
Developer Belief vs. Reality:
The Case of the Commit Size Distribution

Dirk Riehle, Carsten Kolassa, Michel A. Salim

Friedrich-Alexander-University Erlangen-Nürnberg
Martensstr. 3, 91058 Erlangen, Germany

dirk@riehle.org, carsten@kolassa.de, michel@sylvestre.me

Abstract: The design of software development tools follows from what the de-
velopers of such tools believe is true about software development. A key aspect of
such beliefs is the size of code contributions (commits) to a software project. In
this paper, we show that what tool developers think is true about the size of code
contributions is different by more than an order of magnitude from reality. We
present this reality, called the commit size distribution, for a large sample of open
source and selected closed source projects. We suggest that these new empirical in-
sights will help improve software development tools by aligning underlying design
assumptions closer with reality.

1. Introduction

In this paper, we study what developers believe is true about the size of code contribu-
tions to software development projects and how it compares with reality. We find that 1-
3 lines of code are the most common commit size while developers predict it would be
much higher. The contributions of this paper are:

• The results of a developer survey on commit sizes and an assessment of the beliefs
developers hold about them,

• the assessment of the reality of commit sizes in software development for a large
sample of open source software projects,

• the assessment of the reality of commit sizes in software development for selected
closed source software projects of SAP, a large software vendor,

• the surprising conclusion that software developer beliefs differ significantly from
development reality.

Finding that there is a significant difference between reality and what developers believe
about code contributions leads us to suggest that software development tools may have
suboptimal designs that can be improved with our newly found knowledge. Our work
strongly suggests revisiting the design of code-centric development tools.

Our finding may be surprising, depending on which school of psychology you belong to.
By now classic research into cognitive biases [6] has shown that humans are poor esti -
mators and various biases get in the way of accurately estimating properties of distribu-
tions like the one discussed in this paper [15]. However, recent research also has shown
that under defined experimental situations, people can be capable of predicting the mode
and percentiles of a distribution well [12] [4]. In the discussion section, we offer some

1

possible explanations. However, it is not the purpose of this paper to explain this finding
but only to bring it into the open so that we can build better software development tools.

The paper is structured as follows. Section 2 defines the necessary terms. Section 3 re-
ports the results of a developer survey to understand what developers believe is true
about commit sizes in software development. Section 4 then shows the measurable reali-
ty for open source and a few selected closed source projects. Section 5 compares devel-
oper belief with reality and shows that beliefs differ from reality by at least an order of
magnitude. Section 6 discusses threats to the validity of our analysis. Section 7 discusses
related work and Section 8 concludes the paper.

2. Commit Sizes

Software developers contribute code to software projects when going about their pro-
gramming work. Such code contribution is commonly called a "commit". Any such com-
mit adds, removes, or changes existing source code. A common measure of size for com-
mits is lines of code (LoC), approximating the amount of work spent on the commit. We
distinguish source code lines from comment lines from empty lines:

• A source code line (SLoC) contains program code,
• a comment line (CL) contains only comments, and
• an empty line contains only whitespace.

We define LoC = SLoC + CL and thus measure the size of a commit in source code lines
+ comment lines. Measuring the size of a commit is non-trivial. The primary tool for as-
sessing commit sizes is the "diff" tool, which compares source code files and tells its
user which lines have been added and which lines have been removed.

• A commit is the sum of all diffs over all affected files where
• a diff lists several diff chunks in one file, where
• a diff chunk identifies co-located lines added or removed.

Unfortunately, a diff tool cannot identify with certainty that a line was changed; such a
changed line is always counted as one line removed and one line added. However, a
changed line should count as one line of work, while an added and a removed line of
code should count as two lines of work. Enhanced diff algorithms exist, for example [3],
that use text analysis to calculate the probability of whether one line added and one line
removed equals one line changed or two separate lines, one added, one removed. How-
ever, these algorithms can't provide certainty and are computationally expensive.

Prior work determined that for large numbers of commits, the mean of the minimally and
maximally possible values is a statistically valid estimate for the diff chunk size [9]. In
this work, we calculate commit sizes for more than 8 million commits. Table 1 provides
the resulting equations: "a" represents the number of lines added and "r" represents the
number of lines removed according to the diff tool. We compute commit sizes by adding
up the diff chunk sizes computed using equation (c) of Table 1.

2

Table 1: Equations used to compute a commit's size

(a) lower_bound(a, r) = max(a, r) // full overlap, highest number of changed lines

(b) upper_bound(a, r) = a + r // no overlap, no changed lines in diff chunk

(c) diff_chunk_size(a, r) = (lower_bound(a, r) + upper_bound(a, r)) / 2 // mean of both bounds

The commit size distribution of some commit population is the distribution of the num-
ber of occurrences (y-axis) of all possible commit sizes (x-axis). The commit size distri-
bution of open source has all commits in all open source projects as the population, and
the commit size distribution of closed source has all commits of all closed source
projects as the population.

3. Developer Belief

To assess what developers believe is true about commit sizes, we performed a survey in
early 2010. We asked about the commit size distribution of all of open source and all of
closed source, respectively. We asked what developers thought was

• the "most frequent commit size" (mode),
• the "average commit size" (mean),
• the commit size at the 90th percentile, and
• the shape of the commit size distribution.

We asked these questions separately for all of open source and all of closed source soft-
ware, and we assessed survey respondent demographics to the extent that it was relevant
to evaluating this survey. An underlying assumption is that different projects have simi-
lar commit size distributions. We made this assumption explicit to survey respondents
and Section 4 validates it. The survey is available on the web [14].

We performed pre-tests to ensure that definitions are clear and will be understood by sur-
vey respondents. We reached out to software developers using various channels, mostly
mailing lists, but also social media tools like blogs, micro-blogging services, and social
networking services. We received 73 valid and complete survey responses. In the threats
to validity section we look at the sampling error and show why we believe that this low
return rate does not affect the validity of our conclusions.

Figures 1-4 show developer beliefs for mode and 90th percentile of the open source or
closed source commit size distributions. The 90th percentile commit size defines the size
that respondents believe is larger than 90% of all other commit sizes. We omit the dis-
cussion of the mean in this Section, because the survey results are in line with those of
the mode and and 90th percentile and don't add anything to the discussion.

Figures 5-6 show what survey respondents believe is the difference between open source
and closed source. Between 10%-20% of all respondents believe that there is no differ-
ence between open source and closed source as to mode and 90th percentile. Thus, the
vast majority believes there is a difference. In general, survey respondents believe that
open source has a smaller mode and 90th percentile of commit sizes than closed source.

3

Figure 1: Survey results of developer belief
for mode of open source commit size distribu-
tion

Figure 2: Survey results of developer belief
for mode of closed source commit size distri-
bution

Figure 3: Survey results of developer belief
for 90th percentile of open source commit size
distribution

Figure 4: Survey results of developer belief
for 90th percentile of closed source commit
size distribution

Figure 5: Absolute value of difference in de-
veloper belief between mode of open and
closed source commit size distribution

Figure 6: Absolute value of difference in de-
veloper belief between 90th percentile of open
and closed source commit size distribution

We visualized three different distributions and let survey respondents choose which one
they felt was closest to reality. The three alternatives were (a) a normal distribution, (b) a

4

Table 2: Survey results of developer belief for
shape of open source commit size distribution

Table 3: Survey results of developer belief for
shape of closed source commit size distribution

Normal distribution: 16%
Power law distribution: 59%
Skewed to large commits: 25%

Normal distribution: 35%
Power law distribution: 33%
Skewed to large commits: 32%

distribution following a power law, and (c) a distribution skewed towards large commits.
Tables 2 and 3 show how respondents chose among the alternatives. There was no clear
consensus and all three distributions had roughly equal support among respondents.

4. Development Reality

Open source software development is usually public software development. Thus, for
open source, we can know the commit size distribution and do not have to rely on be-
liefs. For closed source software development we have to rely on selected projects as the
complete commit size distribution of closed source or even a representative sample is
practically impossible to determine.

4.1 The Open Source Distribution

To assess the commit size distribution of open source, we use a database snapshot of the
Ohloh.net open source project data website. Our snapshot is dated March 2008. Unlike
data sources like SourceForge.net [10] the Ohloh data has no apparent bias towards any
particular category of open source project. The only bias we could see is a focus on ac-
tive projects with engaged user communities, as the Ohloh service requires community
participation to have a project listed (self-reporting bias), as well as an English-language
bias, given that the Ohloh website is written in English.

Our snapshot contains 11,143 open source projects. In September 2007, Daffara estimat-
ed that there are 18,000 active open source projects in the world [5]. (The total number
of projects is much larger, but most open source projects are not active and by our activi-
ty definition have to be excluded.) Using the same definition of "active project" as Daf-
fara our database snapshot contains 5,117 active open source projects. Thus, we estimate
that our database contains about 30% of all open source projects active in March 2008.

The Ohloh database contains the complete commit history of all of its projects to the ex-
tent that it is available on the web, going back as far as 1991. Using the definitions from
Section 2, we measure the commit size distribution of our open source sample popula-
tion. Iterating over all 8,705,118 commits in the database, we compute the commit sizes
and determine the commit size distribution.

Figure 7 shows the commit size distribution of our open source sample. The distribution
is shown as a probability density function (PDF) for visualization and comprehension
purposes. Integrating the interval [0, 1] provides the probability of a commit of size 0 or
1 LoC, [0, 2] provides the probability of a commit of size 0, 1, or 2 LoC, etc. The PDF is
strictly falling with 1-3 LoC being most frequent.

The PDF presented here is empirical: It does not present an analytically closed model; all
that is being presented is measured data. In other work we show that a generalized Pareto
distribution fits the empirical data well, but this discussion is omitted here for reasons of
space. As a Pareto distribution, the shape of the distribution follows a power law.

5

Figure 7: The (empirical) PDF of the commit size distribution of about 30% of all active open source
projects (March 2008). The graphs in Figures 7-9 have been calculated using R and ggplot2, which
uses a Gaussian smoothing kernel with the standard deviation as bandwidth.

Figure 8: The PDF of the commit size distri-
bution of the closed source BAS project at age
10-19 years

Figure 9: The PDF of the commit size distri-
bution of 122 closed source projects at age 0-
3 years

The mode of the distribution is 1.5 LoC. This real number is an artifact of measuring
commit sizes using the estimation algorithm discussed in Section 2. An added and a re-
moved line of code maps as often on one changed line of code as on one added and one
separately removed line of code, averaging out to 1.5 LoC.

4.2 Closed Source Distributions

This section presents an analysis of selected projects of SAP AG, one of the world's
largest software producers. We retrieved data for two types of projects:

• SAP's core virtual machine and libraries, the BAS project, at age 10-19 years, and
• 122 of SAP's research projects during their first three years of life.

6

We chose these projects due to the stark discrepancy between the two types of projects.
The core virtual machine and libraries (the "BAS" project, short for base) is perhaps the
most robust and thoroughly tested code SAP has ever developed and it forms the base of
its software stack. It is written in C. The commit count of the BAS project is 56,840
commits and the configuration management system is Perforce.

The 122 research projects are young projects with a high mortality rate. The code base is
undergoing wild changes and rapid development. They are written in C-style languages
like C, C++, and Java. The commit count for the projects is 23,271 commits and the con-
figuration management system is Subversion.

Figure 8 shows the PDF of the distribution of SAP's BAS project and Figure 9 shows the
PDF of the distribution of the 122 research projects. The research projects all had similar
distributions and like for open source have been grouped as one.

The commit size distribution of the BAS project is similar to the one of the research
projects. This may come as a surprise given that a hypothesis might have been that ma-
ture projects develop more incrementally and using smaller code changes than young
projects, which might move forward in (code) leaps and bounds. However, even young
research projects apparently are moving forward mostly in small incremental commits.

Thus, the commit size distributions of (a) about 30% of open source (at its time), of (b) a
mature closed source project, and of (c) 122 young research projects undergoing rapid
change all have similarily-shaped strictly falling distributions that follow a power law,
with 1-3 lines of code being most common. The actual parameters of the distributions
differ, however, between open source and our closed source sample.

5. Belief vs. Reality

Table 4 summarizes the differences between reality and what developers said about com-
mit size distributions. As to the mode of the distribution, the most frequent commit size,
survey respondents are off by a wide margin. In the case of open source, the predicted
value is 20 LoC with a measured value of 1.5 LoC and a relative error of 12. In the case
of closed source, the predicted value is is 50 LoC with a real value of 3 LoC and a rela-
tive error of 16. Thus, respondents overestimate the mode significantly.

In general, the average developer believes that the commit size distribution has its maxi-
mum at around 20 LoC (open source) and 50 LoC (closed source) and then falls off
rapidly as commit sizes increase. In reality, the commit size distributions of open source
and closed source are strictly falling but have a longer tail than expected, with the mean
value and 90th percentile farther out than what developers are expecting.

The long tail of the distribution, both open source in general and selected closed source
projects, becomes evident by the 90th percentile of commit sizes being lower than the
mean value of the commit sizes: This implies that a significant number of large commits
are regularly being contributed, more than anticipated by survey respondents. The mode

7

of the open and closed source distributions are close to each other, suggesting little prac-
tical difference between open and closed source projects. The mean and the 90 th per-
centile are different between open and closed source. Also, survey respondents underes-
timated the mean significantly.

One might argue that it is hard even for technically schooled people to distinguish mode
from mean from median. However, in our survey [14] we did not use these words, but
visualized their meaning. We believe that respondents had a sufficiently good under-
standing of these terms when making their choices.

Table 4: Belief, reality, absolute, and relative error for open and closed source distributions

1. Open Source
(Large Sample)

2. Closed Source
(Selected Projects)

3. Difference Between
Open & Closed Source

B
el

ie
f

(m
ed

ia
n)

R
ea

lit
y

A
bs

ol
ut

e
E

rr
or

R
el

at
iv

e
E

rr
or

B
el

ie
f

(m
ed

ia
n)

R
ea

lit
y

A
bs

ol
ut

e
E

rr
or

R
el

at
iv

e
E

rr
or

B
el

ie
f

(m
ed

ia
n)

R
ea

lit
y

A
bs

ol
ut

e
E

rr
or

R
el

at
iv

e
E

rr
or

Mode [LoC] 20 1.5 18.5 12.33 50 3 47 15.67 30 1.5 28.5 19

Mean [LoC] 50 465.7 415.7 0.8926 80 942.0 862.0 0.9151 55 476.3 421.3 0.8845

90th Pctle [LoC] 200 261 61 0.2337 200 461.5 261.5 0.5666 100 200.5 100.5 0.5012

Table 5: Sampling error in survey respondents' answers when viewed as a random sample of the total
developer population

1. Open Source (Large Sample) 2. Closed Source (Sel. Projects)

25th Percentile 50th Percentile 25th Percentile 50th Percentile

Absolute
Error

Relative
Error

Absolute
Error

Relative
Error

Absolute
Error

Relative
Error

Absolute
Error

Relative
Error

Mode [LoC] 8.5 5.667 18.5 12.33 12.00 4.000 47.00 15.67

Mean [LoC] 365.7 0.7853 415.7 0.8926 742.0 0.7877 864.5 0.9177

90th Percentile [LoC] 161.0 0.6169 211.0 0.8084 261.5 0.5666 361.5 0.7833

Sampling Error [%] 10.00 (9.333) 11.55 (11.47) 10.00 11.55

6. Threats to Validity

We address a possible sampling error of survey responses, age of open and closed source
data, issues with measuring commit sizes and representativeness of project data.

6.1 Survey Responses

With 73 valid and complete survey responses, the response rate is on the low side. How-
ever, from the demographics gathered in the survey, there was no apparent bias. Thus,
the question of the representativeness of the survey becomes one of sampling error.

8

Table 5 above presents the difference between the medians of the predicted and the real
commit sizes. To show that the results of Table 5 are representative we first calculate the
difference between the predicted and the real value for each survey respondent. Table 5
shows the 25th percentile and the 50th percentile of that difference.

For the 50th percentile, the sampling error for the survey responses is 11.55% at a confi-
dence level of 95%. Thus, even in the worst case scenario more than 38% of all develop-
ers have an error above the 50th percentile. We also calculate the sampling error for the
25th percentile which is 10.00% at a confidence level of 95%. Thus, at least 65% of all
developers are off by this error. This shows that even using conservative estimates we
can consider the survey responses as representative.

6.2 Age of Analysis Data

Our Ohloh database snapshot is dated March 2008. However, for this analysis the age
doesn't matter much. We have no indication that open source changed significantly from
2008 to today (2011). Hence we believe that adding three years to an analysis history of
15+ years will not change the results in any significant way.

6.3 Measuring Commit Sizes

We spent considerable effort on developing a well-performing algorithm for determining
commit sizes (Section 2). The core equation can be computed fast but only provides an
estimate of the size of a given commit. Thus, in any given instance it may be off, but
when measured over large commit size populations, it will be accurate [9]. This is the
situation we were facing in this paper. The commit size population is greater than 8 mil-
lion commits and is sufficiently large to allow for the probabilistic estimation of commit
sizes by the simple heuristic of Section 2 that we use throughout this paper.

6.4 Representativeness of Project Data

Our open source sample population is close to being representative of open source. With
about 30% of all active open source projects at the time of the database snapshot, we
have captured a significant chunk of the total population. As discussed, except for self-
reporting and English-language bias, we find no apparent bias in our sample. Moreover,
there is no apparent connection between this potential bias and the measure of interest,
commit sizes. Thus, we believe that the commit size distribution of open source is close
or identical to the one presented in this paper.

Our closed source sample population is from a single vendor only and hence not repre-
sentative. The question becomes how far off from representative values are our closed
source measurements? First, there is no significant difference between a mature and
many young projects. Moreover, there is no significant difference between the general
open source distribution and the commit size distribution of the closed source project
sample. All of this is contrary to developer belief and our own prior expectations.

9

While we cannot overcome the fundamental problem the surprising similarity between
the open source and closed source distributions suggests that to the extent that they are
similar, the degree of representativeness of our open source sample applies to the repre-
sentativeness of our closed source sample.

7. Related Work

We previously presented an analysis of the open source commit size distribution [2]. In
comparison to that analysis, the work presented in this paper adds the survey, closed
source data, and a more thorough investigation of the open source commit size distribu-
tion including using the more precise heuristic for estimating commit sizes of Section 2.

Alali et al. present an analysis of "a typical commit" using the version history of 9 open
source projects [1]. They mostly focus on the number of files changed (and how), but
also provide chunk and line-size data. They compute line size changes by adding lines
added and removed, thus overestimating sizes by ignoring changed lines of code. Still,
they find "quite small" commit sizes without giving more details. Interestingly, they find
a strong correlation between diff chunk and size. Alali et al.'s 9 projects are large well-
known open source projects. In contrast to Alali we focus solely on commit sizes, use a
more precise measure and compute a derived function, the commit size distribution, on a
close-to-representative sample rather than 9 selected projects.

Hattori and Lanza discuss “the nature of commits” in which they look at 9 different open
source projects [7]. They measure commit sizes by number of files changed and find a
distribution similar to ours. Beyond the distribution, their work is mostly about classify-
ing commits while we focus on the difference between developer belief and reality. Sim-
ilarly, Hindle et al. analyze 2000 large commits from 9 selected open source projects and
find that small commits are more corrective while large commits are more perfective [8].

Purushothaman and Perry analyze the impact that small changes have on quality at-
tributes of software under consideration [13]. Their data is derived from a single large
closed source project. They find that one-line changes represent the majority of changes
during maintenance, which is in line with our results. Implicit in the choice of research
topics by Purushothama and Perry as well as Hindle et al. may be an assumption that
commit sizes are smaller in maintenance than in development mode. Our closed source
data does not immediately support such a hypothesis but it is worth investigating further.

Weißgerber et al. look at the patch submission and acceptance process of two open
source projects [16]. They find that small patches are more likely to get accepted into the
code base than large patches. An obvious reason may be that small patches are easier to
review than large patches which, if not handled quickly, get harder to review and accept
with time. While not representative, Weißgerber's observation is interesting to us, as it
might explain why the commit size distribution of open source is falling more quickly
than those of the closed source projects we analyzed.

10

8. Conclusions

The paper shows that the commit size distribution of open source runs counter to the ex-
pectations of respondents from a software developer survey we undertook. The only ex-
ception was the 90th percentile, which respondents were able to predict reasonably well.
Survey respondents could not agree on the form of the distribution and expected a much
higher mode for commit sizes in open source as well as closed source software develop-
ment. They also expected the distribution to fall of more quickly than it does. Thus, de-
velopers underestimate the significance of small commits and don't realize the long tail
of commit sizes. Moreover, respondents expected to see significant differences between
open and closed source software development, and our data shows these differences
aren't there.

The survey findings are particularly significant, because we found no difference of opin-
ion between tool developers and regular developers. Thus, a reasonable assumption is
that the conceptual model of software tool developers may not be well aligned with reali-
ty when it comes to the commit size distribution. Our work provides that reality and can
be used to improve the design of software development tools. We can now rethink the
use of screen real estate in merge tools, or the design and implementation of configura-
tion management systems, or how to improve change impact analysis using the commit
size statistics that our paper presents.

It is left for us to speculate why survey respondents were off to the observable extent.
One possible answer is that commit sizes may have become smaller over time so that
past experiences unduly affected respondents' judgment. Such cognitive bias is support-
ed by psychology research that reports that humans hesitate to go to the extremes but
rather remain conservative estimators [11]. Other explanations are possible as well, but
we leave them to psychologists and future work.

Acknowledgements

We would like to thank York Thomas of HPI for providing us with the SAP data. We
would also like to thank Manuel Klimek of Google for helping us with the survey distri-
bution. We would like to thank Wolfgang Mauerer of Siemens and Lutz Prechelt of FU
Berlin for feedback on the paper. We would like to thank Oscar Nierstrasz and Niko
Schwarz for helping us improve the paper and for contributing the references about psy-
chology research on cognitive biases. We would like to thank all other reviewers for
their help as well.

References

[1] Alali, A., Kagdi, H., Maletic, J. I. (2008). What’s a typical commit? A characteri-
zation of open source software repositories. In Proceedings of the 16th IEEE Inter-
national Conference on Program Comprehension (ICPC '08), 182-191.

11

[2] Arafat, O., Riehle, D. (2009). The commit size distribution of open source soft-
ware. In Proceedings of the 42nd Hawaiian International Conference on System
Sciences (HICSS 42), 1-8.

[3] Canfora, G., Cerulo, L., Di Penta, M. (2009). Ldiff: An enhanced line differencing
tool. In Proceedings of the 31st International Conference on Software Engineering
(ICSE ’09), 595–598.

[4] Cosmides, L., Tooby, J. (1996). Are humans good statisticians after all? Rethink-
ing some conclusions from the literature on judgment under uncertainty. Cognition
58 (1996), 1-73.

[5] Daffara, C. (2007). Estimating the number of active and stable FLOSS projects.
2011-11-24. URL: http://robertogaloppini.net/2007/08/23/estimating-the-num-
ber-of-active-and-stable-floss-projects/. Accessed: 2011-11-24. Archived:
http://www.webcitation.org/63QrHacPr.

[6] Gilovich, T., Griffin, D., Kahneman, D. (2002). Heuristics and biases: The psy-
chology of intuitive judgment. Cambridge University Press.

[7] Hattori, L.P., Lanza, M. (2008). On the nature of commits. In Proceedings of
Workshops of the ASE 2008, the 23rd IEEE/ACM International Conference on Au-
tomated Software Engineering, 63-71.

[8] Hindle A., German, D.M., Holt, R.C. (2008). What do large commits tell us? A
taxonomical study of large commits. In Proceedings of the 5th International Work-
ing Conference on Mining Software Repositories (MSR 2008), 99-108.

[9] Hofmann, P., Riehle, D. Estimating commit sizes efficiently. In Proceedings of the
5th International Conference on Open Source Systems (OSS 2009), 105-115.

[10] Howison, J., Crowston, K. (2004). The perils and pitfalls of mining SourceForge.
In Proceedings of the 1st International Workshop on Mining Software Repositories
(MSR 2004), 7-11.

[11] Peterson, C., Beach L.R. (1967). Man as an intuitive statistician. Psychological
Bulletin 68, 29-46.

[12] Peterson, C., Miller, A. (1968). Mode, median, and mean as optimal strategies.
Journal of Experimental Psychology 68, 363-367.

[13] Purushothaman, R., Perry, D. (2004). Towards understanding the rhetoric of small
changes. In Proceedings of the International Workshop on Mining Software
Repositories (MSR 2004), 90-94.

[14] Riehle, D. (2009). Commits in Software Development (Survey). Accessed: 2011-
11-29. Archived: http://www.webcitation.org/63Z72ULbu.

[15] Tversky, A. Kahneman, D (1974). Judgement under uncertainty: heuristics and bi-
ases. Science 185, 1124-1131.

[16] Weißgerber, P., Neu, D., Diehl, S. (2008). Small patches get in! In Proceedings of
the Fifth Int'l Workshop on Mining Software Repositories (MSR 2008), 67pp.

12

http://www.webcitation.org/63QrHacPr
http://www.webcitation.org/63Z72ULbu

	1. Introduction
	2. Commit Sizes
	3. Developer Belief
	4. Development Reality
	4.1 The Open Source Distribution
	4.2 Closed Source Distributions

	5. Belief vs. Reality
	6. Threats to Validity
	6.1 Survey Responses
	6.2 Age of Analysis Data
	6.3 Measuring Commit Sizes
	6.4 Representativeness of Project Data

	7. Related Work
	8. Conclusions
	Acknowledgements
	References

