or objects, procedural, overloading, parametric, etc.) it easily can be
parameterized to deal with any solution domain technologies. Because
the scope of most multi-paradigm methods is close to the programming
language level, many of the benefits are likely to be at low levels.

)111�;@GGK=�>gjme�gf�GZb][l%Gja]fl]\�Kg^loYj]�9j[`al][lmj]&
BYe]k�G&�;ghda]f2�Gj_YfarYlagf�Yf\�9j[`al][lmj]&

-%**

Pattern (languages)

■ Beyond GOF…
■ Can capture systemic relationships
■ The basis of a shared vision
■ Generators of culture (structure,

vocabulary)
■ Far from today’s use
■ The real goal: pattern languages

By “patterns,” I don’t mean the things one finds in the Gang of Four
book. Alexander’s vision for patterns is that they capture system-level
relationships of whole structure that support quality of life. Patterns
provide a shared vision of architecture that is impossible to
communicate effectively in technological terms. Used insightedly,
patterns are operative at a cultural level.

Several mature development culture have been using patterns
(consciously or not) this way for years. In fact, anthropological literature
has used the term “pattern” in this sense for many years, in the sense
of a recurring cultural structure. Sadly, few of the new age pattern
practitioners rise to this level: for most, patterns are just a cute form to
document special exceptions or tricks.

Properly used, no pattern stands alone. The real value comes not from
patterns, but from pattern languages. Patterns alone are a small
increment beyond objects.

)111�;@GGK=�>gjme�gf�GZb][l%Gja]fl]\�Kg^loYj]�9j[`al][lmj]&
BYe]k�G&�;ghda]f2�Gj_YfarYlagf�Yf\�9j[`al][lmj]&

-%*+

Organizations as a
first-class concern
■ Valuing expertise

◆ Programming as a craft
◆ Domain expertise as the skill

■ Organize around specialists (Domain
Expertise in Roles)

■ Workplaces that support
communication

Instead of attacking these problems architecturally, we can directly
attack some of them organizationally. Organizing around expertise,
around domains, instead of around other units, helps align architecture
and organization. The expertise in question here isn’t computer science
or software engineering expertise, but business expertise.

It’s also important to have workplaces that support communication.
Groups that work together should be colocated. Careful attention
should be paid to putting people on the same floor, in sight of each
other. These seem like details, but they can make or break a project.
For example, the existence of one long hallway (that went outside the
building proper) between the marketing and engineering arms of a large
west-coast company exacerbated the friction between those two
divisions, and almost killed the company.

)111�;@GGK=�>gjme�gf�GZb][l%Gja]fl]\�Kg^loYj]�9j[`al][lmj]&
BYe]k�G&�;ghda]f2�Gj_YfarYlagf�Yf\�9j[`al][lmj]&

-%*,

Conclusion

■ Architecture and design are really
about organizational structure

■ Ownership of artifacts, system
relationships

■ A singular opportunity for curriculum
developers, change agents,
technologists, and corporate
strategists

Organizations have architecture, too — in fact, that’s the important
architecture of a system. The software architecture is kind of incidental.
Software architecture is a second-order consideration; it’s the people
that are primary. It’s critical that this perspective permeate our curricula
and management policies more universally.

Have you done something good for your fellow programmer today?

)111�;@GGK=�>gjme�gf�GZb][l%Gja]fl]\�Kg^loYj]�9j[`al][lmj]&
BYe]k�G&�;ghda]f2�Gj_YfarYlagf�Yf\�9j[`al][lmj]&

-%*-

References
■ Allen, Thomas. Managing the Flow of Technology. Cambridge, MA: MIT Press, 1984.
■ Conway, Melvin E. How do committees invent? Datamation 14(4):28-31, April, 1968.
■ Coplien, J. Multi-Paradigm Design for C++. Reading, MA: Addison-Wesley, ©1999.
■ Coplien, J. Patrons des Organisations Professionelles. Objet ‘98, Rennes, June 1998.

http://www.bell-labs.com/~cope/Talks/Patterns/Organization/RennesObjet98.
■ Coplien, J. A Generative Development Process Pattern Language. In Linda Rising, ed., The

Patterns Handbook: Techniques, Strategies, and Applications, 243-300. Cambridge
University Press, New York, January 1998. http://www.bell-
labs.com/~cope/Patterns/Process/.

■ Coplien, J. Patterns of Productive Software Organizations. Bell Labs Technical Journal,
1(1):138-145, Summer (September) 1996.
http://www.lucent.com/ideas2/perspectives/bltj/summer_96/paper11/.

