
PREPRINT – IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XXXXX 2016

Inner Source in
Platform-based Product Engineering

Dirk Riehle, Maximilian Capraro, Detlef Kips, Lars Horn

Abstract—Inner source is an approach to collaboration across intra-organizational boundaries for the creation of shared reus-
able assets. Prior project reports on inner source suggest improved code reuse and better knowledge sharing. Using a multiple-
case case study research approach, we analyze the problems that three major software development organizations were facing
in their product line engineering efforts. We find that a root cause, the separation of product units as profit centers from a plat -
form organization as a cost center, leads to delayed deliveries, increased defect rates, and redundant software components. All
three organizations assume that inner source can help solve these problems. The article analyzes the expectations that these
companies were having towards inner source and the problems they were experiencing in its adoption. Finally, the article
presents our conclusions on how these organizations should adapt their existing engineering efforts.

Index terms—Inner source, product line engineering, product families, platform-based product engineering, open source, open
collaboration, case study research.

1. INTRODUCTION
Inner source software development is the use of open source
best practices in firm-internal software development [26]. Thus,
inner source is an approach to collaboration based on the open
collaboration principles of egalitarian, meritocratic, and self-or-
ganizing work [63]. Egalitarian work means that software de-
velopers are free to contribute to projects that they have not
been officially assigned to, meritocratic work means that deci-
sions are made based on the merits of an argument and not
based on the status of the involved people, and self-organizing
work means that developers adjust their collaboration processes
to the needs at hand rather than strictly following a predefined
process [52].

In inner source, no open source software is being developed,
but open source best practices are being used. Many engineer-
ing organizations expect that complementing existing top-down
processes with such bottom-up self-organization will improve
their productivity. This article focuses on software development
within companies across intra-organizational boundaries, most
notably profit center boundaries, that would otherwise hinder
any such collaboration. In a nutshell, inner source is supposed
to enable collaboration across development silos.

Dinkelacker et al. [26] of Hewlett Packard suggest improved
quality, shared problem solutions, and more readily allocatable
developer resources as a result of applying inner source. Gur-
bani et al. [36] [37] suggest that the contributions of many im-
prove quality and that the free availability of a software compo-
nent within the company reduces collaboration friction. Vitha-
rana et al. [70] of IBM suggest improved reuse. Our experience
is that inner source can improve access to resources, software
quality and development speed, among other things [52].

Over the last five years, we have helped several software de-
velopment organizations understand and adopt inner source.
Many found it difficult to apply the lessons described in the
aforementioned articles to their situation. What seemed to work
on paper, did not work in practice.

This article presents case study research on the situation of
three major software development organizations which were
trying to apply inner source to platform-based product engineer-
ing. A platform is a set of shared reusable assets, including but
not limited to software libraries, components, and frameworks
[50]. We define platform-based product engineering to be the
engineering of software products utilizing a shared common
platform. Product line engineering [18] is a special but impor-
tant case of platform-based product engineering.

Our case study companies expected inner source to help
them overcome problems with lack of resources, lack of perti-
nent skills, and unclear requirements. Yet, they had problems
putting inner source into practice. To this end, this article ad-
dresses the following research questions:

 RQ1: What are current problems in platform-based prod-
uct engineering (leading to inner source)?

 RQ2: What benefits do organizations expect from adopting
inner source?

 RQ3: What problems did they experience when adopting
inner source?

The research method employed is multiple-case case study re-
search [14] [28] [73] [9]. Data gathering and analysis was per-
formed using workshops, formal interviews, and materials re-
view. The process was incremental with learnings being pro-

————————————————

 Dirk Riehle is with the Computer Science Department, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany. E-mail:
dirk.riehle@fau.de.

 Maximilian Capraro is with the Computer Science Department, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany. E-
mail: maximilian.capraro@fau.de.

 Detlef Kips is with Develop Group, 91058 Erlangen, Germany. E-mail: kips@develop-group.de.
 Lars Horn is with e-solutions, 91058 Erlangen, Germany. E-mail: lars.horn@esolutions.de.

mailto:dirk.riehle@fau.de
mailto:lars.horn@esolutions.de
mailto:kips@develop-group.de
mailto:maximilian.capraro@fau.de

RIEHLE ET AL.: INNER SOURCE IN PLATFORM-BASED PRODUCT ENGINEERING 2

vided back to the case study participants to receive validating
feedback as to the theories being built (“member checking”).

The contributions of this paper are the following:

 It presents three non-trivial case studies of platform-based
product engineering.

 It provides three theories, each answering to one of the re-
search questions, specifically:

◦ a theory of key problems companies face in platform-
based product engineering,

◦ a theory of expected benefits of applying inner source
to product engineering, and

◦ a theory of experienced or expected problems of
adopting inner source.

Similar to open source, which evolved from a volunteer-based
(“free-for-all”) development process to a foundation-based
(“managed”) software development process [53] [13], we find
that for our case study organizations, inner source should move
to a governed process beyond the definition given in the begin-
ning of this section.

The paper is structured as follows. Section 2 reviews related
work on inner source and product line engineering. Section 3
describes our research set-up, methods employed, and data
sources. Section 4 presents the research results as a set of theo-
ries addressing the research questions. Section 5 discusses our
findings and suggests hypotheses for theory validation. Section
6 discusses the limitations of this work, and Section 7 provides
an outlook on future work and some concluding remarks.

2. RELATED WORK
The first research on inner source was reported about by Din-
kelacker et al. [26] in 2002. A slow stream of case studies and
examples has been reported about since then [36] [31] [52] [68]
[66] [37] [70] [62]. Product line engineering [18] [50] has re-
ceived most of the attention in platform-based product engi-
neering so we focus on this.

2.1 Inner Source Software Development
Inner source is the use of open source practices in corporate
software development [26] [62]. Other terms that have been
used are hybrid open source [58], corporate open source [37],
and firm-internal open source [52]. Inner source is not necessar-
ily intended to replace an organization’s development methods,
but can be used to extend these methods [65] [67] [68].

DTE Energy [61], Ericsson [64], Hewlett-Packard [26] [47],
IBM [48] [70], Kitware [45], Lucent [36] [37], Nokia [41] [42]
[43], Philips [71] [67] [68] [69], and SAP [52] all report about
inner source in corporate software development. These practi-
tioner reports do not answer our research questions, but they do
indicate the relevance of inner source research in general.

This paper focuses on inner source in platform-based prod-
uct development. With the exception of Philips, none of the or-
ganizations reporting about inner source specifically addressed

this situation. Consequently, it is not clear to which extent re-
ported inner source problems and solutions apply to inner
source in platform-based product development.

Philips applied an inner source approach to software product
line engineering. Philips observed that inner source increased
collaboration of geographically distributed developers, enabled
collaboration across intra-organizational boundaries, enhanced
knowledge management and information exchange, “helped to
break the platform bottleneck, since using departments are able
to create patches”, and lead to improved software quality and
more efficient development [71] [67] [68] [69]. Inner source
adoption at Philips was challenged by process diversity among
the organizational units [71]. When compared with the reports
from Philips, we find similar benefits, but identify more chal-
lenges for the successful adoption of inner source in product
line engineering.

In contrast to the practitioner reports from Philips and other
organizations, we performed case study research using qualita-
tive data analysis. Our cases cover three different mature devel-
opment organizations, all of which are culturally and socially
homogeneous. We reduced complexity by excluding cases of
globally distributed software development. Thus, our resulting
theories have a significantly higher validity and reliability than
the practitioner reports.

In absolute numbers, there is still less research literature on
inner source than there are practitioner reports.

Melian and Mähring [46] as well as Gaughan et al. [31] per-
formed exploratory studies. They discuss benefits and chal-
lenges of inner source adoption. Stol et al. [63] introduce a
model of nine key factors to support inner source adoption. Stol
et al.’s model was synthesized from literature and evaluated in
three case-studies. While some of the key factors are geared to-
wards mitigating inner source adoption challenges, the model
does not aim to present benefits and challenges of inner source
adoption. None of the studies discusses specifics of inner
source adoption in software product line engineering.

Stol et al. [62] present a case study of an undisclosed organi-
zation that is developing a software product line. They identi-
fied 13 challenges of integrating software developed using an
inner source approach into their product line. We can confirm
some of their findings, but also present theories and draw con-
clusions that go beyond the situation of integrating existing in-
ner source components. We address the full life-cycle, from cre-
ation through development and use to maintenance of a compo-
nent, and we do so using three large independent case studies
rather than one. We therefore believe our results are more
broadly applicable.

2.2 Platform-based Product Engineering
In our research, we investigate inner source as applied to plat-
form-based product engineering. Most inner source reports dis-
cuss one-off projects where only one inner source component
was being developed. In contrast, our work is about a group of
products (case 1), a product family (case 2), and a product line
(case 3) [5] [50], all three on top of a single shared platform that
offers a large number of shared reusable assets.

A product line, according to Clements and Northrop is “a set
of software-intensive systems sharing a common, managed set

3

of features that satisfy the specific needs of a particular market
segment or mission and that are developed from a common set
of core assets in a prescribed way” [18]. This definition focuses
on the artifacts. In addition, Schwanninger et al. state: “[...] the
term ‘software product line engineering’ denotes a collection of
engineering techniques and practices that supports the efficient
development of such software-intensive systems (or products)”
[57]. This second definition focuses on the processes rather than
the artifacts and is more in line with our work here.

A significant part of research into product line engineering is
about tools and mechanisms for managing product variability,
for example, [2] [10] [11] [12] [21] [22] [24] [25] [49] [55] [56]
[59] [60] [65]. Our work is orthogonal to this research, because
we focus on the processes leading to the specification, develop-
ment, and use of shared components, rather than the tools and
mechanisms for managing it. Also, the specific challenges of
product line variability are not a concern for this research, be-
cause the shared reusable assets from our case platforms not
only supported a product line but also a product family and a
product group.

In the established terminology of product line engineering,
the domain engineering process governs the identification, defi-
nition, creation, and evolution of reusable assets, typically made
available to applications as part of a platform the applications or
products built on. The application engineering process then
governs the selection, configuration, adaptation and eventual
use of a reusable platform asset in the context of an application
for a particular market segment [1] [3] [4] [6] [7] [8] [16] [17]
[18] [50]. Our research is related to these processes if viewed
more broadly (not just a product line but also a product family
or group). Specifically, our research identifies problems that the
case study companies had in their engineering efforts and which
they believed could not be overcome using a product line ap-
proach but only using an inner source approach.

Problems with application and domain engineering pro-
cesses in product line engineering have been identified, for ex-
ample, by Berger et al. [10] and Jepsen et al [39]. Without call-
ing it inner source, this research came to similar conclusions as
the inner source research reviewed earlier.

The relationship between inner source and product line engi-
neering has been recognized by industry. Most notably, van der
Linden presented a tutorial at the 13th International Conference
on Product Line Engineering about using inner source in prod-
uct line engineering [67]. Like [66], this is a practitioner report.
No research is known to us that specifically combines inner
source with platform-based product engineering in general or
software product line engineering in particular.

3. RESEARCH APPROACH
We performed multiple-case case study research. Case study re-
search is a natural choice for dealing with phenomena for which
no established theories exist [27]. Case study research is a well-
established exploratory research method [9] [14] [19] [23] [28]
[29] [73].

3.1 Case Selection (Sampling)
We acquired the case study companies from our industry net-
work. We looked for cases that were similar along the following
dimensions:

 Established long-running set of products on top of a shared
platform (age > 10 years)

 Mature software development organization with estab-
lished platform engineering practices in place

 Sufficiently large development organization (developer
population size > 500 people)

 Culturally and socially homogeneous, with all developers
located in one location or region

All our cases fulfill the properties. This makes them comparable
along these dimensions, allowing us to draw cross-case conclu-
sions and strengthen the breadth of our theory [9].

Please note that this focus also limits the generalizability of
our results; most notably, and deliberately, we excluded prob-
lems and solutions of globally distributed software development
in this research.

3.2 Cases and Companies
The three cases stem from three independent, large and diversi-
fied, internationally operating software product companies. Ta-
ble 1 shows key properties of the products and their owning
company.

 Company 1 provides multiple business software products.
The case study (case 1) is about a particular product group.

 Company 2 provides a broad portfolio of products. The
case study (case 2) is about a health-care software product
family.

 Company 3 provides a broad portfolio of products. The
case study (case 3) is about a telecommunications carrier
software product line.

As mentioned, we avoided the complexity of globally distrib-
uted software development. Only during the course of analysis
did we learn that case 2 collaborated with a remote party. When
we inquired further, our case study partners confirmed that they
thought this information was not relevant for the case.

We had not selected for this, but found that all three cases
shared the same organizational setup:

 All products and the supporting platform are owned by a
single business unit with a single overall business owner
responsible for all products.

 The business unit is broken up into product units, each of
which is a profit center of its own. A product unit manages
the development of a particular product as sold to a partic-
ular market. A profit center is an organizational unit that is
expected to directly contribute to the company’s profit. The
manager of a product unit has revenue responsibility for it.

RIEHLE ET AL.: INNER SOURCE IN PLATFORM-BASED PRODUCT ENGINEERING 4

 The supporting platform organization, which provides the
reusable assets, is a cost center, paid for jointly by the
product units. A cost center is an organizational unit that
supports other units, but is not expected to contribute to
company profits directly.

We therefore distinguish three main and distinct organizational
units of analysis: the overall business unit, the individual prod-
uct units, and the platform organization.

3.3 Data Gathering
In each case, we were brought in by a case study sponsor. In
case 1 and 2 we gained access to all units of analysis (product
group business unit, selected product units, platform organiza-
tion) as well as individuals from the corresponding organiza-
tional units. In case 3 we worked through an internal consulting
group that mediated our access to the units of analysis.

In all cases, audio recordings of discussions were not permit-
ted. In case 1 and 2 we went in as two researchers, with one re-
searcher asking questions and the other researcher taking notes.
In case 3 only one researcher was permitted, who also took the
notes. In total, we conducted 21 semi-structured interviews of at
least one hour or longer, see Table 2. We also collected product
information, internal memos, software documentation, and or-
ganizational documentation, see Table 3.

We took on cases in the order of their numbering. Starting
with case 1, we refined our questions and perspectives in the
first set of interviews together with a representative of the case
study sponsor and selected follow-on interviews accordingly.

Our key questions and interview guidelines remained stable
after the first case and have been applied to case 2 and 3 like
they had been applied to case 1. However, interviews of this
type of research are exploratory, so we allowed for theoretical
sensitivity, and followed discussion paths that had not been
foreseen in our interview guidelines.

Case 2 already repeated most issues of case 1, but during
case 3 we learned little new, so we concluded that we were
nearing theoretical saturation and should stop [15] [19] [34].

3.4 Data Analysis
We performed iterative and incremental “qualitative” data anal-
ysis (QDA). We employed MaxQDA, a qualitative data analysis
tool. Theory building using QDA consists of repeatedly work-
ing through existing and new materials, annotating (“coding”)
text segments, and extracting a code system, the backbone of
the theory under development [15] [19].

A code system consists of a hierarchy of codes, with so-
called core categories at or near the root, and the most specific
codes as the leaves. Different activities transform the hierarchy
in different ways.

Case 1 Case 2 Case 3

P
ro

d
u

c
t

g
ro

u
p

/f
a

m
ily

/li
n

e

Product domain Business software Health-care software Telecommunications carrier
software

Type of platform-based
product engineering

Group of products on shared
platform

Product family on shared
platform

Product line including shared
platform

Age of products > 10 years > 10 years > 10 years

Number of developers in
product engineering

> 500 developers > 500 developers > 500 developers

Is product engineering dis-
tributed?

No (same campus) Yes, but within same metro-
politan area

No (same campus)

Developer population Socially and culturally homo-
geneous

Socially and culturally homo-
geneous

Socially and culturally homo-
geneous

How is product engineering
organized?

Product = profit center
Platform = cost center

Product = profit center
Platform = cost center

Product = profit center
Platform = cost center

C
o

m
p

a
n

y
 i

n
fo

rm
a

ti
o

n Age of company > 20 years > 20 years > 20 years

Total number of developers
in company

> 1.000 developers > 10.000 developers > 10.000 developers

Is the company operating
internationally?

Yes Yes Yes

Case sponsor Product group business
owner

Platform organization Internal consulting group

Table 1. Key properties of case study products and their companies

5

 Open coding creates the basic set of codes from which the
hierarchy is built. Open codes are straightforward annota-
tions of the primary materials and directly link to them.

 Axial coding builds the code system by deriving more ab-
stract concepts and categories from open codes, that is, the
axes of the code system are being developed.

 Selective coding finally allows the coder to choose what is
important and what is not. By dropping irrelevant aspects,
the code system is being shaped into the theory backbone.

Concepts in the code system are cross-linked by memos to en-
rich concepts and relationships and the resulting theory with in-
sights from the primary materials. We applied the constant com-
parative method, which ensures that the code system remains
cohesive and focused on the questions to be answered [32].

The resulting code system and its memos are an abstract rep-
resentation of the theory presented in this paper. The resulting
theories are descriptive in nature. They have been derived using
an inductive process and are therefore applicable to their origi-
nal context, but not necessarily beyond [19] [15].

3.5 Quality Assurance
The empirical base of the work enhances the trustworthiness of
the presented theories [33]. In general, the quality of the theo-
ries is maintained by following the methods properly.

We had a second coder code a second code system. This in-
dependently developed code system showed a high degree of
agreement with the original code system [44]. For assessing
this, we sat together and went through the codings one-by-one,
finding little inconsistencies, supporting our conclusion of high
rigor of our work and strengthening our theory’s reliability.

The broad array of available materials supported data trian-
gulation that increased the internal validity of our theories [35].

4. RESEARCH RESULTS
This section presents a theory of selected problems in platform-
based product engineering, the expected benefits of applying in-
ner source to such product engineering, and adoption problems
when doing so.

4.1 Presentation of Results
This section presents results using cause-and-effect diagrams
[38]. We found that this type of diagram brings out the theories
better than a more traditional top-down concepts and relation-
ships discussion.

In our diagrams, a rectangle represents a concept. A concept
has a name. The numbers at the bottom of the box indicate the
case in which they were mentioned. A category is represented
as a rectangle with gray background. If a concept is positioned
on top of a category, it belongs to that category.

Causes and effects flow from left to the right. An arrow be-
tween two concepts links the source to the target as one cause to
one effect. An effect can also be a cause to other effects; cause
and effect are roles of concepts. Cause and effects can have m:n
relationships, and we capture these relationships as an acyclic
graph. Cause and effect relationships are transitive. Links de-
rived from other links by transitive concatenation are omitted in
our diagrams.

In all three case studies, we were not allowed to make audio
recordings. The quotations we provide in the following sections
are derived from our notes and therefore summarize or para-
phrase what we heard. In addition, we changed the terminology
from company-specific terms to generic terminology.

4.2 Problems in Product Engineering
Figures 1 and 2 present cause-and-effect diagrams of problems
and their effects on the engineering efforts of our case study

Case Year No. Interviews Workshops Supplemental Materials

1 2012 11 5 Yes

2 2013 6 None Yes

3 2013 4 3 Yes

Table 2. Interview and materials information

Case 1 Case 2 Case 3

Unit of analysis access Direct access to all units of
analysis

Direct access to all units of
analysis

Mediated by sponsor

Subject access Interview partners selected by
consensus

Interview partners selected by
consensus

Mediated by sponsor

Types of data collected Collateral materials,
interview notes

Collateral materials,
interview notes

Collateral materials,
interview notes

Researchers Two researchers (one inter-
viewer, one scribe)

Two researchers (one inter-
viewer, one scribe)

Single researcher taking his own
notes

Table 3. Access to units of analysis, data gathered, methods employed

RIEHLE ET AL.: INNER SOURCE IN PLATFORM-BASED PRODUCT ENGINEERING 6

companies. Figure 1 shows problems with organizational struc-
ture, and Figure 2 shows how these problems affect the domain
engineering process. Both figures share some of the same
causes; they have been split up for readability purposes.

The key result is the following:

A root cause, the separation of product units as profit cen-
ters from a platform organization as a cost center, leads to
delayed deliveries, increased defect rate, and redundant
software components.

In our case studies, the business unit owns all products and the
platform, a product unit develops a particular product, and a
platform organization supports the product units in their work
by providing shared reusable assets. The business units in our
case studies are all structured into product units as profit centers
and the platform organization as a cost center.

As Figure 1 shows, the problems encountered with the orga-
nizational structure are traced back to the “separation of product
units as profit centers and platform organization as cost center”,
which makes them “silos” in the language of our interview part-
ners, that is, organizational units that do not collaborate suffi-
ciently. Specifically, the “separation of product units as profit
centers” leads to

 “lack of global business unit perspective” where each
product unit acts in their own interests irrespective of pos-
sible synergies from collaboration,

 “insufficient trust between product units” where other
product units are viewed as threats or competitors rather
than possible collaborators,

 “power play between product units” where managers in
some or all of the product units are fighting to enforce their
interests irrespective of other product unit needs,

 “insufficient developer networking” where developers do
not find the time to talk to each other across the organiza-
tional unit boundaries.

In addition, the separation starves the platform organization for
resources. This leads to

 “lack of resources at platform organization”, because profit
centers responsible for their own revenue are always in a
stronger position to hire developers than any cost center.

Figures 1 and 2 do not show every cause and effect relationship,
and discussing all interactions is beyond a reasonable length for
this article. In the following subsections, we therefore focus on
the following three central cause-and-effect chains:

1. Lack of resources at platform organization → Delayed do-
main artifact realization → Delayed product delivery

2. Power play between product units → Poorly prioritized do-
main requirements → Rework and wasted effort → De-
layed product delivery

3. Insufficient intra-organizational-unit collaboration → Lim-
ited understanding of other organizational units → Unclear
reusable assets requirements → Insufficient reusable asset
quality → Increased defect rate

We chose these chains for presentation because they received
the most mentions and interest in our interviews.

4.2.1 Chain 1: Lack of resources

In all three cases, the platform organization had a significantly
higher workload than any of the product units, despite the more
direct pressure on the product unit to deliver a product.

“All this work overload leads to lower code quality. I just
finish up as quickly as I can and then move on.” Developer
(platform), case 1.

Figure 1. Problems in our case study companies resulting from their organizational structure

7

“The platform often misses delivery deadlines for reusable
assets, which keeps product units from delivering their own
features in time.” Developer (product unit), case 2.

“We fixed the bug ourselves, using a work-around. We cured
the symptom, not the cause, but the platform organization
had no time for this bug.” Developer (product unit), case 2.

“The platform organization is completely overloaded by too
many reusable asset requirements from product units. Most
never get realized.” Mediator, case 3.

The lack of resources of the platform organization has various
consequences, including delayed delivery of products and lower
quality of the code base.

All the products are mature and were bringing in substantial
revenues. So why is the platform organization not as well
staffed as the product units?

“The cost pressure is not high enough; time-to-market is
more important. That is why we [product unit] get new de-
velopers more easily.” Developer (product unit), case 1.

“We are moving the platform towards becoming a product of
its own so that we can more easily hire developers our-
selves.” Manager (platform), case 2.

“Making a case for a new developer to save costs is much
harder than making a case for a developer who will bring in
more money.” Mediator, case 3.

In all case studies, (product unit) profit centers find it easier to
hire new developers than (platform organization) cost centers.
In case 2, it had led management to contemplate turning the
platform organization into a profit center itself (they were con-
sidering to turn the platform into a product of its own).

4.2.2 Chain 2: Product unit power play

In all three cases, the requirements engineering process for re-
usable assets suffered from poor prioritization of the require-
ments.

“A consequence of the power play between product units is
that the platform drives the [domain engineering] process
and involves product units only very late.” Developer (plat-
form), case 1.

“We [platform organization] don’t know how to prioritize
reusable asset requirements, and the product units are no
help because each feature is most important.” Manager
(platform), case 2.

“Our feature requests often don’t get prioritized highly
enough, so we have to implement them ourselves. This leads
to inefficient and ugly code.” Developer (product unit), case
2.

Product units found it hard to participate effectively in the do-
main engineering process for the definition of shared reusable
assets. This is a result of the power play between the product
units: The power play led to disagreement and stalemates, leav-
ing it to the platform organization to define and prioritize re-

Figure 2. Resulting process and artifact problems in case study companies

RIEHLE ET AL.: INNER SOURCE IN PLATFORM-BASED PRODUCT ENGINEERING 8

quirements. The platform organization in turn does not know
how to do this well because it is too far away from market re-
quirements:

“We [product unit] often have to change requirements, and
the platform does not prioritize these change requests highly
enough. Generally speaking, the platform organization does
not prioritize well, because it is too far away from the cus-
tomer.” Architect (product unit), case 2.

While product units believe that the platform organization can-
not prioritize well, the stalemate between product units to get
their requirements prioritized highest has put the platform orga-
nization in charge of domain requirements prioritization—even
though the product units believe that knowing their customers is
important to prioritize these domain requirements right.

4.2.3 Chain 3: Insufficient collaboration

The lack of sufficient collaboration between product units and
between product units and the platform organization led to lim-
ited understanding of what product units need and hence what
the reusable asset requirements provided by them actually
mean:

“Our silo culture and the lack of collaboration hinders the
effectiveness of domain engineering. We seem to never agree
on what would be an important reusable asset nor its spe-
cific features.” Developer (product unit), case 1.

“Reusable assets often don’t work. They don’t meet our
[product unit] requirements.” Manager (product unit), case
1.

“I have too much to do to contribute code [to other
projects]. We […] file change requests and that’s it.” Devel-
oper (product unit), case 2.

“The lack of collaboration [across the product family] really
hurts a unique look-and-feel.” Manager (product unit), case
2.

A main consequence of not understanding reusable asset re-
quirements is rework and wasted effort until the product units
are satisfied. This implies a higher defect rate than would have
been necessary:

“We didn’t understand the reusable asset requirements as
communicated by the product units. […] Not much worked
when we first delivered the component.” Developer (plat-
form), case 1.

Summarizing, the case study companies felt that their existing
domain engineering processes were not delivering reusable as-
sets of sufficient quality fast enough.

4.3 Expected Benefits of Inner Source
The case study sponsors had read our early work at SAP on in-
ner source (then called “firm internal open source”) [52], which
also provided their understanding of inner source. In that defini-
tion, we followed the basic pattern of explaining inner source as
open-source-style software development within the company.

In this original understanding of inner source, the key idea is
that all relevant software is laid open for everyone inside the
company. As new requirements surface or problems with exist-

ing components are found, developers help themselves by con-
tributing new features to components or fixing bugs of compo-
nents that they are not necessarily responsible for.

In this subsection, we present what case study sponsors were
expecting to achieve by applying inner source to their platform-
based product engineering. In the next subsection we present
the reservations they had and the problems they were experi-
encing in their inner source adoption efforts.

4.3.1 Overview of Expected Benefits of Applying Inner
Source

Table 4 displays the expected benefits as taken from our analy-
sis and the cause-and-effect concept linkage.

We separate general benefits that accrue to everyone from
the benefits that accrue only to specific units of analysis. In ad-
dition, we add benefits that accrue to developers because of the
high number of mentions.

 General benefits expected are improved innovation, collab-
oration, development efficiency and uniformity of pro-
cesses. The largest subcategory is higher development effi-
ciency, where improved code reuse and quality were key
mentions. Finding and fixing bugs faster was particularly
important. It was mentioned that a higher awareness of
overall business unit goals was important and could be
achieved. Finally, innovation was assumed to speed up.

 From the business unit perspective, inner source would get
products to market faster. From a product unit perspective,
product quality would improve, the platform would be eas-
ier to work with, and problems would be solved faster be-
cause of the product unit’s broader understanding of the in-
volved assets. From the platform organization’s perspec-
tive, the benefits were complementary: A lower workload
was assumed, because product units would be empowered
to help themselves and requirements would become clearer
and better prioritized.

 Specific benefits accruing to software developers were a
higher job satisfaction and an improved reputation within
the company.

Many of these benefits have already been reported about in the
literature, see Section 2. Here, we’ll first focus on the expected
benefits as they relate to the problems of platform-based prod-
uct engineering reported in the previous section, and then add
selected expected benefits that are of interest to software devel-
opment in general.

4.3.2 Expected Benefits towards Problems with Platforms

Inner source is expected to address the problem of “lack of re-
sources” in the platform organization:

“The traditional processes are like a corset; we sometimes
have to wait for a year to receive the features we need.”
Manager (product unit), case 2.

“Rather than wait for the platform to add the new feature,
we would like to do it ourselves to overcome the resource ca-
pacity problem.” Manager (product unit), case 2.

9

“Inner source helps allocate existing resources in a more ef-
ficient way [than existing approaches].” Mediator, case 3.

When discussing product unit power play and poorly prioritized
and defined requirements, interview partners pointed out that
inner source gives product units back some power and reintro-
duces a better understanding of the business value of features:

“Using inner source, we [product unit] can reclaim more
say in feature prioritization, which we had lost to the plat-
form organization.” Manager (product unit), case 2.

“Inner source helps better determine the business value of
requirements and prioritize them right.” Mediator, case 3.

Finally, on the problem of “insufficient collaboration”, inner
source brings about more knowledge sharing, which was widely
discussed as beneficial by our interview partners:

“Inner source helps product units gain the necessary knowl-
edge for efficient use of platform components.” Developer
(platform), case 1.

“Inner source helps us better share knowledge to alleviate
the effects of people leaving the company.” Owner (business
unit), case 1.

“We would like to broaden the capabilities of our developers
beyond their immediate product, and inner source helps us
do that.” Manager (product unit), case 2.

4.3.3 Expected Benefits towards General Problems

Interview partners not only discussed how they expect inner
source to help address the problems with platforms, but also
how it helps improve development efficiency in general.

Inner source is expected to speed up development:

“By sharing best practices through inner source collabora-
tion, I expect us to get more effective in using our tools.”
Developer (platform), case 1.

“Through inner source we’ll get to know more developers
which will help us fix problems faster in the future.” Man-
ager (product unit), case 2.

“Inner source improves time-to-market.” Mediator, case 3.

Also, inner source is expected to improve code quality:

“Inner source leads to more uniformity and reduction of
complexity [...]” Developer (platform), case 1.

“I expect a shared code base to be of higher quality.” Devel-
oper (product unit), case 2.

“Inner source should help unify the quality assurance pro-
cesses.” Manager (product unit), case 2.

“Inner source encourages product units to find and fix de-
fects in platform code. ” Mediator, case 3.

Finally, inner source is expected to improve code reuse:

General benefits for everyone

◦ Improved global perspective

◦ Improved innovation

◦ Improved intra-organizational collaboration

◦ Improved intra-organizational knowledge sharing

◦ Improved development efficiency

▪ Higher code reuse

▪ Higher code quality

 Earlier bug detection

▪ More efficient use of tools

▪ Improved resource management

▪ Improved development speed

 Faster bug fixing

◦ because of Linus’ law [51]

◦ because of less administrative overhead

 More efficient collaboration

▪ Better clarified responsibilities

◦ Lower software complexity

◦ More uniform processes

Specific benefits to overall business unit

◦ Faster time-to-market

◦ Improved engineering process

Specific benefits to product unit

◦ Improved product quality

◦ Better requirements comprehension by platform

◦ Faster problem resolution by helping themselves

Specific benefits to platform organization

◦ Improved requirements

▪ Clearer requirements because of better understanding of
product unit

▪ Better prioritized requirements by higher involvement of
product unit

◦ Lower workload by enabling product unit developers to help
themselves

Specific benefits to developers

◦ Higher job satisfaction

▪ through improved relationships with colleagues

▪ more meaningful work in inner source projects

◦ Improved reputation

Table 4. Overview of benefits expected of applying inner source to platform-based product engineering at case study companies

RIEHLE ET AL.: INNER SOURCE IN PLATFORM-BASED PRODUCT ENGINEERING 10

“Inner source [between product units] will make it easier to
reduce redundant code, move components into the platform
where they belong.”Developer (product unit), case 2.

“We expect to see more code reuse.” Mediator, case 3.

The general assumption is that inner source gets people to col-
laborate more and better across organizational unit boundaries
and that this leads to more and better knowledge sharing and
broader understanding of one’s own and other people’s work.

Our interview partners expect that, due to these changes, re-
quirements are communicated more clearly, prioritized better,
and understood more easily. Development efficiency improves
because people understand the implications of their work better
and can draw on broader support going about their work.

Several interview partners suggested that a well-organized
inner source process would be a superior domain engineering
process when compared with the traditional cross-functional
teams that were responsible for new reusable asset definition
and implementation.

Finally, interview partners suggested that inner source im-
proves innovation processes:

“Inner source lets product units participate more in priori-
tizing and realizing platform requirements; this added flexi-
bility creates more innovation.” Architect (product unit),
case 1.

“Most innovations take place outside the platform unit; us-
ing inner source we can more easily transfer them to the
platform.” Developer (product unit), case 2.

“Inner source takes the platform closer to the customer,
makes it more relevant.” Architect (platform), case 2.

Finally, inner source is expected to motivate developers and
help them build a reputation.

“I expect developers to be more satisfied about their job.”
Owner (business unit), case 1.

“Inner source developers will see an increase of their inter-
nal ‘market value’.” Owner (business unit), case 1.

“Opening up assets and processes will increase the respect
for platform development.” Manager (platform), case 2.

Such added motivation and visibility was considered to be ben-
eficial to the company as well.

4.4 Experienced Problems with Inner Source
While the interview partners from our case study companies ex-
pected that the benefits described in the previous subsection
could be achieved, they also had questions as to how this could
be done best.

All three case companies had already been applying inner
source using the generic model laid out in the literature without
much concern for the specifics of platform-based product engi-
neering. In this subsection we present the problems they were
experiencing.

Table 5 shows the relevant part of our code system. The
main categories are

 “problems with developers” (both product unit and plat-
form organization) and

 “problems with product unit managers” (only product unit,
not platform).

Where it says “problems with [...]” in Table 5, the problems had
already materialized. Where it says “expected problems with
[...]”, interview partners were only expecting these problems
but had no actual experiences to back these up.

Expected but not empirically experienced problems are not
necessarily irrelevant: They represent fears or misunderstand-
ings, even if those fears may not be grounded in reality. For ex-
ample, some worried about “degradation of code base due to
uncontrolled contributions”. Here, the (wrong) assumption is
that projects are free for all to write to. Like in open source, any
real inner source project will provide unlimited read access but
will tightly control write access, typically employing a two-
stage review process for quality assurance [30].

Two main subcategories emerged for both developers and
product unit managers: Lack of engagement due to

 “boundary conditions not being right” and

 “active psychological resistance”.

There were no concerns specifically attributed to engineering
managers from the platform organization. It was assumed that
they stood the most to gain since they were complaining about
the lack of resources the loudest.

4.4.1 Problems with Developers

For developers, the worry was that they were generally too
overloaded to contribute or would not know how to do it or
would find the software too complex to make a contribution.
Some of these problems can be remedied short-term by educa-
tion (how to contribute) while others will remain long-term re-
search topics (reducing software complexity). They are either
manageable or out of scope from an inner source perspective.

In scope is the active psychological resistance that some de-
velopers and product unit managers showed. For developers, it
boiled down to two subcategories:

 Dislike of performing quasi-public work and

 fear of follow-on and maintenance work.

4.4.1.1 Dislike of performing quasi-public work

With assets being more open and work being more transparent,
a developer can build a reputation as well as lose one. Work is
out in the (corporate) open, and mistakes are more visible than
before. Achievements are more clearly attributable to individual
developers.

“Many developers don’t like to touch other people’s code be-
cause they fear making mistakes.” Manager (platform), case
1.

11

“Inner source leads to [public] mistakes, and [some] devel-
opers fear mistakes because they lead to reputation loss
among colleagues.” Manager (platform), case 1.

“Some developers feel intimidated by inner source [develop-
ment] and do not contribute because they feel they do not
know how to do it.” Mediator, case 3.

Quasi-public work, however, is a two-edged sword: What wor-
ries some developers inspires others (see “reputation gain” un-
der benefits in the previous subsection).

4.4.1.2 Fear of follow-on and maintenance work

With real or perceived workloads high in all case study compa-
nies, anything that suggested more work seemed problematic:

“Developers will show passive resistance because they fear
inner source will add more work.” Manager (platform), case
1.

“Even if a developer has a good idea for an inner source
project, they will not talk about it out of fear of having to
perform the work themselves.” Developer (product unit),
case 1.

“If the inner source project is large, developers will avoid
contributing out of fear of being sucked in and not being
able to leave.” Mediator, case 3.

Specifically, it was assumed that developers might not contrib-
ute, because they fear requests for continued or follow-on work,
including maintenance work:

“Most developers hate maintenance of important compo-
nents because it makes them responsible for fixing high-pri-
ority bugs; this creates too much stress.” Developer (prod-
uct unit), case 1.

“Some developers show passive resistance, because they
fear inner source will add more work.” Developer (product
unit), case 2.

Worries about unwanted maintenance work were strong.

4.4.2 Problems with Product Unit Managers

For product unit managers, the worry was that they had not
enough budget flexibility and typically were focused too much
on their own career, that is, lacked a greater-good perspective
(for the overall business unit). Active psychological resistance
was assumed because of two effects:

 Fear of transparency and loss of control and

 fear of not meeting performance goals.

4.4.2.1 Fear of transparency and loss of control

The idea of exposing all project management artifacts from a
road-map down to detailed task lists was frightening to some,

Problems with developers

◦ Lack of contributions due to ...

▪ boundary conditions not being right due to ...

 general work overload

 not knowing how to contribute

 software being too complex

▪ active psychological resistance due to ...

 dislike of debugging someone else’s code

 dislike of showing incomplete work

 fear of making public mistakes

 fear of maintenance work

 fear of follow-on work

▪ lack of developer benefits

Problems with product unit managers

◦ Lack of contributions due to …

▪ boundary conditions not being right due to ...

 lack of budget flexibility

 lack of greater-good perspective

▪ active psychological resistance due to

 lack of willingness to negotiate

 fear of appearing unfocused to peers

 fear of transparency, opening plans

 fear of not meeting performance goals by

◦ loaning out of best developers

◦ losing resources

 fear of loss of control

Expected problems with asset quality

◦ Degradation of code base due to ...

▪ uncontrolled contributions

▪ lack of contributor knowledge

Expected problems with pilot projects

◦ Cancellation of inner source initiative due to ...

▪ overly ambitious pilot that failed

▪ lack of metrics that show success

Expected problems with processes

◦ Wasted resources due to lack of coordination

General problems

◦ General resistance against change due to ...

▪ current insufficient communication

▪ current strong hierarchical organization

Table 5. Experienced or expected problems with inner source adoption

RIEHLE ET AL.: INNER SOURCE IN PLATFORM-BASED PRODUCT ENGINEERING 12

since it suggests exposure to public scrutiny and follow-on cri-
tique---a serious problem in highly political organizations.

“Most managers dislike showing their planning documents
widely; it might open them up for critique.” Manager (prod-
uct unit), case 1.

Similarly, letting developers participate in inner source projects
and not knowing in detail what they were doing suggests loss of
control, another unpleasant feeling:

“Allowing developers to contribute to inner source projects
may feel like losing control to some managers.” Developer
(platform), case 1.

4.4.2.2 Fear of not meeting performance goals

Another perception was that by letting developers contribute to
inner source, middle managers would lose resources and hence
may not be able to meet their performance goals. Thus, some
disallowed any such engagement, and when forced, tried to
keep their best developers to themselves.

“Negotiations between managers to allow their developers
to contribute to inner source can be time-consuming.” Man-
ager (product unit), case 1.

“Managers may disallow contribution to inner source if they
feel their own product is not benefiting enough.” Developer
(platform), case 1.

“A typical middle manager will try to keep their good devel-
opers to themselves and only let their low-performing devel-
opers contribute to inner source.” Architect (product unit),
case 2.

4.4.3 Summary of Experienced Problems

From a “greater good” perspective, i.e. the efficiency of the
overall business unit, inner source makes imminent sense.
However, for middle managers of the product units and the de-
velopers in the trenches, real problems stand in their way.

As to developers, like in open source, we can assume that
some will take to inner source and some won’t. Some will want
to build a company-wide reputation and further their career,
while some will not.

As to middle managers, inner source initiatives are facing a
tragedy of the commons problem. As others also observed [71],
everyone wants to utilize the platform, but not everyone allows
their developers to contribute to inner source projects.

5. DISCUSSION OF FINDINGS
Our case study companies found it difficult to successfully es-
tablish inner source projects; this article presents the reasons we
found. The key problems are misaligned organizational incen-
tives leading to local rather than global revenue optimization
and psychological challenges of the involved middle managers
and developers leading to the rejection of open collaborative
behavior as necessary for inner source projects.

5.1 Discussion of Problems
The problems break down into organizational, psychological,
and process challenges.

5.1.1 Organizational Challenges

We found that making product units profit centers leads middle
managers to worry more about reaching their performance goals
than overall engineering efficiency. Under such pressure, the re-
lationship to the platform organization becomes more transac-
tional rather than more relational: The platform is supposed to
provide software for an agreed-upon specification for appropri-
ate compensation.

However, formalizing the relationship and making it more
transactional does not solve the underlying knowledge manage-
ment problems: Understanding the requirements, implementing
them properly, and knowing how to use the results are not capa-
bilities that can be communicated well on paper.

5.1.2 Psychological Challenges

Some middle managers and developers feared the transparency
that inner source brought to their projects: They disliked that all
across the organization other managers and developers could
see project and product artifacts, progress, and quality. Not
wanting such openness of their work, they resisted inner source
projects.

If we believe practitioner reports from large but compara-
tively young companies like Google [72] and Facebook [40],
these psychological challenges may be a generational issue: De-
velopers who have been exposed to open source during their ed-
ucation may find it easier to engage in open collaborative be-
havior than software developers to who open source still repre-
sents alien behavior. From this perspective, it may simply re-
quire time for inner source to establish itself.

5.1.3 Process Breakdown

The organizational and psychological challenges led to a do-
main engineering process in which most product units only
wanted to provide requirements, but not be involved in their im-
plementation. The product units found it hard to gain consensus
on requirements, which ultimately led to the platform taking a
more active role in requirements definition and prioritization
than was appropriate for its position.

The consequence was increased hiring in product units for
work that should be performed with and as part of the platform
organization’s work rather than redundantly in the product
units. This represents a suboptimal use of resources that we can
only explain with our findings described above, that is, the mis-
alignment of organizational incentives and the psychological
challenges faced by middle managers and developers alike.

5.2 Theory Generalization
We shortly review our recommendations to the case study com-
panies and then present the main hypotheses that we see follow
from our theories.

5.2.1 Proposed Solution

Our case study companies wanted to know how to overcome
their problems with inner source. We believe that these mature
organizations need a more structured process than just a well-
spirited call to arms to take up inner source. Thus, next to gen-
eral recommendations like establishing a software forge [52]
and getting the overall business unit owner to create proper in-
centives, we also made more specific suggestions.

13

First, we suggested to establish a formal inner source incu-
bation process. In this process, every manager or developer can
make a suggestion for a new reusable component. All sugges-
tions are public and are discussed publicly. In regular intervals,
a council of architects makes a decision as to which suggestion
will be turned into a project. The resulting inner source project
will be staffed from all affected product units as well as the
platform organization.

Furthermore, borrowing from open source foundations [54],
we recommended to establish something we called an “inner
source foundation”, effectively a coaching organization like the
Apache Software Foundation. This coaching organization has
responsibility for the inner source process, but not the involved
human resources. The inner source foundation helps inner
source projects get instantiated and coaches them as to proper
inner source practices.

5.2.2 Hypotheses and Predictions

Our case study companies have been continuing their efforts.
However, it is too early to tell whether our recommendations
have been beneficial to them.

The theories we present are only as good as the hypotheses
that they generate and that can be validated in future work.
Such confirmatory research will also allow for generalized con-
clusions that are not possible from pure case study research.

H1 Resistance and misunderstandings (like expected lower
code quality of inner source components) can be addressed
successfully by way of education and active participation
in the practice of inner source software development.

This hypothesis is likely to evaluate to true, given the change in
public opinion on the use of and participation in open source
software projects from a negative to a positive stance.

H2 Psychological openness or resistance to inner source (i.e.
desire or fear to work under quasi-public scrutiny) de-
pends on manager and developer personalities and is not a
function of organizational structure or process.

Resistance to quasi-public scrutiny had managers and develop-
ers holding back from inner source projects, despite apparent
advantages. Many expressed that the observed resistance is
rooted in the psychological make-up of people and unlikely to
be remedied by organizational and process measures alone.

H3 As long as open source does not come natural to an orga-
nization, inner source will not come easy to it either. Until
this has changed, an organization will need an explicitly
governed inner source process.

The call for an explicitly governed process is standard corporate
behavior. Such processes may be needed until inner source
practices have become a mainstay of corporate culture.

Several managers remarked that building up inner source
competence is a step towards open source competence, suggest-
ing that both competencies build on the same base.

H4 Inner source and open source draw on the same competen-
cies of people and a person who is good at one is likely to
be good at the other.

Thus, we suggest that open source and inner source competen-
cies are structurally similar, if not isomorphic. This is not sur-
prising given that inner source has originally been motivated by
open source. This hypothesized relationship then leads to our
most potent hypothesis:

H5 While there is no doubt about the need of platform soft-
ware and shared reusable assets, a platform development
organization may not be needed any longer. It can be re-
placed by an inner source program.

This is an interesting though probably controversial hypothesis:
If large companies can work together in an open source founda-
tion to develop shared infrastructure components, why can’t
product units within an organization work together to create a
platform of shared reusable assets without the need for a dedi-
cated organizational unit that maintains this platform?

This does not deny the need for organizational support of in-
ner source, specifically coaching and the adherence to good in-
ner source governance practices, much like open source founda-
tions coach projects and ensure good open source governance.
However, none of the open source foundations that host these
industry platforms are actually developing any of it: They are
pure coaching, governance, and back-office organizations.

6. RESEARCH LIMITATIONS
This research faces a number of limitations. We first discuss the
traditional quality criteria for empirical research and after that
focus on specific criteria for exploratory (qualitative, yet empir-
ical) research, followed by a general discussion.

6.1 Empirical Research Quality Criteria
We cannot generalize beyond our case studies and cannot draw
statistical inferences. Still, we can discuss the traditional quality
criteria of internal and external validity:

6.1.1 Internal validity

As discussed in Section 3, we had a second coder analyze the
documents. The second coder derived a code system and link-
age close to the original one. The high inter-coder agreement is
leading us believe in an adequate quality of the code systems
and the theories they represent.

In addition, we were able to draw on a rich and diverse body
of materials, as discussed in Section 3. This diversity supported
data triangulation in our analysis and increased the internal va-
lidity of our findings.

6.1.2 External validity

As also discussed in Section 3, we provided our findings back
to the case study participants to learn about possible misunder-
standings or omissions. The feedback was reinforcing and vali-
dated our analysis.

If there was any conformity bias, it would have been mitigated
by the case study participants’ desire to receive useful recom-
mendations that actually helped them.

RIEHLE ET AL.: INNER SOURCE IN PLATFORM-BASED PRODUCT ENGINEERING 14

6.1.3 Generalizability

We review our work with respect to other findings and in par-
ticular open source to further assess external validity and gener-
alizability.

As to expected benefits of inner source, our findings are well
in line with prior work [36] [52] [31] [70] [37] [62], extending
it in some places.

It is interesting to compare our work with the reports about
inner source in product line engineering at Phillips [68] [69].
The work at Phillips appears to be practitioner reports only; no
discernible research method was being applied. Still, we find
agreement on the observation that platform engineers are often
too far away from customers to define requirements well. We
also learn that Phillips has been trying multiple engagement
models to get inner source off the ground [71], suggesting they
have yet to find a final answer to their inner source efforts.

With respect to the problems experienced when applying in-
ner source, Section 5 provides some hypotheses about the rela-
tionship between open source and inner source. Inner source is
motivated by open source and reflects its values and practices.
Thus, any similarity between our inner source findings and
what is known about open source makes those inner source
findings more likely to be true:

 Empirical research on open source, surveyed e.g. in [20],
finds that some developers simply resist participation in
open source for psychological reasons.

 Also, practitioner handbooks, surveyed e.g. in [30], show
that contributing to open source is often hindered by man-
agers worrying about losing control over their developers.

These open source experiences reflect what we found happen-
ing in inner source at our case study companies, lending in-
creased credibility to these results.

6.2 Exploratory Research Quality Criteria
While empirical, our research is primarily exploratory (“qualita-
tive”) in nature. For many years, researchers have argued that
the traditional empirical validity criteria do not or should not
apply to such research.

Guba and Lincoln, most notably, replace the traditional no-
tion of validity with the concept of trustworthiness, which in
turn is based on the more fine-grain concepts of credibility,
transferability, dependability, and confirmability [33], all four
derived from the traditional quality criteria. Thus, we review
our work from this perspective as well.

Our copious notes from interviews and workshops comprise
an as complete as possible record of what has been said. For
case 1 and 2 we participated as two researchers, one actively
engaged (asking questions), one observing and taking notes. We
believe we fully captured most relevant events and information.
After an interview we had our notes reviewed and corrected,
where necessary, by the interviewees resp. participants.

We also evaluated our work by gathering feedback from our
case study companies after we finished an analysis (so-called
member checking). The responses showed clear agreement with
our findings. Since the case studies were performed in se-

quence, findings from a prior case study informed our choices
and foci for the next case study allowing us to address questions
previously not addressed.

6.3 Other Generalizability Issues
Our interviewees expected inner source to help solve their engi-
neering problems. One may argue that these problems could be
remedied through traditional domain engineering processes as
well. We did not question the decision of our case study compa-
nies to focus on inner source rather than more traditional prac-
tices, which they had been working on for many years already.

We performed three case studies, which may seem low. By
case 3, however, interview partners were repeating themselves
and others. Beyond these three cases, we have been involved
with other inner source initiatives. Those varied on several di-
mensions that made the three cases of this article homogeneous,
so we did not try to include them.

Our cases were chosen to investigate the homogeneous situ-
ation of successful mature platform-based product engineering
without the problems of globally distributed software develop-
ment. We do not know what geographical, temporal, and social
diversity would do to our findings. Our findings only apply to
co-located, culturally and socially homogeneous populations.

7. CONCLUSIONS
This article presents an analysis of three mature platform-based
product engineering efforts. The respective business units ex-
pected that inner source, the cross-organizational-unit collabo-
ration on software projects based on open source best practices,
would improve productivity. Our analysis presents the problems
these companies faced, the expectations they had, and the prob-
lems they experienced in the adoption of inner source.

We find that setting up product units as profit centers and
platform organizations as cost centers leads to under-staffing
platform organizations and hinders collaboration and knowl-
edge sharing across organizational units. We also find that inner
source benefits are most obvious to the overall business unit,
while middle managers of product units and developers can be
reluctant to contribute to inner source projects. To that end we
make recommendations as to overcome this reluctance.

Finally, we draw conclusions from our theories and present
hypotheses that will structure future research work.

Acknowledgments

We would like to thank Ann Barcomb, Christoph Elsner, An-
dreas Kaufmann, Daniel Lohmann, Klaus-Benedikt Schultis,
Klaas-Jan Stol and the anonymous reviewers for feedback that
helped us improve this article.

References

[1] Altintas, N. I., & Cetin, S. (2008). Managing large scale reuse across
multiple software product lines. In High Confidence Software Reuse
in Large Systems (pp. 166-177). Springer Berlin Heidelberg.

15

[2] Atkinson, C. (2002). Component-based product line engineering with
UML. Pearson Education.

[3] Batory, D., Johnson, C., MacDonald, B., & Von Heeder, D. (2002).
Achieving extensibility through product lines and domain-specific
languages: A case study. ACM Transactions on Software Engineering
and Methodology (TOSEM), 11(2), 191-214.

[4] Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid,
K., ... & DeBaud, J. M. (1999, May). PuLSE: a methodology to de-
velop software product lines. In Proceedings of the 1999 symposium
on Software reusability (pp. 122-131). ACM.

[5] Bosch, J. (2000). Design and use of software architectures: adopting
and evolving a product line approach. Pearson Education.

[6] Bosch, J. (2006). The challenges of broadening the scope of software
product families. Communications of the ACM, 49(12), 41-44.

[7] Bosch, J. (2006). Expanding the scope of software product families:
Problems and alternative approaches. Lecture Notes in Computer Sci-
ence, 4034, 4.

[8] Bosch, J., & Bosch-Sijtsema, P. (2010). From integration to composi-
tion: On the impact of software product lines, global development and
ecosystems. Journal of Systems and Software, 83(1), 67-76.

[9] Bourgeois III, L. J., & Eisenhardt, K. M. (1988). Strategic decision
processes in high velocity environments: four cases in the microcom-
puter industry. Management science, 34(7), 816-835.

[10] Berger, T., Nair, D., Rublack, R., Atlee, J. M., Czarnecki, K., & Wą-
sowski, A. (2014). Three cases of feature-based variability modeling
in industry. In Model-Driven Engineering Languages and Systems
(pp. 302-319). Springer International Publishing.

[11] Berger, T., Pfeiffer, R. H., Tartler, R., Dienst, S., Czarnecki, K., Wą-
sowski, A., & She, S. (2014). Variability mechanisms in software
ecosystems. Information and Software Technology, 56(11), 1520-
1535.

[12] Buhne, S., Lauenroth, K., & Pohl, K. (2005, August). Modelling re-
quirements variability across product lines. In Requirements Engi-
neering, 2005. Proceedings. 13th IEEE International Conference on
(pp. 41-50). IEEE.

[13] Capra, E., & Wasserman, A. I. (2008). A framework for evaluating
managerial styles in open source projects. In Open Source Develop-
ment, Communities and Quality (pp. 1-14). Springer US.

[14] Cavaye, A. L. (1996). Case study research: a multi‐faceted research
approach for IS. Information systems journal, 6(3), 227-242.

[15] Charmaz, K. (2014). Constructing grounded theory. Sage.

[16] Chastek, G., & McGregor, J. D. (2002). Guidelines for developing a
product line production plan (No. CMU/SEI-2002-TR-006). Carnegie
Mellon University, Software Engineering Institute.

[17] Chastek, G., Donohoe, P., & McGregor, J. D. (2004). A study of prod-
uct production in software product lines (No. CMU/SEI-2004-TN-
012). Carnegie Mellon University, Software Engineering Institute.

[18] Clements, P., & Northrop, L. (2002). Software product lines: practices
and patterns.

[19] Corbin, J., & Strauss, A. (2014). Basics of qualitative research: Tech-
niques and procedures for developing grounded theory. Sage publica-
tions.

[20] Crowston, K., Wei, K., Howison, J., & Wiggins, A. (2012). Free/Libre
open-source software development: What we know and what we do
not know. ACM Computing Surveys (CSUR), 44(2), 7.

[21] Czarnecki, K., & Eisenecker, U. W. (2000). Generative programming:
Methods, tools, and applications. Addison-Wesley.

[22] Czarnecki, K., Helsen, S., & Eisenecker, U. (2005). Formalizing car-
dinality‐based feature models and their specialization. Software
process: Improvement and practice, 10(1), 7-29.

[23] Darke, P., Shanks, G., & Broadbent, M. (1998). Successfully complet-
ing case study research: combining rigour, relevance and pragmatism.
Information systems journal, 8(4), 273-289.

[24] Deelstra, S., Sinnema, M., & Bosch, J. (2005). Product derivation in
software product families: a case study. Journal of Systems and Soft-
ware, 74(2), 173-194.

[25] Dhungana, D., Grünbacher, P., Rabiser, R., & Neumayer, T. (2010).
Structuring the modeling space and supporting evolution in software
product line engineering. Journal of Systems and Software, 83(7),
1108-1122.

[26] Dinkelacker, J., Garg, P. K., Miller, R., & Nelson, D. (2002, May).
Progressive open source. In Proceedings of the 24th International
Conference on Software Engineering (pp. 177-184). ACM.

[27] Easterbrook, S., Singer, J., Storey, M. A., & Damian, D. (2008). Se-
lecting empirical methods for software engineering research. In Guide
to advanced empirical software engineering (pp. 285-311). Springer
London.

[28] Eisenhardt, K. M. (1989). Building theories from case study research.
Academy of management review, 14(4), 532-550.

[29] Eisenhardt, K. M., & Graebner, M. E. (2007). Theory building from
cases: opportunities and challenges. Academy of management journal,
50(1), 25-32.

[30] Fogel, K. (2005). Producing open source software: How to run a suc-
cessful free software project. O'Reilly Media, Inc.

[31] Gaughan, G., Fitzgerald, B., & Shaikh, M. (2009, August). An exami-
nation of the use of open source software processes as a global soft-
ware development solution for commercial software engineering. In
Software Engineering and Advanced Applications, 2009. SEAA’09.
35th Euromicro Conference on (pp. 20-27). IEEE.

[32] Glaser, B. G. (1965). The constant comparative method of qualitative
analysis. Social problems, 436-445.

[33] Guba, E. G., & Lincoln, Y. S. (1989). Fourth generation evaluation.
Sage.

[34] Guest, G., Bunce, A., & Johnson, L. (2006). How many interviews are
enough? An experiment with data saturation and variability. Field
methods, 18(1), 59-82.

[35] Guion, L. A., Diehl, D. C., & McDonald, D. (2011). Triangulation:
Establishing the validity of qualitative studies.

[36] Gurbani, V. K., Garvert, A., & Herbsleb, J. D. (2006, May). A case
study of a corporate open source development model. In Proceedings
of the 28th international conference on Software engineering (pp. 472-
481). ACM.

[37] Gurbani, V. K., Garvert, A., & Herbsleb, J. D. (2010). Managing a
corporate open source software asset. Communications of the ACM,
53(2), 155-159.

[38] Ishikawa, K. (1990). Introduction to quality control. Productivity
Press.

[39] Jepsen, H. P., Dall, J. G., & Beuche, D. (2007, September). Minimally
invasive migration to software product lines. In Software Product
Line Conference, 2007. SPLC 2007. 11th International (pp. 203-211).
IEEE.

RIEHLE ET AL.: INNER SOURCE IN PLATFORM-BASED PRODUCT ENGINEERING 16

[40] Keyani, P. (2008). The All-Night Hackathon Is Back! Retrieved
March 12, 2015, from https://code.facebook.com/posts/
573666012669084/the-all-night-hackathon-is-back-/

[41] Lindman, J., Rossi, M., & Marttiin, P. (2008). Applying open source
development practices inside a company. In Open Source Develop-
ment, Communities and Quality (pp. 381-387). Springer US.

[42] Lindman, J., Rossi, M., & Marttiin, P. (2010). Open Source Technol-
ogy Changes Intra-Organizational Systems Development-A Tale of
Two Companies. In ECIS.

[43] Lindman, J., Riepula, M., Rossi, M., & Marttiin, P. (2013). Open
Source Technology in Intra-Organisational Software Development—
Private Markets or Local Libraries. In Managing Open Innovation
Technologies (pp. 107-121). Springer Berlin Heidelberg.

[44] Lombard, M., Snyder‐Duch, J., & Bracken, C. C. (2002). Content
analysis in mass communication: Assessment and reporting of inter-
coder reliability. Human communication research, 28(4), 587-604.

[45] Martin, K., & Hoffman, B. (2007). An open source approach to devel-
oping software in a small organization. Ieee Software, (1), 46-53.

[46] Melian, C., & Mähring, M. (2008). Lost and gained in translation:
Adoption of open source software development at Hewlett-Packard.
In Open Source Development, Communities and Quality (pp. 93-104).
Springer US.

[47] Melian, C., Ammirati, C. B., Garg, P., & Sevon, G. (2002). Building
Networks of Software Communities in a Large Corporation. Technical
Report. Hewlett Packard.

[48] Neus, A., & Scherf, P. (2005). Opening minds: Cultural change with
the introduction of open-source collaboration methods. IBM Systems
Journal, 44(2), 215-225.

[49] Passos, L., Czarnecki, K., Apel, S., Wąsowski, A., Kästner, C., &
Guo, J. (2013, January). Feature-oriented software evolution. In Pro-
ceedings of the Seventh International Workshop on Variability Model-
ling of Software-intensive Systems (p. 17). ACM.

[50] Pohl, K., Böckle, G., & van der Linden, F. J. (2005). Software product
line engineering: foundations, principles and techniques. Springer Sci-
ence & Business Media.

[51] Raymond, E. (1999). The cathedral and the bazaar. Knowledge, Tech-
nology & Policy, 12(3), 23-49.

[52] Riehle, D., Ellenberger, J., Menahem, T., Mikhailovski, B., Natchetoi,
Y., Naveh, B., & Odenwald, T. (2009). Open collaboration within cor-
porations using software forges. Software, IEEE, 26(2), 52-58.

[53] Riehle, D. (2010). The economic case for Open Source foundations.
Computer, 1(43), 86-90.

[54] Riehle, D., & Kips, D. (2012, May). Geplanter Inner Source: Ein Weg
zur Profit-Center-übergreifenden Wiederverwendung. Technical Re-
port CS-2012-05. Computer Science Department, Friedrich-Alexan-
der-University Erlangen-Nürnberg.

[55] Sánchez, A. B., Segura, S., & Ruiz-Cortés, A. (2014, January). The
Drupal framework: a case study to evaluate variability testing tech-
niques. In Proceedings of the Eighth International Workshop on Vari-
ability Modelling of Software-Intensive Systems (p. 11). ACM.

[56] Schmid, K. (2002, May). A comprehensive product line scoping ap-
proach and its validation. In Proceedings of the 24th International
Conference on Software Engineering (pp. 593-603). ACM.

[57] Schwanninger, C., Groher, I., Elsner, C., & Lehofer, M. (2009). Vari-
ability modelling throughout the product line lifecycle. In Model
Driven Engineering Languages and Systems (pp. 685-689). Springer.

[58] Sharma, S., Sugumaran, V., & Rajagopalan, B. (2002). A framework
for creating hybrid‐open source software communities. Information
Systems Journal, 12(1), 7-25.

[59] She, S., Lotufo, R., Berger, T., Wasowski, A., & Czarnecki, K. (2010).
The Variability Model of The Linux Kernel. VaMoS, 10, 45-51.

[60] Sinnema, M., & Deelstra, S. (2007). Classifying variability modeling
techniques. Information and Software Technology, 49(7), 717-739.

[61] Smith, P., & Garber-Brown, C. (2007, August). Traveling the open
road: Using open source practices to transform our organization. In
Agile Conference (AGILE), 2007 (pp. 156-161). IEEE.

[62] Stol, K. J., Babar, M. A., Avgeriou, P., & Fitzgerald, B. (2011). A com-
parative study of challenges in integrating Open Source Software and
Inner Source Software. Information and Software Technology, 53(12),
1319-1336.

[63] Stol, K. J., Avgeriou, P., Babar, M. A., Lucas, Y., & Fitzgerald, B.
(2014). Key factors for adopting inner source. ACM Transactions on
Software Engineering and Methodology (TOSEM), 23(2), 18.

[64] Torkar, R., Minoves, P., & Garrigós, J. (2011). Adopting free, libre,
open source software practices, techniques and methods for industrial
use. Journal of the Association for Information Systems, 12(1), 88-
122.

[65] van der Linden, F. J., Schmid, K., & Rommes, E. (2007). Software
product lines in action: the best industrial practice in product line en-
gineering. Springer Science & Business Media.

[66] van der Linden, F. (2009). Applying open source software principles
in product lines. Upgrade, 10, 32-41.

[67] van der Linden, F. (2009). Inner source product line development. In
Proceedings of the 13th International Software Product Line Confer-
ence (p. 317). ACM.

[68] van der Linden, F., Lundell, B., & Marttiin, P. (2009). Commodifica-
tion of industrial software: A case for open source. Software, IEEE,
26(4), 77-83.

[69] van der Linden, F. (2013). Open source practices in software product
line engineering. In Software Engineering (pp. 216-235). Springer.

[70] Vitharana, P., King, J., & Chapman, H. S. (2010). Impact of internal
open source development on reuse: participatory reuse in action. Jour-
nal of Management Information Systems, 27(2), 277-304.

[71] Wesselius, J. (2008). The bazaar inside the cathedral: business models
for internal markets. Software, IEEE, 25(3), 60-66.

[72] Whittaker, J. A., Arbon, J., & Carollo, J. (2012). How Google tests
software. Addison-Wesley.

[73] Yin, R. K. (2013). Case study research: Design and methods. Sage
publications.

