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ABSTRACT 
Design pattern density is a metric that measures how much of an 
object-oriented design can be understood and represented as in-
stances of design patterns. Expert developers have long believed 
that a high design pattern density implies a high maturity of the 
design under inspection. This paper presents a quantifiable and 
observable definition of this metric. The metric is illustrated and 
qualitatively validated using four real-world case studies. We 
present several hypotheses of the metric’s meaning and their im-
plications, including the one about design maturity. We propose 
that the design pattern density of a maturing framework has a 
fixed point and we show that if software design patterns make 
learning frameworks easier, a framework’s design pattern density 
is a measure of how much easier it will become. 

Categories and Subject Descriptors 
D.1.5: Object-oriented Programming, D.2.8: Metrics – Complex-
ity Measures, D.2.11: Software Architectures – Patterns. 

General Terms 
Measurement, Design. 

Keywords 
Design patterns, design pattern density, role modeling, collabora-
tion-based design, inheritance interface, object-oriented frame-
work, object-oriented design, framework maturity, JUnit, JHot-
Draw, object-oriented case study. 

1   INTRODUCTION 
JUnit is a widely-adopted unit testing framework for Java, devel-
oped by Kent Beck and Erich Gamma. In the discussion of JUnit 
3.8’s design, the authors state: 

“Notice how TestCase, the central abstraction in the 
framework, is involved in four patterns. Pictures of ma-

ture object designs show this same ‘pattern density’. The 
star of the design has a rich set of relationships with the 
supporting players.” [1] 

This statement articulates the long-held belief of expert software 
developers that mature frameworks consist of a higher than aver-
age number of design pattern instances, or, in short, “exhibit a 
high design pattern density”. However, this claim has never been 
validated empirically nor has it been formalized to allow for such 
validation. The reason is simple: It is difficult to define and meas-
ure a metric like design pattern density as relevant case studies 
are hard to come by and laborious to carry out one oneself. 

This paper presents a quantitative definition of design pattern 
density so that we can track its value in the evolution of a given 
framework. The metric is applied to four case studies which are 
then interpreted based on the results. The paper presents multiple 
hypotheses using this metric, including the one about design ma-
turity, and discusses these hypotheses using the instrument devel-
oped in this paper. This paper, however, does not validate these 
hypotheses but rather leaves this to future work [34]. 

The paper presents an enhanced definition of collaboration-based 
design [2] a.k.a. role modeling [4] to define a quantitative meas-
ure of functionality in a class model. Object collaborations are 
used as the atomic unit of functionality. This makes it easy to 
assess the number of design pattern instances in a given design. 
The calculation of a framework’s design pattern density becomes 
the percentage of collaborations that are pattern instances. 

The contributions of this paper are: 

• An enhanced definition of collaboration-based design that 
can cope with inheritance interfaces; 

• A quantitative (and measurable) definition of a new metric 
called ‘design pattern density’; 

• A qualitative evaluation of the metric using four real-world 
case studies; 

• The discussion of multiple relevant hypotheses about object-
oriented frameworks. 

Again, the hypotheses themselves are not being validated in this 
paper. The main contribution of the paper is to be the first to pre-
cisely define the metric, provide an instrument for assessing it, 
and illustrate its potential usefulness. 
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Section 2 introduces the enhanced version of collaboration-based 
design that is used in this work. Section 3 introduces the design 
pattern density metric and applies it to a running example. Section 
4 presents three more case studies. Section 5 presents multiple 
hypotheses that can now be defined more precisely than before 
and discusses conclusions that can be drawn from the metric, the 
case studies, and their data. Section 6 discusses the limitations of 
this work and addresses future work. Section 7 discusses related 
work and how it addresses the issues presented in this paper. Sec-
tion 8 concludes the paper. 

2   PATTERNS AND COLLABORATIONS 
Section 3 defines ‘design pattern density’ to be the percentage of 
a framework’s functionality that can be explained as design pat-
tern instances. For this, we need a measure of functionality on the 
level of granularity of design patterns so that we can represent and 
measure that functionality. We can then determine which parts of 
a design are design pattern instances and which are not. 

This section defines the notion of object collaboration as the 
atomic unit of functionality with which to measure the number of 
design pattern instances in a given framework. 

 

Figure 1: The TestResultObserver collaboration from JUnit 3.8. 

+run(in test : TestCase)
+startTest(in test : Test)
+runProtected(in test : TestCase, in p : Protectable)
+endTest(in test : Test)
+shouldStop() : boolean
+stop()
+addListener(in listener : TestListener)
+removeListener(in listener : TestListener)
+cloneListener() : Vector
+TestResult()
+addError(in test : Test, in t : Throwable)
+addFailure(in test : Test, in t : AssertionFailedError)
+errorCount() : int
+errors() : Enumeration
+failureCount() : int
+failures() : Enumeration
+runCount() : int
+wasSuccessful() : boolean

TestResult

TestResult::TestResult

TestResultController::TestResult

TestResultObserver::TestResult

ProtectedTestRun::Client

CollectingTestRun::Command

TestFailure::Client

 
Figure 2: The TestResult class and the different roles its instances play. 
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2.1   Patterns and Granularity 
Software patterns vary greatly in their granularity (from architec-
tural styles through design patterns to programming idioms) as 
well as in what aspect of a design they address (object flexibility, 
concurrency, persistence, etc.) Here, we focus on the level of 
granularity of the classic design patterns (hence design pattern 
density) [5] and we ignore aspects like concurrency and persis-
tence. Section 6 discusses the consequences of this limitation. 

The level of granularity addressed by the classic design patterns is 
the class and method level. This level is of a finer granularity than 
architectural styles like pipes and filters [6] and it is of a coarser 
granularity than programming idioms like how to write a for-loop 
in a given programming language [7]. Thanks to the Design Pat-
terns book, this is the best investigated level of patterns. 

Most patterns (but not all) in the Design Patterns book are about 
object collaborations: How responsibilities are distributed across 
classes such that by configuring their instances a specific purpose 
can be achieved. By admission of their authors [8] and as increas-
ingly found in follow-up work, the notion of participant in many 
pattern descriptions is more accurately called a role, and the focus 

is on object collaboration rather than class structure. We have 
previously shown how to reinterpret the classic design patterns 
using a collaboration-based approach [9] [10] [11]. 

However, not all design patterns are about object collaborations; 
some are about the structural aspects of a design and how flexibil-
ity is reached using inheritance (for example, Factory Method) or 
how behavior can be made pluggable (for example, Null Object). 
In the next subsections, we present an enhanced version of col-
laboration-based design that can be used to represent design pat-
terns even in such situations. 

2.2   Collaboration-Based Design 
Collaboration-based design was born as role modeling [4]. It is 
related to (but independent of) the CRC (Class Responsibility 
Collaboration) card approach to design [3]. Collaboration-based 
design has made its way into UML where it is called collabora-
tions [12]. These modeling techniques vary significantly in their 
details and no single technique dominates collaboration-based 
design. The presentation here is based on [13] which in turn is 
based on [4] with its formalization in [32]. 

 

Table 1. Data from the collaboration-based design view of the JUnit 3.8 framework. 

Collaboration name Number of 
Collaborations 

Number of Roles in 
Collaboration 

Number of Methods 
in Collaboration 

Is it a pattern? 
If so which? 

TestCase 1 2 4 - 

TestSuite 1 2 4 - 

TestSuiteTestCreation 1 2 4 - 

TestRun 1 2 1 Command 

TestCaseTestRun 1 2 2 - 

TestSuiteTestRun 1 2 1 - 

TestHierarchy 1 3 13 Composite 

TestResult 1 3 9 Collecting Parameter 

TestResultController 1 2 2 - 

TestResultObserver 1 3 7 Observer 

CollectingTestRun 1 2 4 Command 

ProtectedTestRun 1 3 2 Adapter 

TestRunMethod 1 2 4 Template Method 

Assertions 1 2 38 - 

TestFailure 1 2 6 - 

AssertionFailedError 1 2 2 - 

ComparisonFailure 1 2 3 - 

ComparisonCompactor 1 2 2 Strategy 

CompactMethod 1 2 6 Composed Method 

Total 19 42 114 9 
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(1) 
TestResult 

collaboration «interface»
TestResult::Client

+TestResult()
+addError(in test : Test, in t : Throwable)
+addFailure(in test : Test, in t : AssertionFailedError)
+errorCount() : int
+errors() : Enumeration
+failureCount() : int
+failures() : Enumeration
+runCount() : int
+wasSuccessful() : boolean

«interface»
TestResult::TestResult«interface»

TestResult::Creator

 

(2) 
TestResultController 

collaboration 
 

(3) 
TestResultObserver 

collaboration 

 

(4) 
CollectingTestRun 

collaboration 

 

(5) 
ProtectedTestRun 

collaboration 

+runBare()

«interface»
ProtectedTestRun::Target

+protect()

«interface»
ProtectedTestRun::Protectable

«interface»
ProtectedTestRun::Client

 

(6) 
TestFailure 

collaboration 

 

Figure 3: Six collaborations in which the TestResult class is involved in. 
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This paper uses the JUnit framework as a running example [33]. 
JUnit is a framework for writing unit tests in Java. It is available 
in source code form. The framework has had significant industry 
impact yet is small enough to make for a good case study. We use 
version 3.8, the last version for which an official design discus-
sion by the authors is available [1]. We focus on the junit.frame-
work classes only. The discussion in this paper is based on our 
own method-by-method documentation of JUnit 3.8 using col-
laborations [14]. 

This paper uses the UML concept of interface to represent a role 
and the UML concept of package to scope a collaboration (keep-
ing its constituents, the roles, together). Compared with UML 2.x 
as well as our own definition [13] this is a simplification; how-
ever, it helps focus the paper and the metric definition. 

In collaboration-based design, objects play roles that define how 
these objects collaborate to achieve exactly one well-defined pur-
pose. A role is scoped by its collaboration and it cannot see out-
side its boundaries. 

A role is a type that defines the behavior of an object within a 
collaboration and a collaboration is a grouping of roles that 
defines how objects behind these roles are allowed to interact.  

For example, Figure 1 shows the TestResultObserver collabora-
tion from JUnit 3.8. This collaboration defines how a TestResult 
object allows for registration and unregistration of TestListener 
objects interested in what’s happening with the TestResult object. 
For that purpose, TestListener objects provide callback methods 
that the TestResult object can invoke. It does so when a test run 
starts, when it ends, and when a failure occurs. This collaboration 
is an application of the Observer pattern, where the TestResult 
role represents the Subject participant and the TestListener role 
represents the Observer participant. An additional Configurator 
role handles the registration process. 

Earlier attempts viewed role modeling as a competitor to class-
based approaches [4]. In contrast to this, we cast it as an extension 
of class-based modeling. In our definition, a class model like the 
JUnit framework can be described by composing collaborations. 
The composition is carried out by assigning roles to classes and 
by defining how a class composes and implements the roles as-
signed to it. 

The roles define the visible behavior of instances of the class 
within a particular collaboration, and the class defines how its 
instances bring together the expected behavior in these different 
contexts as one integrated whole. 

Thus, the class view is complementary to the role view. The role 
view defines how an instance behaves in one particular context 
(collaboration) and the class view defines how state models and 
control flow is integrated between the different collaborations. 
Basically, the class composes the roles to form the class [13]. 

The class TestResult in JUnit 3.8, for example, provides the Test-
Result::Testresult role. This denotes a role called TestResult that 
is part of a collaboration called TestResult. (Following UML, the 
collaboration is named first, followed by double colons, followed 
by the role name.) The collaboration name disambiguates the role 
name by scoping it, so there can be several roles called TestRe-
sult. The role name, in this case TestResult, is the same as the 
class name. This typically happens if the service provided by the 

role is exactly the primary service associated with the class. In 
such a case, the collaboration represents a domain-specific cli-
ent/service collaboration. This double and triple use of the same 
name may at first appear confusing but works well within context. 

Other roles assigned to the TestResult class are the TestResult-
Controller::TestResult role, the TestResultObserver::TestResult 
role, the TestFailure::Client role, the CollectingTestRun::Com-
mand role, and the ProtectedTestRun::Client role. One may won-
der again about the frequent use of TestResult. For example, in 
the TestResultObserver collaboration, the TestResult role repre-
sents the applied Subject participant of the Observer pattern, so 
why not call it Subject rather than TestResult? This is a decision 
left to the developer, and we follow the advice to be specific 
(TestResult) rather than generic (Subject). 

The TestResult class is shown in Figure 2, and its roles and their 
collaborations are shown in Figure 3. The class interface shown in 
Figure 2 is the sum of the different methods defined by the roles 
in the participating collaborations. 

Please note that using UML interfaces to represent a role doesn’t 
imply that on the code-level any such interface exists. More often 
than not, in JUnit the methods defined by roles are directly em-
bedded in a Java interface or Java class, as Figure 2 illustrates. 

Of the six collaborations that TestResult participates in, three are 
instances of design patterns: The TestResultObserver collabora-
tion is an instance of the Observer pattern, the CollectingTestRun 
is an instance of the Command pattern, and the ProtectedTestRun 
is an instance of the (Object) Adapter pattern. 

Table 1 shows the statistics of the junit.framework classes. It lists 
19 collaborations that were found when analyzing JUnit 3.8’s 
junit.framework classes (TestCase, TestSuite, TestSuiteCreation, 
etc.) Of those, 9 collaborations were identified as instances of 
design patterns using the original authors’ [1] and our own judg-
ment [14]. The table also lists the number of roles a collaboration 
offers: Typically it is two, sometimes three; atomic collaborations 
with more than three roles are rare. The number of methods per 
collaboration is fairly evenly distributed from 1 to 9, with one 
anomaly, the Assertions collaboration. The Assertions collabora-
tion provides the methods from the Assert class, which is using a 
shopping list approach to interface design [15] to let developers 
express assertions about the program being tested.  

2.3   Collaborations and Granularity 
Collaborations are design elements of the same granularity as the 
classic design patterns. They have two important properties: 

• Well-defined collaborations are orthogonal to each other and 
can be composed easily; 

• Class models can be derived completely by composing col-
laborations; nothing falls between the cracks. 

The JUnit 3.8 documentation using collaborations accounts for 
every single method in the framework and identifies it as part of a 
specific collaboration [14]. 

Any given collaboration has to serve one defined purpose. From 
this, an upper level of granularity follows. (Composite collabora-
tions and patterns [11] are outside the scope of this paper.) 
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2.4   Collaborations and Inheritance 
Traditional and collaboration-based design typically focuses on 
the collaboration between objects. Self-delegation, intra-object 
communication, and class inheritance structures have played little 
or no role. However, the inheritance interface that superclasses 
define as a contract of interaction with their subclasses is also 
important. We need to extend the notion of collaboration-based 
design with a way of specifying and using inheritance interfaces. 
Without such enhancement, we would not be able to completely 
capture white-box or gray-box frameworks like JUnit. 

The key insight is that one object may play several roles within 
the same collaboration. For example, an object may be observing 
itself or it may be using some basic service using self-delegation. 
Hence, we can capture intra-object communication with the same 
approach as inter-object communication: We simply define roles 
and collaborations as done before, but allow for role assignments 
to the same class, even if the same instance of that class may end 
up playing multiple roles. Then, a role in that collaboration can 
represent all or parts of the inheritance interface. 

Template Method is an example. In this pattern, a superclass de-
fines a public method that spreads its work over multiple non-
public methods within the class. These other methods are part of 
the class’ inheritance interface and are visible only to subclasses. 

Figure 4 shows an application of the Template Method pattern 
using a textual notation for collaborations. It defines three roles, 
two of which are assigned to the TestCase class. The public run-
Bare method is a template method that makes use of primitive 
methods that constitute parts of the class inheritance interface. 

The use of collaborations to define collaborations that are internal 
to class hierarchies is new to collaboration-based design. Yet, it is 
critical to fully account for the functionality of a design. Without 
it, we would be ignoring how class hierarchies work internally 
and would only be able to grasp the collaboration between sepa-
rate objects. In short, the only frameworks we would be able to 
fully explain using collaborations would be black-box frame-
works. However, most frameworks are a mixture between black-
box and white-box frameworks. 

3   DESIGN PATTERN DENSITY 
Using the instrument laid out in Section 2, we can now provide a 
quantitative and measurable definition of design pattern density: 

The design pattern density of an object-oriented framework is 
the percentage of its collaborations that are design pattern in-
stances. 

For example, as Table 1 shows, the core junit.framework classes 
are composed from 19 collaborations. Of these, 9 are instances of 
design patterns. Hence, as shown in Table 2, the design pattern 
density of JUnit 3.8 is 9/19 or 47%. 

The metric ‘design pattern density’ is simple, precise, complete, 
and measurable. It is simple and precise because only a basic 
calculation is needed. It is complete and measurable due to the 
completeness properties of the enhanced collaboration-based de-
sign method described in Section 2. 

One advantage of this metric is that it has a simple comparison 
relation already built-in. With values on a linear scale from 0 to 
100%, comparing two density values becomes trivial. 

Interpreting the metric and a comparing two of its values is not 
trivial. What does it mean to say that the pattern density of JUnit 
3.8 is 47% while the pattern density of JHotDraw 5.1 (a case 
study in Section 4) is 71%? Section 5 discusses this further. 

In general, it is safe to assume that the pattern density of a frame-
work will remain well below 100%, because in any given frame-
work there will be at least one client/service collaboration whose 
chief purpose is to provide a domain-specific service. 

In addition, we need to distinguish the design pattern density of a 
framework’s interface architecture from the design pattern density 
of its complete design. 

The design pattern density of a framework’s interface architec-
ture is the percentage of those collaborations that are design 
pattern instances and that are defined in the framework’s inter-
face architecture. 

The design pattern density of a framework’s complete design is 
the percentage of all collaborations in the framework’s complete 
design, including both interface architecture and implementa-
tion structures. 

 
// collaboration definition 
public collaboration TestRunMethod { 
 
 free role Client { 
  // no methods 
 } 
 
 role TemplateMethod { 
  public void runBare() throws Throwable; 
 } 
 
 role PrimitiveMethods { 
  protected void runTest() throws Throwable; 
  protected void setUp() throws Exception; 
  protected void tearDown() throws Exception;
 } 
} 
 
// role to class assignments 
public class TestCase provides TemplateMethod, 
  PrimitiveMethods ... 
 

Figure 4: A collaboration-based definition 
of the Template Method application in JUnit. 

Table 2: Summary data from the JUnit 3.8 analysis. 

JUnit 3.8 Case Study 

Number of classes/interfaces 11 
Number of collaborations 19 
Number of pattern instances 9 
Number of roles in total 42 
Ratio roles per class/interface 3.8 

Design pattern density 47% 
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The interface architecture of a framework defines its interfaces 
and interface classes and structures their core collaborations. If 
someone wants to understand how to use a framework, he or she 
typically turns to the interface architecture first. 

The implementation architecture consists of the implementation 
classes and their class hierarchy and how these classes implement 
the interface architecture. The implementation architecture be-
comes relevant mostly if someone wants to extend the framework. 

It makes sense to measure both the design pattern density of the 
interface architecture and the complete design. The implementa-
tion cannot be understood without the interface architecture, so 
we don’t measure the density of the implementation structures 
only. Thus, we distinguish between the design pattern density of 
the interface architecture and the complete design. 

4   CASE STUDIES 
In addition to JUnit, we used the metric and its underlying in-
strument to gather data from three other frameworks. 

1. The Geo system, a metalevel-architecture-based implementa-
tion of a distributed object system [13]. 

2. The KMU Desktop framework used to build tools in a finan-
cial risk assessment application [13]. 

3. The JHotDraw framework for building graphical editors [13] 
[16] [17]. 

The Geo framework and the KMU Desktop framework are the 
result of a major revision and hence in their second release JHot-
Draw had already undergone several major releases and was ana-
lyzed in version 5.1. 

4.1   Case Study Data 
All case studies were documented using collaboration-based de-
sign. The referenced documentation provides the details on the 
collaborations, the class models, and how the class models are 
composed from the collaborations. 

Table 3 shows summary data and the design pattern densities 
from the three new case studies, excluding the JUnit case study. 
The three new case studies were assessed on an interface architec-
ture level, so the numbers given in Table 3 are interface architec-
ture design pattern densities. 

Table 4 summarizes the pattern densities and assigns a maturity 
level to each framework. The maturity level is a simple integer 
value 1-3, where 1 represents “new”, 2 means “revised” and 3 
means “mature”. These values are based on this paper’s author’s 
assessment of the frameworks and are kept simple, because they 
can only give a qualitative maturity indication. 

These frameworks exhibit a high design pattern density. 

4.2   Collaborations and Functionality 
The design pattern density metric is based on collaborations. In 
terms of granularity, collaborations are between methods and use 
cases. Thus, collaborations can serve as a measure of functionality 
in a framework on a medium-granularity level: Collaborations are 
not as small as methods and not as coarse-grained as use cases. 
Moreover, how many methods there are in a framework can de-
pend strongly on a developer’s programming style. Use cases on 
the other hand can vary drastically in terms of the actual function-
ality they provide.  

Tables 2, 3, and 4 and the documentation data show that collabo-
rations are of fairly even size. The number of roles per collabora-
tion is between 2 and 3 in the given frameworks, and the number 
of methods per role is between 2 and 4. The number of case stud-
ies available is too small to measure the variance in these num-
bers; however, it seems unlikely that they vary drastically. 

Table 3: Summary data from three case studies. 

Case study [1] [2] [3] 

Number of interfaces and 
interface classes 17 13 20 

Number of collaborations 
 34 20 28 

Number of pattern 
instances 20 12 20 

Number of roles assigned 
to classes 75 44 66 

Ratio roles per class/inter-
face 4.4 3.4 3.3 

Design pattern density 
(interface architecture) 59% 60% 71% 

    
[1] - The Geo framework 

[2] - The KMU Desktop framework 

[3] - The JHotDraw core framework 

Table 4: The maturity level, pattern density, 
roles per collaboration data of the case studies. 

Case study 
Maturity 

Level 
(1-3) 

Design 
Pattern 
Density 

Number of 
roles per 

collaboration 

    

Assessed on the interface architecture level 

Geo System 2 59% 2.21 

KMU Desktop 2 60% 2.20 

JHotDraw 3 71% 2.36 

    

Assessed on the complete design level 

JUnit 3 47% 2.21 
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Thus, we have a strong indicator that collaborations can serve 
as a more reliable measure of functionality in framework design 
than other approaches like method count or use cases.  

We pick up this observation in Section 5 below where we frame it 
as the hypothesis that the design pattern density metric is a meas-
ure of ease of learning a framework. 

While not explored further in this paper, this also shows that col-
laborations might be a good proxy for complexity and estimated 
effort in implementing a framework. 

5   HYPOTHESES 
The definition of the new metric ‘design pattern density’ is sim-
ple, precise, complete, and measurable. But is it useful? 

To show that a metric is a reliable proxy of something, we need to 
develop a sufficiently large body of quantitative data and corre-
late the metric with the property of interest, assuming that this 
property is known for the case studies. This correlation can then 
be used to predict the property for future case studies, assuming 
that it is easier to assess the metric than the property. 

The body of case studies presented in this paper is too small to 
derive statistically significant conclusions from it. As a conse-
quence, we can only use the metric, its underlying instrument, and 
the qualitative indicators from the case studies to discuss hypothe-
ses of interest. This in itself is valuable if the hypotheses are new 
or can now be framed in more precise terms than before.  

This section looks at both old and new hypotheses that have be-
come tractable for the first time. Previously, these hypotheses (so 
they had been postulated) were unclear and not open to valida-
tion. We can frame them now in such a way that we can validate 
(or invalidate) them in future work. 

5.1   Framework Maturity 
The original motivation of this work came out of the expert opin-
ion that “a high design pattern density indicates a high maturity of 
a design.” (This is our framing of the introducing quotation of 
Kent Beck and Erich Gamma).  

Hypothesis 1: As a framework matures, the design pattern den-
sity of a framework increases. 

We equate age with maturity, so this can only be a statistical rela-
tionship, as it is (easily) imaginable that an aging framework’s 
design pattern density drops temporarily through intermediate 
revisions. 

Given that the design pattern density will always stay below 
100%, and given that a framework can’t grow beyond any 
boundaries, we can sharpen hypothesis 1: 

Hypothesis 2: As a framework matures, its design pattern den-
sity approaches a fixed point value. 

This fixed point would be the design pattern density of the “per-
fect design” for the framework at hand. We would expect (follow-
ing Hypothesis 1) that the sequence of design pattern density 
values created by successive revisions of a framework approaches 
the fixed point from below. 

This hypothesis isn’t saying anything about a specific frame-
work’s fixed point for its design pattern density though. More-
over, the assumption is that this fixed point value varies from 
framework to framework. 

A corollary is that the fixed points of the design pattern densities 
of all conceivable frameworks follow a probability distribution: 

Hypothesis 3: The fixed points of the design pattern densities of 
all possible frameworks form a random variable that follows a 
probability distribution. 

Here, the distinction between the design pattern density of a 
framework’s interface architecture and the design pattern density 
of a complete design becomes important: 

Hypothesis 4: The distribution of the random variable ‘design 
pattern density of a framework’s interface architecture’ has a 
higher mean than the distribution of the random variable ‘de-
sign pattern density of a framework’s complete design’. 

This should be easy to see, since the design pattern density of any 
interface architecture is generally higher than the design pattern 
density of a complete design. This is because most of a frame-
work’s flexibility is expressed in the interface architecture. Add-
ing implementation classes proportionally increases the number of 
non-design-pattern instance collaborations in a framework over 
the number of pattern instances. For example, adding a new sub-
class like Rectangle to the Figure abstraction in the JHotDraw 
framework for graphical editors does not change the interface 
architecture. It does add, however, a client/service collaboration 
that lets clients make use of the specifics of Rectangle objects. 

It is the author’s best guess that for the design pattern densities of 
interface architectures the mean is likely to be at around 70% with 
a standard deviation of around 5%. 

It seems safe to assume that both densities are highly correlated: 

Hypothesis 5: The random variable ‘design pattern density of a 
framework’s interface architecture’ is highly correlated with the 
random variable ‘design pattern density of a framework’s com-
plete design’. 

For this reason most hypotheses apply equally to both densities 
and there is usually no need to explicitly say which density we are 
talking about. 

These hypotheses finally lead us to a precise formulation of the 
expert opinion quoted in the beginning of this paper: 

Hypothesis 6: The difference between the design pattern density 
of a specific framework version and its fixed point is a measure 
of the framework’s maturity. 

We suggest that if the value is far below the fixed point, the 
framework is still in its early stages. On the other hand, if the 
value is higher than the fixed point, the framework may have been 
over-engineered. Over-engineering can happen when developers 
learn about design patterns for the first time and apply them eve-
rywhere, appropriate or not. 

Hypothesis 6 is a precise framing of the original motivation of 
this paper and one that can be validated. Once we determine the 
fixed point distribution through further case studies, we will be 
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able to measure how mature a given framework version is and can 
make decisions with more confidence than before. 

5.2   Ease of Learning Frameworks 
In Section 4, we discussed how collaborations can be used as a 
measure of functionality in a framework. As a consequence, the 
design pattern density of a framework measures how much of that 
framework’s functionality can be captured as instances of design 
patterns. 

For example, in JUnit 3.8’s case, with a design pattern density of 
47%, that very percentage of its functionality can be understood 
as design pattern instances. 

Assuming that design patterns make learning, using, and docu-
menting frameworks easier, faster, and less error-prone, the de-
sign pattern density metric also becomes a measure of how much 
easier, faster, etc. patterns make it for developers to work with 
frameworks. 

Hypothesis 7: The closer a framework version’s design pattern 
density is to its fixed point, the easier on average the framework 
is to learn and use. 

For example, if consistent documentation of a framework using 
patterns is known to make learning a framework 50% faster with 
respect to those parts that are described using patterns, learning 
JUnit would be sped up by 23.5% (47% of its functionality is 
being learned at twice the speed over not using patterns). 

A key assumption is that patterns have been applied only where 
sensible, meaning the framework has not been over-engineered to 
artificially inflate its design pattern density. 

Thus, a framework’s design pattern density may not only be a 
measure of the framework’s maturity, but equally importantly, a 
measure of how much easier it will be for developers to learn the 
framework and put it to use. 

6   LIMITATIONS AND FUTURE WORK 
The work presented in this paper makes a number of assumptions 
that restrict the applicability of the metric and its underlying in-
strument. This section discusses these assumptions as well as 
future work to follow this paper. In this discussion, we need to 
distinguish the metric from the instrument from the case studies. 

6.1   Definition of Metric 
It is a strength of the design pattern density metric that it is pre-
cise and explicit about what it is based on, namely collaborations. 
This is also its largest restriction, as there are patterns that cannot 
be neatly captured using collaborations.  

Concurrency is one example. Synchronization patterns, work 
distribution patterns, and different concurrency models can not be 
captured well using the instrument presented in this paper. 

The first question is whether they should be. Some of these pat-
terns are clearly not on a design level, but rather on an architec-
ture or programming level. 

More importantly though, it does not seem sensible to mix 
(largely) orthogonal design aspects into one metric. A better ap-

proach might be to have a pattern density metric for each major 
type of aspect in a given system, and to define an overall design 
pattern density metric as a composite metric based on these dif-
ferent aspect metrics. 

Under this assumption, the design pattern density metric pre-
sented in this paper covers the aspect “flexibility” (by object 
composition and distribution of responsibilities between classes), 
while concurrency, persistence, and other aspects will be assessed 
using different metric definitions. 

This forms a base for future work, as it will be interesting to de-
fine aspect-specific patterns, a pattern density metric for these 
patterns, and instruments for assessing these densities in a given 
framework. 

Another issue is pattern granularity. What about those program-
ming idioms that developers routinely apply? We argue that they 
are on a different level of abstraction and should be assessed in-
dependently from a design level metric like design pattern den-
sity. 

A final restriction of this paper is that the metric definition fo-
cuses on frameworks rather than the more general notion of class 
model. This choice was deliberate as the design pattern density 
metric provides most of its value when applied to reusable code 
components like frameworks. 

6.2   Application of Instrument 
The main instrument used in assessing the metric in a given 
framework is an enhanced method for using collaboration-based 
design as presented in this paper. 

This instrument has the following two shortcomings with respect 
to assessing the design pattern metric: 

1. Few developers actually use collaboration-based design, so 
any such documentation is after the fact; 

2. The recognition of design patterns in a collaboration-based 
documentation may be subjective. 

Shortcoming 1 about the limited use of collaboration-based design 
is a problem as it may be difficult to document a framework using 
collaborations after the fact. However, we contend that as a 
framework matures, the different purposes why objects collabo-
rate become clearer, and the deconstruction of the framework into 
its constituting object collaborations will become easier. 

An indicator of such a progress is the recognition of design pat-
terns itself: Since a pattern has one well-defined purpose, recog-
nizing patterns goes lock-step with a collaboration-based decom-
position (and reconstruction) of a framework. 

A more severe problem is the recognition of a pattern itself. One 
might argue that if this is left to subjective opinion, anything 
goes, and an assessed metric’s value is not worth much. (In par-
ticular if commercial interests develop around this metric.) 

Most design pattern descriptions are done in prose and remain 
ambiguous. While experts can generally determine which pattern 
has been applied by looking at the context of the pattern and 
matching pattern intent with code, a machine may remain con-
fused about whether it is looking at a Bridge, Strategy, or (Object) 
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Adapter, if all it has is the Structure Diagram from the Design 
Patterns book. 

This problem can only be alleviated through more formal and 
precise definitions of what constitutes a (design) pattern. Gil and 
Maman’s work on automated recognition of micro-patterns is a 
step into the right direction [18]. However, their patterns are not 
on a design level and extending it to that level seems difficult. 
Zdun and Avgeriou’s work on primitives for modeling design 
patterns has the advantage of being able to capture the many vari-
ants in which patterns can come, but their work has not yet been 
applied to automated recognition of design patterns [19]. 

To the extent that we make progress towards formalizing design 
patterns (without taking away their inherent variability) we will 
be able to make progress towards automated calculation of the 
metric design pattern density. 

6.3   Case Studies and Hypotheses 
The case studies discussed in this paper represent a non-trivial 
amount of work. However, since they only provide four data 
points (design pattern densities), more are needed to validate the 
hypotheses presented in Section 5. 

One type of studies that needs to be done are longitudinal studies 
that track the design pattern density of a framework over its many 
versions. Using such studies, it should be possible to determine 
whether framework-specific fixed points of the design pattern 
density metric exist, and how the metric approaches these fixed 
points. 

Another study that should be done is one that determines the 
probability distribution of the fixed points of framework design 
pattern densities. The underlying assumption is obviously that 
such fixed points exist. Further work should then investigate how 
the distribution relates to the fixed points of evolving frameworks. 

Also, the design pattern density needs to be correlated with other 
properties of frameworks under investigation, most notably ma-
turity, quality, and ease of learning. 

All of these studies represent non-trivial efforts. Still, they are 
necessary to validate the hypotheses presented in this work. Un-
dertaking these studies seems worthwhile given the conjectured 
power of design pattern density in predicting such important 
qualities as framework maturity and ease of learning. 

Thanks to the open source movement, today we have sufficiently 
large quantities of materials at hand (frameworks in their many 
versions) which we can analyze so that these studies have become 
feasible. 

7   RELATED WORK 
Related work falls mainly into three categories: design metrics, 
design patterns, and modeling techniques. 

Henderson-Seller’s early work on object-oriented metrics pro-
vides a set of fundamental metrics useful in a wide variety of 
circumstances [20]. None of those, however, are about design 
patterns and object-oriented frameworks. A 2003 survey by Purao 
and Vaishnavi provides a collection of 375 different object-

oriented metrics [21]. Among those metrics is not a single one 
that is about design patterns or object-oriented frameworks. 

One explanation for the lack of design pattern metrics is given by 
Stein et al. who argue that design-level metrics cannot be derived 
from the code and are therefore more difficult to handle [22]. 
Based on Etzkorn and Delugach’s work on so-called “semantic 
metrics” (design-level metrics) [23] they show how to derive such 
metrics from design documentation. This work is related to the 
work presented in this paper as we also work off design documen-
tation. However, we derived this design documentation by analyz-
ing the source code, so we do not agree with the assumption that 
design and implementation are completely separate. 

Much of the work on object-oriented metrics is geared towards 
aiding refactoring of object-oriented designs [24]. Metrics are 
used as quality measures to indicate how to improve a legacy 
system [25]. Design pattern metrics, however, still have to enter 
this space. 

More work has been spent on formalizing and automatically rec-
ognizing design patterns in existing code. Kramer and Prechelt 
provide one of the first implementations to automatically recog-
nize design patterns in code [26]. However, with just the Structure 
Diagram information from the Design Patterns book, pattern defi-
nitions remain ambiguous and experimental results suffer. Gil and 
Maman therefore focus on “micro-patterns,” which are structural 
patterns that can be defined precisely and that can be found in 
code [18]. However, micro-patterns are still a level of abstraction 
below design patterns. 

Zdun and Avgeriou took a different approach by not focusing on 
comprehensive pattern specifications but rather on the primitives 
that can be employed to specify patterns [19]. This approach has 
the advantage that it can better cope with the breadth of variants 
that expert developers typically see in design pattern. Ideally, a 
combination of Gil/Maman’s and Zdun/Avgeriou’s work could 
lead to automated recognition of design patterns in code. Such 
work would benefit the metric assessment presented in this paper 
as it would reduce some of the subjectivity in the process. 

Yet more work on detecting design patterns is available [36] [37] 
[38] [39]. The quality of the detection results depends as much on 
the quality of the chosen pattern formalization as it depends on 
the actual detection algorithm. We see two potentially useful use-
cases of such tools for assessing design pattern densities: The first 
approach creates high-quality documentation by keeping the hu-
man in the loop. Human experts decide on which pattern instance 
is at hand, supported by the tool’s provision of an automatically 
generated candidate pool. The design pattern metric of a frame-
work assessed this way is likely to have high statistical signifi-
cance. The second approach creates low-quality documentation 
automatically, but plenty of it. This second use case may be use-
ful for establishing the overall design pattern density distribution 
of object-oriented frameworks. 

A core aspect of the work presented in this paper is collaboration-
based design, the employed modeling technique to capture 
framework functionality and design pattern instances. Our en-
hanced version is based on Reenskaug et al.’s original work and 
related to CRC cards [4] [3]. 
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Role modeling and collaboration-based design are not the only 
approaches to breaking up frameworks into smaller composable 
pieces. Other more recent approaches are traits and fragments. A 
trait is a set of methods and their implementation that can be 
composed with other traits to form a class [27]. Most of the work 
on traits, much like with the work on subject-oriented program-
ming [28] focuses on the difficulties encountered when compos-
ing code. Traits are like roles but do not come with a notion of 
collaboration, which is essential in dealing with design patterns. 

Closer to collaborations is the work on fragments, which are de-
scriptions of code fragments together with the code and how they 
can be composed to form or add to a framework [29]. Like col-
laborations, fragments can therefore be used to represent design 
pattern instances in framework design. As with traits and subject-
oriented programming, fragments are more concerned with data 
and code in a bottom-up fashion, while collaborations focus on 
meeting domain modeling problems and worry less about imple-
mentation, coming top-down. 

In Section 6.1 we argue that the design pattern density metric 
presented in this paper is really only the most prominent member 
in a family of pattern density metrics. The family members are 
defined by what aspect of the framework they address, be it flexi-
bility, concurrency, etc. The most promising attempt at modeling 
and implementing such aspects is aspect-oriented programming 
(AOP) [30]. As Hannemann and Kiczales have shown, AOP can 
be used to implement design pattern instances in code [31]. Den-
ier and Cointe's case study on JHotDraw shows that AOP can help 
capture design patterns; unfortunately, they do not provide an 
explicit definition of design pattern density [35]. 

Given the comprehensiveness of aspect-oriented programming in 
comparison with other approaches, we view it as the most promis-
ing implementation technology for traditional object-oriented 
frameworks. As the CaesarJ programming language shows, ex-
tending AOP with new constructs lets us make collaborations 
explicit in a natural way [40]. Making design patterns explicit is 
the next obvious step after this. 

8   CONCLUSIONS 
This paper presents a new metric called design pattern density. 
We investigate this metric because of common expert belief that 
this metric can serve as a reliable proxy for the maturity of object-
oriented frameworks and can aid decision making about whether 
to use a framework or not. 

The paper presents a novel extension of collaboration-based de-
sign as the instrument to calculate the metric’s value in a given 
framework. The paper makes the metric not only precise but also 
measurable for the first time. To do so, we show how collabora-
tion-based design cannot only be used to capture inter-object col-
laborations, but also how it can be extended to capture class in-
heritance interfaces. 

The metric and its instrument are applied to four case studies, 
followed by a discussion of their quantitative assessment. Based 
on the case studies and their discussion, seven hypotheses are 
presented about design pattern density, framework maturity, and 
ease of learning of frameworks. It is left to future work, however, 
to actually validate these hypotheses. 

Key hypotheses are that a framework’s design pattern density has 
a fixed point and that the fixed pointfs of all conceivable frame-
works form a random variable that follows a probability distribu-
tion. Thanks to the metric and its underlying instrument, these 
hypotheses have lost their vagueness and have become tractable 
in future studies. 
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