
The Single-Vendor Commercial Open Source 

Business Model

Dirk Riehle

Friedrich-Alexander-University of Erlangen-Nürnberg
Martensstr. 3, 91058 Erlangen, Germany

Phone: +49 9131 85 28390

Fax: +49 9131 85 28809

Email: dirk@riehle.org

Abstract

Single-vendor commercial open source software projects are open source software projects that are 

owned by a single firm that derives a direct and significant revenue stream from the software. 

Single-vendor commercial open source at first glance represents an economic paradox: How can a 

firm earn money if it is making its product available for free as open source? This paper presents  

the core properties of single-vendor open source business models and discusses how they work.  

Using a single-vendor open source approach, firms can get to market faster with a superior product 

at lower cost than possible for traditional competitors. The paper shows how these benefits accrue 

from an engaged and self-supporting user community. Lacking any prior comprehensive reference, 

this paper is  based on an analysis of  public  statements  by practitioners  of single-vendor open  

source. It forges the various anecdotes into a coherent description of revenue generation strategies 

and relevant business functions.

Keywords

Open  source,  commercial  open  source,  single-vendor  open  source,  commercial  open  source  

business model, dual-licensing strategy, open core business model, business model, go-to-market  

strategy,  open  source  sales,  open  source  marketing,  open  source  product  management,  open  

source licensing, software engineering, collaborative development.

1



1. Introduction

Open source software is software that is available in source code form, can be modified by users,  

and can be redistributed even in modified form without paying the original owners.

Open source is changing how software is built and how money is made. In 2006, open source  

software had a market share of 0.7% of the total packaged software market in terms of revenue 

[31] [21]. The prediction for 2008 was a market share of 1.1%. This data is underestimating the  

usage of open source software as it accounts only for paid-for open source software. According to 

a  2008  IDC  report,  less  than  1%  of  all  installations  had  third-party  attendant  services  [20],  

demonstrating that open source is being used significantly more widely than it is being paid for.

The total amount of work invested into open source software projects is growing at an exponential  

rate and can be expected to continue growing at this rate for a while before slowing down [12]. In  

general, the size of individual open source projects tends to grow at a linear or quadratic pace [23]  

[19]. The driver behind the overall exponential growth of open source is the exponential growth in 

the number  of  viable  projects.  Viable  open  source  software  is  now available  for  any  domain 

including business software, not just infrastructure software.

In many ways, the economic success of open source appears to be a paradox. How can companies 

make money of software  they are making available for  free?  There are many answers  to this  

question, as discussed in the next section. This paper focuses on one particular category of firms, 

called  single-vendor  commercial  open  source  firms  [29]  [9].  Single-vendor  commercial  open 

source firms are firms that are the sole owner of a product they generate revenue from. Examples 

are MySQL, SugarCRM, Jaspersoft, and Alfresco. According to a recent Gartner report, by 2012 

more than 50% of  all  revenue generated  from open source  software  projects  will  come from 

projects under a single vendor’s patronage, that is, from single-vendor open source [18].

The benefits of single-vendor commercial open source stem from the creation of an active and 

engaged user community around the product while at the same time preventing the emergence of 

competitors from that community. In a nutshell, this community helps the company get to market  

faster,  create  a  superior  product,  and  sell  more  easily,  all  at  a  lower  cost  than  possible  for 

traditional competitors. In exchange, the company offers a professionally developed product of 

compelling value  to  the  community that  this  community is  free  to  use under an open source 

license.

The contribution of this paper is to comprehensively present the core properties of the business 

models  underlying  single-vendor  commercial  open  source  companies.  Prior  work  typically 

addressed open source in general  without special  consideration for single-vendor open source.  

This  paper  reviews  every  relevant  business  function  and  how  it  works  in  a  single-vendor 

commercial open source business model. Methodologically, the paper is based on the reception of 

interviews and presentations by practitioners of single-vendor open source as well as the author’s  

review of the behavior of open source firms in the marketplace.

2

http://gartner.com/
http://alfresco.com/
http://jaspersoft.com/
http://sugarcrm.com/
http://mysql.com/
http://opensource.org/


2. Prior and Related Work

Like the author of  this paper,  Capra and Wasserman make a fundamental  distinction between 

commercial and community open source [9]. Community open source is open source software that 

is owned by a community or a legal entity representing the community. The community members  

typically don’t derive direct revenues from the software but subsidize it from ancillary products 

and services.  Single-vendor commercial open source, in contrast, is open source software that is 

owned by a single legal entity with the purpose of deriving revenues from the software. The next  

section discusses this distinction in more detail.

Various authors have provided summaries of how companies generate revenue from open source 

software. Watson et al. distinguish five models of software production and distribution [38]. Three  

of these they call open source business models. The “corporate distribution” model encompasses 

the providers of software distributions, for example,  Red Hat or  SpikeSource. “Sponsored open 

source” is open source that does not generate revenue for the contributing companies, for example, 

Apache Software Foundation or  Eclipse Foundation projects.  Finally,  “second-generation open 

source”  is  open  source  where  supporting  companies  generate  revenue  from  complementary 

services. This last category puts all revenue generating strategies into one basket without drawing 

distinctions between such different models as consulting and implementation services, e.g., JBoss, 

or license sales, e.g., MySQL.

Brian Fitzgerald introduces what he calls “OSS 2.0” [15]. He argues that prior to OSS 2.0 there 

were  only  two revenue  models:  “Value-added  service-enabling,”  which  created  revenue  from 

services around successful open source projects, and “loss-leader market-creating,” which created 

revenue  by  upgrading  users  of  a  free  open  source  project  to  a  commercial  more  feature-rich 

version of the same software. OSS 2.0 now provides a more differentiated approach to the loss-

leader strategy and adds two new strategies, “leveraging community software development” and 

“leveraging the open source brand.”

Many more classifications of open source business models have been made. For example,  the 

European Union’s  FLOSSmetrics project  analyzed  120 firms which derive their main revenue 

stream from open source, and clustered these firms into six main categories [17] [11].

Open source has been discussed from an economic perspective before,  for example, by Perens 

[28], Valimaki [34], and others [13]. However, there is quite a gap between a general discussion of 

the economic properties of open source software and the specifics of commercial open source.

Perhaps the clearest account of commercial open source has been provided by Michael Olson in 

his  discussion  of  the  “dual-licensing  strategy”  of  commercial  open  source  firms  [27].  Olson 

focuses  on  intellectual  property  ownership  and  the  business  strategies  resulting  from  such 

ownership, most notably the right to provide the product under both a (free) open source license 

and a (paid-for) commercial license.

With the exception of Olson's work, none of the prior works focus on single-vendor commercial 

open source, and Olson mostly addresses its intellectual property aspects. In contrast, this paper  

comprehensively  discusses  the  key  properties  of  single-vendor  commercial  open  source  firms 

across all business functions.

3

http://flossmetrics.org/
http://jboss.com/
http://eclipse.org/
http://apache.org/
http://spikesource.com/
http://redhat.com/


3. Commercial vs. Community Open Source

Open  source  projects  can  be  categorized  into  either  commercial  or  community  open  source 

projects [29] [9]. Community open source projects represent by far the majority of projects. These  

two types of projects are distinguished by their different control and ownership structures.

• Community open source is open source that is controlled by a community of stakeholders;

• Single-vendor commercial open source is controlled by exactly one stakeholder with the 

purpose of commercially exploiting it.

3.1 Community Open Source

Examples of community open source projects with a diverse set of stakeholders are the  Linux 

operating system, the Apache web server, and the PostgreSQL database. The source code of these 

projects is available under one and only one license, and anyone can enter the market and generate  

revenue from the project without being disadvantaged.

The contributors to community open source projects used to be the group of volunteer software 

programmers  who  developed  the  open  source  project.  In  this  case,  control  is  determined  by 

ownership of copyright to the code in the project and related intellectual property as well as social  

structures such as having the commit (write) rights to the code repository.

Today,  the  volunteer  communities  of  economically  relevant  projects  are  increasingly  being 

represented or replaced by non-profit foundations such as the Apache Software Foundation or the 

Eclipse Foundation [25]. Legally, many of the foundations have become the sole owner of the 

project; however, since the foundations are being controlled by their members, they still represent  

a community of stakeholders that run the foundations’ projects.

As the previous section showed, there are many ways of generating revenue from open source 

software, including community open source. The three dominant ones are

• consulting and support services around the software, 

• derivative products built on the community project, and 

• increased revenue in ancillary layers of the software stack.

More details are described in a related paper [29].

3.2 Single-Vendor Commercial Open Source

Single-vendor commercial open source firms build their business around an open source software 

project that they fully control, typically by having developed the software and never having shared 

control  with third  parties.  This  is  done by  owning the  full  copyright  to  the  code  and  related 

intellectual property such as patents and trademarks.

According to Olson, the maintenance of full control over the project is crucial to the functioning of 

single-vendor open source [27]. One consequence is that single-vendor open source firms do not 

accept outside contributions to the code base. Or, if they accept them, they require a transfer of  

copyright from the creator  to the firm to not dilute the firm’s  rights to the project.  Augustin, 

4

http://postgresql.org/
http://httpd.apache.org/
http://kernel.org/
http://kernel.org/


however, argues that full ownership transfer is not needed and that receiving relicensing rights is 

sufficient [6].

Single-vendor open source firms differ from traditional software vendors by not only providing the 

product for free as an easily installable binary but also by providing it in source code form. By 

providing the source code under an open source license, such firms qualify as open source firms. 

However, because these firms own the copyright to the product, they are not constrained to only 

one license but rather they can relicense the software to customers as they see fit.

Typically, the free open source form is provided under a reciprocal license like the GPL to drive 

adoption but stall possible competitors. Paid-for versions of the software are then provided under a 

commercial license like traditional software vendors do. This is also known as the dual-license  

strategy of commercial open source [24] [27].

4.  The  Single-Vendor  Commercial  Open  Source 

Business Model

In  this  paper,  the  term  business  model  is  defined  as  the  combination  of  revenue  generation 

strategies and supporting business practices and functions. This definition is a simplification over 

recent work defining electronic business models, for example, Timmers or Clarke [33] [10]. The 

focus on traditional business functions, however,  lets this paper stay close to the structure and 

behavior of real firms and leaves the creation of a more general abstraction to future work.

Practices and functions include sales and marketing processes, software production processes, and 

customer support processes. Thus, this paper first discusses what customers pay for and then how 

it is being produced and sold. It is understood that there is not just one but many commercial open  

source business models. Hence, this section focuses on those key properties that are shared across 

all or most commercial open source firms.

4.1 Revenue Sources

Generally  speaking,  the  products  and  services  that  customers  pay  for  are  not  new.  Bearden 

identified several categories of products and services that customers pay for [7]. Paraphrased by 

the author of this paper these are the four categories:

• Core product.  Some customers pay for the software, simply because they cannot accept 

the open source license. Mostly, this is for legal reasons. For example, companies may 

pay for a commercial license to receive certification or indemnification or to embed the 

software into their products without having their own code touch open source code.

• Whole product.  Commercial  users pay for the utility derived from using the software. 

Increasingly, the free open source product does not provide the full utility, only a more 

comprehensive non-free commercial version does, as summarized by Asay [2]. To meet 

all requirements, commercial users have to upgrade from the free to the non-free version.

• Operational comfort. Customers also want to ensure that the software reliably fulfills its 

duty. Thus, they may be buying hot-line and technical support, subscription services to 

5



bug  fixes,  or  real-time  systems  monitoring.  There  are  many  such  non-functional 

requirements that companies may want to buy, many of which are specific to the software 

at hand.

• Consulting services. Finally, customers may want to pay for training, documentation, and 

implementation services.

Different names have been given to different aspects of single-vendor commercial open source. 

The term “dual-license strategy” refers to selling a commercial license to the project separate from 

the open source license [27]. The term “freemium model,” a word play on “free” and “premium,” 

refers to withholding features from a free version and making them available only in a commercial 

version [14]. Lampitt coined the term “open core model” which combines the dual-license strategy 

with a freemium approach [24]. Asay puts it together in what he calls a “phased approach” to  

creating commercial open source businesses [1].

Selling a comprehensive product and providing operational support for it is not really novel. What 

is novel is how the software is being built and sold.

4.2 Business Functions

Releasing a product’s source code as open source can create an engaged user community which 

can impact the various functions of the commercial open source firm in multiple positive ways. 

This  impact  can  create  a  significant  competitive  advantage  over  traditional  (non-open-source)  

competitors. Thus, we first need to discuss

• Community management: How to create and sustain an engaged community.

From the community then, the following benefits accrue, listed by business function:

• Sales: More and easier sales due to customer-side champions.

• Marketing: More believable and cheaper marketing through engaged community.

• Product management: Superior product thanks to broad and deep user innovation.

• Engineering:  Superior  product  that  is  developed  faster  thanks  to  fast  and  immediate 

community feedback.

• Support: Lower support costs thanks to self-supporting user community.

Open  sourcing  also  has  its  downside,  for  example,  increased  risk  of  getting  sued  for  patent 

violations  or  of  leaking  important  intellectual  property.  Also,  catering  to  a  non-paying  user 

community and providing the public infrastructure for the community increases costs. The biggest  

danger, however, is that the firm's commercial product ends up competing with its own free open  

source project. This challenges product management as discussed below.

4.2.1 Community management

An engaged  community  is  at  the  core  of  any  working  open source  software  project  [37].  In  

community open source projects,  this community comprises  both users  and developers,  as the 

development work is carried out by the community itself. In single-vendor open source, almost all  

of the core product development work is carried out by the commercial  firm, with occasional  

contributions from the community [26].

6



Commercial  open  source  firms  are  interested  in  creating  an  active  and  self-supporting  user  

community. Such a user community is key to achieving the desired business benefits. Commercial 

open  source  firms  are  also  interested  in  creating  an  ecosystem  of  developers  and  service 

companies that extend the core product to increase its overall value proposition.

The main problem with seeding and growing a user community is the support cost. With closed  

source software, only the firm developing the software can provide the support. With a rapidly 

growing user base, the support cost can quickly outgrow any existing revenue or cash reserves.

Commercial open source firms address this problem by leading the community to become self-

supporting. For this, they provide not only an easily available product, they also provide the source 

code to the product under an open source license. From a user perspective, this has the following 

benefits:

• Free use.  Providing the product  under  an open source  license grants  free  irrevocable 

usage rights; thus, users do not have to worry about having to pay down the road if they 

don’t want to.

• No lock-in. Because the source code is available under an open source license, users can 

become independent of the commercial firm and hence (sometimes naively) think are not 

locked into the firm’s future decisions.

• Self-support.  Because  the source  code is open source,  users  can solve their  problems 

themselves without having to resort to asking the firm, which might not want to provide  

that support to non-paying users in the first place.

From the firm’s perspective, providing the product as open source accelerates adoption without  

increasing support costs. Specifically, it reduces hurdles to adoption as potential users perceive no 

or  little  lock-in,  and it  makes it  possible that  the community becomes  self-supporting once it  

reaches critical mass.

Walker as well as Capobianco provide some insights into how commercial open source firms seed 

and grow such communities [37] [8]. On the most basic level, communities need a place to gather, 

and they need tools of communication. For this reason, most commercial open source firms host a  

software forge with integrated or ancillary tools like wikis, forums, and mailing lists. Much of the  

general advice on community building on the web applies, like aiding the construction of explicit 

social structures and rewarding members for good behavior [22].

More specific to single-vendor commercial open source is the application of traditional marketing 

techniques:  Firms need to understand the different  sub-communities and their significance and 

target and support them accordingly. Specific programs aimed at different segments may become 

necessary. In general,  community managers try to create win/win situations, which are easy to 

achieve as each constructive contribution by a community member not only benefits the product  

and the firm but increases that member’s buy-in and his or her reputation within the community.

Each of  the following business functions (sales,  marketing,  product  management,  engineering, 

support) has its own requirements and best practices of engaging with the community, and they are 

discussed in turn.

7



4.2.2 Sales

Augustin provides an account of the commercial open source sales funnel, as depicted in Figure 1 

[5].  An  eventual  customer  goes  through  a  process  of  downloading,  installing,  and  using  the 

software, before they are recognized as a lead, become a prospect, and finally are converted from 

user to customer.

customerleadusedownload install prospect sale customerleadusedownload install prospect sale

Figure 1: Commercial open source sales funnel according to Augustin [5].

Compared with the traditional sales funnel,

• commercial open source has a different lead generation model, and

• it replaces the traditional pre-sales-to-sale activities with a user-to-customer conversion 

process.

Because the open source product is available for free, potential customers can download, install, 

and use the product without ever getting in touch with the commercial firm behind the product. At  

the same time, the firm can track via (typically voluntary) download registration and community 

forum activities who is actually using the product. Some products also provide usage information 

back to the firm.

A lead analysis can then determine which of these users might be potential customers. More often 

than not, however, the firm will wait until a non-paying user steps forward and asks for a sales 

contact to purchase any of the services outlined in the revenue generation section. Thus, leads 

emerge  from  the  existing  user  community,  either  voluntarily  or  by  analysis.  Of  course,  the 

commercial firm can still engage in a traditional sales cycle with non-using prospects as well.

In a traditional setting, a software firm’s product is unknown to the potential customer except 

through marketing  material.  In  the  commercial  open  source  setting,  the  potential  customer  is  

sometimes  already  using  the  product  and  hence  is  familiar  with  it.  Thus,  from  the  buyer’s  

perspective, the open source project has significantly less risk associated with it. In this situation,  

there is likely to be an inside champion in the buyer’s organization who downloaded and installed 

the product and is using it.  These factors  make a sale significantly easier  than possible if  the 

software firm had no prior relationship with the buyer. 

As  free  open  source  software,  commercial  open  source  can  make  it  into  potential  customer 

companies under the radar screen of the CIO. IT organizations may have strict rules in place not to 

install arbitrary software, however, in practice these rules are frequently circumvented [26]. Such 

early  footholds  in  potential  customer  companies  drive  customer  acquisition  cost  down 

significantly [39]. Whether  a significant percentage of potential customers is already using the 

product typically depends on the type of product. For some it is the case, for others it is not.

One role of the community is to support the potential buyer during the lead generation phase. For  

economic reasons, the commercial firm cannot provide this support on a broad scale, since only a  

8



small and hard-to-identify percentage of users might actually turn into customers. According to 

Taylor, conversion rates of 0.5-2% are common for single-vendor commercial open source firms 

[32].  Since  the  user  is  not  paying  at  this  stage,  voluntary  community  support  is  typically  

acceptable. As soon as the user is converted into a paying customer, professional support becomes 

available.

4.2.3 Marketing

Most single-vendor commercial open source software firms engage in traditional marketing: They 

advertise, they exhibit at trade shows, and they give talks [8]. What is new is that an engaged user 

community aids these marketing efforts. More specifically, the community makes marketing more 

effective and cheaper than possible without this support.

Marketing is more effective because non-paying users are credible sources of good testimonials. 

Thankful for a good product and the positive engagement in the community, users evangelize and 

market the product themselves without much support necessary from the commercial firm [39].

Free marketing can significantly reduce the marketing cost of a software firm, and hence create a 

competitive advantage over a competing traditional firm. According to Augustin, the ratio of sales 

and  marketing  (S&M)  expenses  to  research  and  development  (R&D)  expenses  in  traditional 

software firms is 2.3 (and sometimes much higher), while it can be much lower for commercial  

open source firms [4]. In the CRM space, for example, the S&M / R&D ratio of non-open-source  

firm Salesforce is 6, while Augustin estimates the S&M / R&D ratio of a hypothetical open source 

CRM vendor to be 0.6, suggesting significant savings in sales and marketing expenses [3]. From a  

startup perspective,  such a reduced  cash burn rate  increases  the likelihood of  survival  for  the  

commercial open source firm over the traditional firm.

4.2.4 Product management

Von Hippel has shown how user innovation can be a significant source of product innovation for 

any commercial  firm [35] and Shah has shown how this applies to open source software [30].  

Mickos discusses how user innovation has aided the MySQL database [36] [26]: By providing the 

source code, firms encourage volunteers to innovate and contribute to the product for free.  As 

mentioned,  no  such  contributions  will  be  accepted  unless  the  rights  are  transferred  to  the 

commercial firm. Nevertheless, such user innovation can significantly improve the product, and if 

only through ideas rather than code.

An engaged community actively discusses strengths and weaknesses as well as future prospects of 

the open source product. Almost every commercial open source software firm provides the means 

to such discussions in the form of mailing lists, forums, and wikis on a company-run software  

platform. Thus, product managers can easily observe and engage with the community and discuss 

current and future features. This in turn brings product managers close to users and customers, 

aiding the product management process, for example, by helping feature definition and creation of 

a product roadmap.

In commercial  open source,  this  community does not only include current  customers  but  also 

current  non-paying  users  and  possibly  even  researchers  and  students.  Thus,  compared  with  a 

9



traditional  community  of  customers,  the  breadth  of  perspectives  in  such  discussions  is  much 

higher. This breadth of perspective in turns helps product managers understand new features and 

issues that have kept non-users from becoming users as well as existing users from converting to 

customers.

Many single-vendor commercial open source firms distinguish between a free community version 

of  the  product  and  a  paid-for  enterprise  edition.  Product  management  faces  the  challenge  of 

motivating  enterprises  to  purchase  a  commercial  license  without  annoying  the  non-paying 

community by withholding important features. Smart product managers address this problem by 

determining which enterprise features are irrelevant to the open source community and by taking a 

time-phased approach to making features available that are needed by both communities.

Product management benefits greatly from the immediate connection with the community, which 

provides ideas and feedback and keeps the product focused on its needs. Thus, the community  

helps the firm create a superior product.

4.2.5 Engineering

Obviously,  volunteer  contributions  can  speed  up  development.  Also,  an  engaged  technical 

community represents a potent pool of possible future employees that proved themselves before  

being hired, taking risk out of the hiring process.

More importantly, however,  and similar to product management,  are the benefits  of direct  and 

immediate feedback from the community. A single-vendor commercial open source company is 

likely  to  provide  the  latest  release,  sometimes  a  daily  release,  to  the  community,  including 

potential  bugs.  An engaged (and fearless)  community picks up the latest  release and provides 

feedback to the company about bugs and issues they found, sometimes together with a bug fix.  

While  such  community  behavior  may  appear  as  counterintuitive,  it  is  nevertheless  what 

practitioners experience [26] [36].

The distinction between an experimental  community edition and slower-paced but more stable 

enterprise edition in turn lets the commercial open source firm sell operational comfort, that is, the  

stable  enterprise  edition,  more  easily.  Still,  engineering  management  may not  want  these  two 

versions to become too different from each other to avoid (re-)integration problems with outside  

contributions as well as unnecessarily redundant development on both versions.

4.2.6 Support

An engaged community supports itself by and large. Users who are not customers typically don’t  

expect professional support from the commercial firm and are willing to utilize (and contribute to) 

community support. The commercial firm needs to aid in the support, but does not have to perform 

the bulk of the work. It  would be prohibitively expensive for the commercial  firm to provide  

support to all users, including those that don’t pay. Thus, a self-supporting community is necessary 

to grow a large (non-paying) user base that might be converted into paying customers later. Paying 

customers can then receive full support from the commercial firm as part of their maintenance 

contracts.

10



The self-support activities of the community benefit the support activities of the commercial firm 

as well, reducing its cost. Specifically, engaged communities frequently develop and manage their 

own  documentation,  or  at  least  contribute  to  and  expand  company  documentation.  User-

maintained wikis and knowledge bases have become common. Thanks to the power of Internet 

search, many users, including paying customers, find it easier and faster to browse for problem 

solutions before turning to paid support in the form of phone calls or emails. Thus, the community  

takes some of the support burden of the commercial firm’s shoulders, reducing the overall support 

expenses.

5. Conclusion

Open source is changing how software is built and how money is made. Industry analysts predict  

that by 2012 more than half of all open source revenue will accrue to single-vendor dominated 

open source projects, called single-vendor commercial open source. This paper comprehensively 

presents the core properties of single-vendor commercial open source firms as well as their main 

business  functions.  Through  a  review  of  interviews  and  presentations  by  practitioners  of 

commercial  open  source  as  well  as  other  sources,  this  paper  shows  how  at  the  core  of  the 

successful commercial open source firm is an engaged and self-supporting user community. From 

this user community, many benefits accrue, touching almost every business function of the firm: 

Sales are eased and increased through inside champions and reduced customer risk, marketing 

becomes  more  effective  through  better  testimonials  and  active  community  support,  product 

management more easily meets customer needs and benefits  from user innovation, engineering 

creates a superior product faster and cheaper, and support costs are reduced. Thus, first order of 

business for a commercial open source firm is to create and sustain this community, a business 

function frequently non-existent or neglected in traditional software firms.

Acknowledgements

I would like to thank Eliot  Miranda,  Wesley Mukai,  Martin Stein,  Jens Strücker and Christof 

Wittig for feedback on an early version of the paper.  Then, I  would like to acknowledge and 

particularly thank Jacob Taylor for helping me refine this paper further. Last but not least, I would 

like to thank Larry Augustin, Craig Hughes, Andrew Lampitt, Mike Moody, Mike Olson, Julio 

Toffoli as well as the anonymous reviewers for feedback in the final stages of the paper.

References

1. Asay, M.: A Time to Reap, a Time to Sow: A Phased Approach for Open-Source Businesses, 

http://news.cnet.com/8301-13505_3-9945870-16.html

2. Asay, M.: Building an Open Source Business? Some Tips. CNet News (February 27, 2009), 

http://news.cnet.com/8301-13505_3-10173773-16.html

3. Augustin, L.: The Next Wave of Open Source: Applications. Presentation given at GOSCON 

2005 (2005)

11



4. Augustin, L.: A New Bread of P&L: The Open Source Business Financial Model. 

Presentation given at the 2007 Open Source Business Conference (2007)

5. Augustin, L.: Smoothing the On-ramp to Commercial. Presentation given at the 2008 Open 

Source Business Conference (2008), http://www.infoworld.com/event/osbc/08/

6. Augustin, L.: Ownership vs. Relicensing Rights. Personal communication (March 2009)

7. Bearden, R.: Tailoring an Open Source Business Model. Presentation given at the 2008 Open 

Source Business Conference (2008), http://www.infoworld.com/event/osbc/08/

8. Capobianco, F.: Building Vibrant and Sustainable Communities. Presentation at the Open 

Source SIG of SDForum (March 2008)

9. Capra, E., Wasserman, A.: A Framework for Evaluating Managerial Styles in Open Source 

Projects. In: Proceedings of the 4th International Conference on Open Source Systems (OSS 

2008), pp. 1–14. Springer, Heidelberg (2008)

10. Clarke, R.: Open Source Software and Open Content as Models for eBusiness. Presentation 

given at the 17th International eCommerce Conference (June 2004), 

http://www.rogerclarke.com/EC/Bled04.html

11. Daffara, C.: Business Models in FLOSS-based Companies. In: Workshop presentatioon at the 

3rd Conference on Open Source Systems (OSS 2007) (2007), 

http://opensource.mit.edu/papers/OSSEMP07-daffara.pdf

12. Deshpande, A., Riehle, D.: The Total Growth of Open Source. In: Proceedings of the Fourth 

Conference on Open Source Systems (OSS 2008), pp. 197–209. Springer, Heidelberg (2008)

13. DiBona, C., Cooper, D., Stone, M. (eds.): Open Sources 2.0. O’Reilly, Sebastopol (2005)

14. Dodge, D.: Freemium—Free to Paid Conversion Rates, 

http://dondodge.typepad.com/the_next_big_thing/2007/05/freemium_free_t.html

15. Fitzgerald, B.: The Transformation of Open Source Software. MIS Quarterly 30(3) (2006)

16. Fogel, K.: Producing Open Source Software. O’Reilly, Sebastopol (2005)

17. FLOSSmetrics. Open Source Business Models, http://robertogaloppini.net/2007/04/06/open-

source-business-models-a-taxonomy-of-open-source-firms-business-models/

18. Gartner, Inc. Predicts 2009: The Evolving Open Source Model. Gartner, Inc. (2008)

19. Godfrey, M., Tu, Q.: Growth, Evolution, and Structural Change in Open Source Software. In: 

Proceedings of the 4th International Workshop on Principles of Software Evolution, pp. 103–

106. ACM Press, New York (2001)

20. IDC. 2007 Industry Adoption of Open Source Software, Part 2: Project Adoption. IDC (2007)

21. IDC. Worldwide Open Source Software Business Models 2007–2011 Forecast: A Preliminary 

View. IDC (2007)

22. Kim, A.J.: Community Building on the Web. Peachpit Press (2000)

12



23. Koch, S.: Evolution of Open Source Software Systems—A Large-Scale Investigation. In: 

Proceedings of the 1st International Conference on Open Source Systems (OSS 2005) (2005)

24. Lampitt, A.: Open-Core Licensing (OCL): Is this Version of the Dual License Open Source 

Business Model the New Standard?, 

http://alampitt.typepad.com/lampitt_or_leave_it/2008/08/open-core-licen.html

25. LWN.net. Who wrote 2.6.20?, http://lwn.net/Articles/222773/

26. MIT. An Interview with Marten Mickos: The Oh-So-Practical Magic of Open-Source 

Innovation. MIT Sloan Management Review 50(1), 15 (Fall 2008)

27. Olson, M.: Dual Licensing. In: Open Sources 2.0, ch. 5. O’Reilly, Sebastopol (2005)

28. Perens, B.: The Emerging Economic Paradigm of Open Source, 

http://perens.com/Articles/Economic.html

29. Riehle, D.: The Economic Motivation of Open Source: Stakeholder Perspectives. IEEE 

Computer 40(4), 25–32 (2007)

30. Shah, S.: Community-Based Innovation and Product Development: Findings from Open 

Source Software and Consumer Sporting Goods. MIT, Cambridge (2003)

31. Software & Information Industry Association. Packaged Software Industry Revenue and 

Growth. SIIA (2006)

32. Taylor, J.: User to Customer Conversion Rates. Personal communication (March 2009)

33. Timmers, P.: Business Models for Electronic Markets. Electronic Markets 8(2) (1998)

34. Valimaki, M.: The Rise of Open Source Licensing. Turre Publishing (2005)

35. von Hippel, E.: Democratizing Innovation. MIT Press, Cambridge (2005)

36. The Wall Street Journal Online. Software Firm is Open for Innovation. WSJ (July 7, 2008), 

http://online.wsj.com/article/SB121494378874020445.html

37. Walker, J.: Building Vibrant and Sustainable Communities. Presentation at the Open Source 

SIG of SDForum (March 2008)

38. Watson, R.T., et al.: The Business of Open Source. Communications of the ACM 51(4), 41–

46 (2008)

39. Wittig, C., Inkinen, S.: MySQL Open Source Database in 2004. Stanford Graduate School of 

Business, Case: SM-124. Stanford (2004)

13


