
In Proceedings of the 2009 Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA Onward! ’09). ACM Press, 2009. Forthcoming.

Design Pattern Density Defined
Dirk Riehle

SAP Research, SAP Labs LLC
3412 Hillview Ave, 94304 Palo Alto, CA, U.S.A.

+1 650 215 3459

dirk@riehle.org, www.riehle.org

ABSTRACT
Design pattern density is a metric that measures how much of an
object-oriented design can be understood and represented as in-
stances of design patterns. Expert developers have long believed
that a high design pattern density implies a high maturity of the
design under inspection. This paper presents a quantifiable and
observable definition of this metric. The metric is illustrated and
qualitatively validated using four real-world case studies. We
present several hypotheses of the metric’s meaning and their im-
plications, including the one about design maturity. We propose
that the design pattern density of a maturing framework has a
fixed point and we show that if software design patterns make
learning frameworks easier, a framework’s design pattern density
is a measure of how much easier it will become.

Categories and Subject Descriptors
D.1.5: Object-oriented Programming, D.2.8: Metrics – Complex-
ity Measures, D.2.11: Software Architectures – Patterns.

General Terms
Measurement, Design.

Keywords
Design patterns, design pattern density, role modeling, collabora-
tion-based design, inheritance interface, object-oriented frame-
work, object-oriented design, framework maturity, JUnit, JHot-
Draw, object-oriented case study.

1 INTRODUCTION
JUnit is a widely-adopted unit testing framework for Java, devel-
oped by Kent Beck and Erich Gamma. In the discussion of JUnit
3.8’s design, the authors state:

“Notice how TestCase, the central abstraction in the
framework, is involved in four patterns. Pictures of ma-

ture object designs show this same ‘pattern density’. The
star of the design has a rich set of relationships with the
supporting players.” [1]

This statement articulates the long-held belief of expert software
developers that mature frameworks consist of a higher than aver-
age number of design pattern instances, or, in short, “exhibit a
high design pattern density”. However, this claim has never been
validated empirically nor has it been formalized to allow for such
validation. The reason is simple: It is difficult to define and meas-
ure a metric like design pattern density as relevant case studies
are hard to come by and laborious to carry out one oneself.

This paper presents a quantitative definition of design pattern
density so that we can track its value in the evolution of a given
framework. The metric is applied to four case studies which are
then interpreted based on the results. The paper presents multiple
hypotheses using this metric, including the one about design ma-
turity, and discusses these hypotheses using the instrument devel-
oped in this paper. This paper, however, does not validate these
hypotheses but rather leaves this to future work [34].

The paper presents an enhanced definition of collaboration-based
design [2] a.k.a. role modeling [4] to define a quantitative meas-
ure of functionality in a class model. Object collaborations are
used as the atomic unit of functionality. This makes it easy to
assess the number of design pattern instances in a given design.
The calculation of a framework’s design pattern density becomes
the percentage of collaborations that are pattern instances.

The contributions of this paper are:

• An enhanced definition of collaboration-based design that
can cope with inheritance interfaces;

• A quantitative (and measurable) definition of a new metric
called ‘design pattern density’;

• A qualitative evaluation of the metric using four real-world
case studies;

• The discussion of multiple relevant hypotheses about object-
oriented frameworks.

Again, the hypotheses themselves are not being validated in this
paper. The main contribution of the paper is to be the first to pre-
cisely define the metric, provide an instrument for assessing it,
and illustrate its potential usefulness.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

OOPSLA ’09, October 25-29, 2009, Orlando, Florida, U.S.A.
Copyright © 2009 ACM 978-1-60558-734-9/09/10…$10.00.

2

Section 2 introduces the enhanced version of collaboration-based
design that is used in this work. Section 3 introduces the design
pattern density metric and applies it to a running example. Section
4 presents three more case studies. Section 5 presents multiple
hypotheses that can now be defined more precisely than before
and discusses conclusions that can be drawn from the metric, the
case studies, and their data. Section 6 discusses the limitations of
this work and addresses future work. Section 7 discusses related
work and how it addresses the issues presented in this paper. Sec-
tion 8 concludes the paper.

2 PATTERNS AND COLLABORATIONS
Section 3 defines ‘design pattern density’ to be the percentage of
a framework’s functionality that can be explained as design pat-
tern instances. For this, we need a measure of functionality on the
level of granularity of design patterns so that we can represent and
measure that functionality. We can then determine which parts of
a design are design pattern instances and which are not.

This section defines the notion of object collaboration as the
atomic unit of functionality with which to measure the number of
design pattern instances in a given framework.

Figure 1: The TestResultObserver collaboration from JUnit 3.8.

+run(in test : TestCase)
+startTest(in test : Test)
+runProtected(in test : TestCase, in p : Protectable)
+endTest(in test : Test)
+shouldStop() : boolean
+stop()
+addListener(in listener : TestListener)
+removeListener(in listener : TestListener)
+cloneListener() : Vector
+TestResult()
+addError(in test : Test, in t : Throwable)
+addFailure(in test : Test, in t : AssertionFailedError)
+errorCount() : int
+errors() : Enumeration
+failureCount() : int
+failures() : Enumeration
+runCount() : int
+wasSuccessful() : boolean

TestResult

TestResult::TestResult

TestResultController::TestResult

TestResultObserver::TestResult

ProtectedTestRun::Client

CollectingTestRun::Command

TestFailure::Client

Figure 2: The TestResult class and the different roles its instances play.

3

2.1 Patterns and Granularity
Software patterns vary greatly in their granularity (from architec-
tural styles through design patterns to programming idioms) as
well as in what aspect of a design they address (object flexibility,
concurrency, persistence, etc.) Here, we focus on the level of
granularity of the classic design patterns (hence design pattern
density) [5] and we ignore aspects like concurrency and persis-
tence. Section 6 discusses the consequences of this limitation.

The level of granularity addressed by the classic design patterns is
the class and method level. This level is of a finer granularity than
architectural styles like pipes and filters [6] and it is of a coarser
granularity than programming idioms like how to write a for-loop
in a given programming language [7]. Thanks to the Design Pat-
terns book, this is the best investigated level of patterns.

Most patterns (but not all) in the Design Patterns book are about
object collaborations: How responsibilities are distributed across
classes such that by configuring their instances a specific purpose
can be achieved. By admission of their authors [8] and as increas-
ingly found in follow-up work, the notion of participant in many
pattern descriptions is more accurately called a role, and the focus

is on object collaboration rather than class structure. We have
previously shown how to reinterpret the classic design patterns
using a collaboration-based approach [9] [10] [11].

However, not all design patterns are about object collaborations;
some are about the structural aspects of a design and how flexibil-
ity is reached using inheritance (for example, Factory Method) or
how behavior can be made pluggable (for example, Null Object).
In the next subsections, we present an enhanced version of col-
laboration-based design that can be used to represent design pat-
terns even in such situations.

2.2 Collaboration-Based Design
Collaboration-based design was born as role modeling [4]. It is
related to (but independent of) the CRC (Class Responsibility
Collaboration) card approach to design [3]. Collaboration-based
design has made its way into UML where it is called collabora-
tions [12]. These modeling techniques vary significantly in their
details and no single technique dominates collaboration-based
design. The presentation here is based on [13] which in turn is
based on [4] with its formalization in [32].

Table 1. Data from the collaboration-based design view of the JUnit 3.8 framework.

Collaboration name Number of
Collaborations

Number of Roles in
Collaboration

Number of Methods
in Collaboration

Is it a pattern?
If so which?

TestCase 1 2 4 -

TestSuite 1 2 4 -

TestSuiteTestCreation 1 2 4 -

TestRun 1 2 1 Command

TestCaseTestRun 1 2 2 -

TestSuiteTestRun 1 2 1 -

TestHierarchy 1 3 13 Composite

TestResult 1 3 9 Collecting Parameter

TestResultController 1 2 2 -

TestResultObserver 1 3 7 Observer

CollectingTestRun 1 2 4 Command

ProtectedTestRun 1 3 2 Adapter

TestRunMethod 1 2 4 Template Method

Assertions 1 2 38 -

TestFailure 1 2 6 -

AssertionFailedError 1 2 2 -

ComparisonFailure 1 2 3 -

ComparisonCompactor 1 2 2 Strategy

CompactMethod 1 2 6 Composed Method

Total 19 42 114 9

4

(1)
TestResult

collaboration «interface»
TestResult::Client

+TestResult()
+addError(in test : Test, in t : Throwable)
+addFailure(in test : Test, in t : AssertionFailedError)
+errorCount() : int
+errors() : Enumeration
+failureCount() : int
+failures() : Enumeration
+runCount() : int
+wasSuccessful() : boolean

«interface»
TestResult::TestResult«interface»

TestResult::Creator

(2)
TestResultController

collaboration

(3)
TestResultObserver

collaboration

(4)
CollectingTestRun

collaboration

(5)
ProtectedTestRun

collaboration

+runBare()

«interface»
ProtectedTestRun::Target

+protect()

«interface»
ProtectedTestRun::Protectable

«interface»
ProtectedTestRun::Client

(6)
TestFailure

collaboration

Figure 3: Six collaborations in which the TestResult class is involved in.

5

This paper uses the JUnit framework as a running example [33].
JUnit is a framework for writing unit tests in Java. It is available
in source code form. The framework has had significant industry
impact yet is small enough to make for a good case study. We use
version 3.8, the last version for which an official design discus-
sion by the authors is available [1]. We focus on the junit.frame-
work classes only. The discussion in this paper is based on our
own method-by-method documentation of JUnit 3.8 using col-
laborations [14].

This paper uses the UML concept of interface to represent a role
and the UML concept of package to scope a collaboration (keep-
ing its constituents, the roles, together). Compared with UML 2.x
as well as our own definition [13] this is a simplification; how-
ever, it helps focus the paper and the metric definition.

In collaboration-based design, objects play roles that define how
these objects collaborate to achieve exactly one well-defined pur-
pose. A role is scoped by its collaboration and it cannot see out-
side its boundaries.

A role is a type that defines the behavior of an object within a
collaboration and a collaboration is a grouping of roles that
defines how objects behind these roles are allowed to interact.

For example, Figure 1 shows the TestResultObserver collabora-
tion from JUnit 3.8. This collaboration defines how a TestResult
object allows for registration and unregistration of TestListener
objects interested in what’s happening with the TestResult object.
For that purpose, TestListener objects provide callback methods
that the TestResult object can invoke. It does so when a test run
starts, when it ends, and when a failure occurs. This collaboration
is an application of the Observer pattern, where the TestResult
role represents the Subject participant and the TestListener role
represents the Observer participant. An additional Configurator
role handles the registration process.

Earlier attempts viewed role modeling as a competitor to class-
based approaches [4]. In contrast to this, we cast it as an extension
of class-based modeling. In our definition, a class model like the
JUnit framework can be described by composing collaborations.
The composition is carried out by assigning roles to classes and
by defining how a class composes and implements the roles as-
signed to it.

The roles define the visible behavior of instances of the class
within a particular collaboration, and the class defines how its
instances bring together the expected behavior in these different
contexts as one integrated whole.

Thus, the class view is complementary to the role view. The role
view defines how an instance behaves in one particular context
(collaboration) and the class view defines how state models and
control flow is integrated between the different collaborations.
Basically, the class composes the roles to form the class [13].

The class TestResult in JUnit 3.8, for example, provides the Test-
Result::Testresult role. This denotes a role called TestResult that
is part of a collaboration called TestResult. (Following UML, the
collaboration is named first, followed by double colons, followed
by the role name.) The collaboration name disambiguates the role
name by scoping it, so there can be several roles called TestRe-
sult. The role name, in this case TestResult, is the same as the
class name. This typically happens if the service provided by the

role is exactly the primary service associated with the class. In
such a case, the collaboration represents a domain-specific cli-
ent/service collaboration. This double and triple use of the same
name may at first appear confusing but works well within context.

Other roles assigned to the TestResult class are the TestResult-
Controller::TestResult role, the TestResultObserver::TestResult
role, the TestFailure::Client role, the CollectingTestRun::Com-
mand role, and the ProtectedTestRun::Client role. One may won-
der again about the frequent use of TestResult. For example, in
the TestResultObserver collaboration, the TestResult role repre-
sents the applied Subject participant of the Observer pattern, so
why not call it Subject rather than TestResult? This is a decision
left to the developer, and we follow the advice to be specific
(TestResult) rather than generic (Subject).

The TestResult class is shown in Figure 2, and its roles and their
collaborations are shown in Figure 3. The class interface shown in
Figure 2 is the sum of the different methods defined by the roles
in the participating collaborations.

Please note that using UML interfaces to represent a role doesn’t
imply that on the code-level any such interface exists. More often
than not, in JUnit the methods defined by roles are directly em-
bedded in a Java interface or Java class, as Figure 2 illustrates.

Of the six collaborations that TestResult participates in, three are
instances of design patterns: The TestResultObserver collabora-
tion is an instance of the Observer pattern, the CollectingTestRun
is an instance of the Command pattern, and the ProtectedTestRun
is an instance of the (Object) Adapter pattern.

Table 1 shows the statistics of the junit.framework classes. It lists
19 collaborations that were found when analyzing JUnit 3.8’s
junit.framework classes (TestCase, TestSuite, TestSuiteCreation,
etc.) Of those, 9 collaborations were identified as instances of
design patterns using the original authors’ [1] and our own judg-
ment [14]. The table also lists the number of roles a collaboration
offers: Typically it is two, sometimes three; atomic collaborations
with more than three roles are rare. The number of methods per
collaboration is fairly evenly distributed from 1 to 9, with one
anomaly, the Assertions collaboration. The Assertions collabora-
tion provides the methods from the Assert class, which is using a
shopping list approach to interface design [15] to let developers
express assertions about the program being tested.

2.3 Collaborations and Granularity
Collaborations are design elements of the same granularity as the
classic design patterns. They have two important properties:

• Well-defined collaborations are orthogonal to each other and
can be composed easily;

• Class models can be derived completely by composing col-
laborations; nothing falls between the cracks.

The JUnit 3.8 documentation using collaborations accounts for
every single method in the framework and identifies it as part of a
specific collaboration [14].

Any given collaboration has to serve one defined purpose. From
this, an upper level of granularity follows. (Composite collabora-
tions and patterns [11] are outside the scope of this paper.)

6

2.4 Collaborations and Inheritance
Traditional and collaboration-based design typically focuses on
the collaboration between objects. Self-delegation, intra-object
communication, and class inheritance structures have played little
or no role. However, the inheritance interface that superclasses
define as a contract of interaction with their subclasses is also
important. We need to extend the notion of collaboration-based
design with a way of specifying and using inheritance interfaces.
Without such enhancement, we would not be able to completely
capture white-box or gray-box frameworks like JUnit.

The key insight is that one object may play several roles within
the same collaboration. For example, an object may be observing
itself or it may be using some basic service using self-delegation.
Hence, we can capture intra-object communication with the same
approach as inter-object communication: We simply define roles
and collaborations as done before, but allow for role assignments
to the same class, even if the same instance of that class may end
up playing multiple roles. Then, a role in that collaboration can
represent all or parts of the inheritance interface.

Template Method is an example. In this pattern, a superclass de-
fines a public method that spreads its work over multiple non-
public methods within the class. These other methods are part of
the class’ inheritance interface and are visible only to subclasses.

Figure 4 shows an application of the Template Method pattern
using a textual notation for collaborations. It defines three roles,
two of which are assigned to the TestCase class. The public run-
Bare method is a template method that makes use of primitive
methods that constitute parts of the class inheritance interface.

The use of collaborations to define collaborations that are internal
to class hierarchies is new to collaboration-based design. Yet, it is
critical to fully account for the functionality of a design. Without
it, we would be ignoring how class hierarchies work internally
and would only be able to grasp the collaboration between sepa-
rate objects. In short, the only frameworks we would be able to
fully explain using collaborations would be black-box frame-
works. However, most frameworks are a mixture between black-
box and white-box frameworks.

3 DESIGN PATTERN DENSITY
Using the instrument laid out in Section 2, we can now provide a
quantitative and measurable definition of design pattern density:

The design pattern density of an object-oriented framework is
the percentage of its collaborations that are design pattern in-
stances.

For example, as Table 1 shows, the core junit.framework classes
are composed from 19 collaborations. Of these, 9 are instances of
design patterns. Hence, as shown in Table 2, the design pattern
density of JUnit 3.8 is 9/19 or 47%.

The metric ‘design pattern density’ is simple, precise, complete,
and measurable. It is simple and precise because only a basic
calculation is needed. It is complete and measurable due to the
completeness properties of the enhanced collaboration-based de-
sign method described in Section 2.

One advantage of this metric is that it has a simple comparison
relation already built-in. With values on a linear scale from 0 to
100%, comparing two density values becomes trivial.

Interpreting the metric and a comparing two of its values is not
trivial. What does it mean to say that the pattern density of JUnit
3.8 is 47% while the pattern density of JHotDraw 5.1 (a case
study in Section 4) is 71%? Section 5 discusses this further.

In general, it is safe to assume that the pattern density of a frame-
work will remain well below 100%, because in any given frame-
work there will be at least one client/service collaboration whose
chief purpose is to provide a domain-specific service.

In addition, we need to distinguish the design pattern density of a
framework’s interface architecture from the design pattern density
of its complete design.

The design pattern density of a framework’s interface architec-
ture is the percentage of those collaborations that are design
pattern instances and that are defined in the framework’s inter-
face architecture.

The design pattern density of a framework’s complete design is
the percentage of all collaborations in the framework’s complete
design, including both interface architecture and implementa-
tion structures.

// collaboration definition
public collaboration TestRunMethod {

 free role Client {
 // no methods
 }

 role TemplateMethod {
 public void runBare() throws Throwable;
 }

 role PrimitiveMethods {
 protected void runTest() throws Throwable;
 protected void setUp() throws Exception;
 protected void tearDown() throws Exception;
 }
}

// role to class assignments
public class TestCase provides TemplateMethod,
 PrimitiveMethods ...

Figure 4: A collaboration-based definition
of the Template Method application in JUnit.

Table 2: Summary data from the JUnit 3.8 analysis.

JUnit 3.8 Case Study

Number of classes/interfaces 11
Number of collaborations 19
Number of pattern instances 9
Number of roles in total 42
Ratio roles per class/interface 3.8

Design pattern density 47%

7

The interface architecture of a framework defines its interfaces
and interface classes and structures their core collaborations. If
someone wants to understand how to use a framework, he or she
typically turns to the interface architecture first.

The implementation architecture consists of the implementation
classes and their class hierarchy and how these classes implement
the interface architecture. The implementation architecture be-
comes relevant mostly if someone wants to extend the framework.

It makes sense to measure both the design pattern density of the
interface architecture and the complete design. The implementa-
tion cannot be understood without the interface architecture, so
we don’t measure the density of the implementation structures
only. Thus, we distinguish between the design pattern density of
the interface architecture and the complete design.

4 CASE STUDIES
In addition to JUnit, we used the metric and its underlying in-
strument to gather data from three other frameworks.

1. The Geo system, a metalevel-architecture-based implementa-
tion of a distributed object system [13].

2. The KMU Desktop framework used to build tools in a finan-
cial risk assessment application [13].

3. The JHotDraw framework for building graphical editors [13]
[16] [17].

The Geo framework and the KMU Desktop framework are the
result of a major revision and hence in their second release JHot-
Draw had already undergone several major releases and was ana-
lyzed in version 5.1.

4.1 Case Study Data
All case studies were documented using collaboration-based de-
sign. The referenced documentation provides the details on the
collaborations, the class models, and how the class models are
composed from the collaborations.

Table 3 shows summary data and the design pattern densities
from the three new case studies, excluding the JUnit case study.
The three new case studies were assessed on an interface architec-
ture level, so the numbers given in Table 3 are interface architec-
ture design pattern densities.

Table 4 summarizes the pattern densities and assigns a maturity
level to each framework. The maturity level is a simple integer
value 1-3, where 1 represents “new”, 2 means “revised” and 3
means “mature”. These values are based on this paper’s author’s
assessment of the frameworks and are kept simple, because they
can only give a qualitative maturity indication.

These frameworks exhibit a high design pattern density.

4.2 Collaborations and Functionality
The design pattern density metric is based on collaborations. In
terms of granularity, collaborations are between methods and use
cases. Thus, collaborations can serve as a measure of functionality
in a framework on a medium-granularity level: Collaborations are
not as small as methods and not as coarse-grained as use cases.
Moreover, how many methods there are in a framework can de-
pend strongly on a developer’s programming style. Use cases on
the other hand can vary drastically in terms of the actual function-
ality they provide.

Tables 2, 3, and 4 and the documentation data show that collabo-
rations are of fairly even size. The number of roles per collabora-
tion is between 2 and 3 in the given frameworks, and the number
of methods per role is between 2 and 4. The number of case stud-
ies available is too small to measure the variance in these num-
bers; however, it seems unlikely that they vary drastically.

Table 3: Summary data from three case studies.

Case study [1] [2] [3]

Number of interfaces and
interface classes 17 13 20

Number of collaborations
 34 20 28

Number of pattern
instances 20 12 20

Number of roles assigned
to classes 75 44 66

Ratio roles per class/inter-
face 4.4 3.4 3.3

Design pattern density
(interface architecture) 59% 60% 71%

[1] - The Geo framework

[2] - The KMU Desktop framework

[3] - The JHotDraw core framework

Table 4: The maturity level, pattern density,
roles per collaboration data of the case studies.

Case study
Maturity

Level
(1-3)

Design
Pattern
Density

Number of
roles per

collaboration

Assessed on the interface architecture level

Geo System 2 59% 2.21

KMU Desktop 2 60% 2.20

JHotDraw 3 71% 2.36

Assessed on the complete design level

JUnit 3 47% 2.21

8

Thus, we have a strong indicator that collaborations can serve
as a more reliable measure of functionality in framework design
than other approaches like method count or use cases.

We pick up this observation in Section 5 below where we frame it
as the hypothesis that the design pattern density metric is a meas-
ure of ease of learning a framework.

While not explored further in this paper, this also shows that col-
laborations might be a good proxy for complexity and estimated
effort in implementing a framework.

5 HYPOTHESES
The definition of the new metric ‘design pattern density’ is sim-
ple, precise, complete, and measurable. But is it useful?

To show that a metric is a reliable proxy of something, we need to
develop a sufficiently large body of quantitative data and corre-
late the metric with the property of interest, assuming that this
property is known for the case studies. This correlation can then
be used to predict the property for future case studies, assuming
that it is easier to assess the metric than the property.

The body of case studies presented in this paper is too small to
derive statistically significant conclusions from it. As a conse-
quence, we can only use the metric, its underlying instrument, and
the qualitative indicators from the case studies to discuss hypothe-
ses of interest. This in itself is valuable if the hypotheses are new
or can now be framed in more precise terms than before.

This section looks at both old and new hypotheses that have be-
come tractable for the first time. Previously, these hypotheses (so
they had been postulated) were unclear and not open to valida-
tion. We can frame them now in such a way that we can validate
(or invalidate) them in future work.

5.1 Framework Maturity
The original motivation of this work came out of the expert opin-
ion that “a high design pattern density indicates a high maturity of
a design.” (This is our framing of the introducing quotation of
Kent Beck and Erich Gamma).

Hypothesis 1: As a framework matures, the design pattern den-
sity of a framework increases.

We equate age with maturity, so this can only be a statistical rela-
tionship, as it is (easily) imaginable that an aging framework’s
design pattern density drops temporarily through intermediate
revisions.

Given that the design pattern density will always stay below
100%, and given that a framework can’t grow beyond any
boundaries, we can sharpen hypothesis 1:

Hypothesis 2: As a framework matures, its design pattern den-
sity approaches a fixed point value.

This fixed point would be the design pattern density of the “per-
fect design” for the framework at hand. We would expect (follow-
ing Hypothesis 1) that the sequence of design pattern density
values created by successive revisions of a framework approaches
the fixed point from below.

This hypothesis isn’t saying anything about a specific frame-
work’s fixed point for its design pattern density though. More-
over, the assumption is that this fixed point value varies from
framework to framework.

A corollary is that the fixed points of the design pattern densities
of all conceivable frameworks follow a probability distribution:

Hypothesis 3: The fixed points of the design pattern densities of
all possible frameworks form a random variable that follows a
probability distribution.

Here, the distinction between the design pattern density of a
framework’s interface architecture and the design pattern density
of a complete design becomes important:

Hypothesis 4: The distribution of the random variable ‘design
pattern density of a framework’s interface architecture’ has a
higher mean than the distribution of the random variable ‘de-
sign pattern density of a framework’s complete design’.

This should be easy to see, since the design pattern density of any
interface architecture is generally higher than the design pattern
density of a complete design. This is because most of a frame-
work’s flexibility is expressed in the interface architecture. Add-
ing implementation classes proportionally increases the number of
non-design-pattern instance collaborations in a framework over
the number of pattern instances. For example, adding a new sub-
class like Rectangle to the Figure abstraction in the JHotDraw
framework for graphical editors does not change the interface
architecture. It does add, however, a client/service collaboration
that lets clients make use of the specifics of Rectangle objects.

It is the author’s best guess that for the design pattern densities of
interface architectures the mean is likely to be at around 70% with
a standard deviation of around 5%.

It seems safe to assume that both densities are highly correlated:

Hypothesis 5: The random variable ‘design pattern density of a
framework’s interface architecture’ is highly correlated with the
random variable ‘design pattern density of a framework’s com-
plete design’.

For this reason most hypotheses apply equally to both densities
and there is usually no need to explicitly say which density we are
talking about.

These hypotheses finally lead us to a precise formulation of the
expert opinion quoted in the beginning of this paper:

Hypothesis 6: The difference between the design pattern density
of a specific framework version and its fixed point is a measure
of the framework’s maturity.

We suggest that if the value is far below the fixed point, the
framework is still in its early stages. On the other hand, if the
value is higher than the fixed point, the framework may have been
over-engineered. Over-engineering can happen when developers
learn about design patterns for the first time and apply them eve-
rywhere, appropriate or not.

Hypothesis 6 is a precise framing of the original motivation of
this paper and one that can be validated. Once we determine the
fixed point distribution through further case studies, we will be

9

able to measure how mature a given framework version is and can
make decisions with more confidence than before.

5.2 Ease of Learning Frameworks
In Section 4, we discussed how collaborations can be used as a
measure of functionality in a framework. As a consequence, the
design pattern density of a framework measures how much of that
framework’s functionality can be captured as instances of design
patterns.

For example, in JUnit 3.8’s case, with a design pattern density of
47%, that very percentage of its functionality can be understood
as design pattern instances.

Assuming that design patterns make learning, using, and docu-
menting frameworks easier, faster, and less error-prone, the de-
sign pattern density metric also becomes a measure of how much
easier, faster, etc. patterns make it for developers to work with
frameworks.

Hypothesis 7: The closer a framework version’s design pattern
density is to its fixed point, the easier on average the framework
is to learn and use.

For example, if consistent documentation of a framework using
patterns is known to make learning a framework 50% faster with
respect to those parts that are described using patterns, learning
JUnit would be sped up by 23.5% (47% of its functionality is
being learned at twice the speed over not using patterns).

A key assumption is that patterns have been applied only where
sensible, meaning the framework has not been over-engineered to
artificially inflate its design pattern density.

Thus, a framework’s design pattern density may not only be a
measure of the framework’s maturity, but equally importantly, a
measure of how much easier it will be for developers to learn the
framework and put it to use.

6 LIMITATIONS AND FUTURE WORK
The work presented in this paper makes a number of assumptions
that restrict the applicability of the metric and its underlying in-
strument. This section discusses these assumptions as well as
future work to follow this paper. In this discussion, we need to
distinguish the metric from the instrument from the case studies.

6.1 Definition of Metric
It is a strength of the design pattern density metric that it is pre-
cise and explicit about what it is based on, namely collaborations.
This is also its largest restriction, as there are patterns that cannot
be neatly captured using collaborations.

Concurrency is one example. Synchronization patterns, work
distribution patterns, and different concurrency models can not be
captured well using the instrument presented in this paper.

The first question is whether they should be. Some of these pat-
terns are clearly not on a design level, but rather on an architec-
ture or programming level.

More importantly though, it does not seem sensible to mix
(largely) orthogonal design aspects into one metric. A better ap-

proach might be to have a pattern density metric for each major
type of aspect in a given system, and to define an overall design
pattern density metric as a composite metric based on these dif-
ferent aspect metrics.

Under this assumption, the design pattern density metric pre-
sented in this paper covers the aspect “flexibility” (by object
composition and distribution of responsibilities between classes),
while concurrency, persistence, and other aspects will be assessed
using different metric definitions.

This forms a base for future work, as it will be interesting to de-
fine aspect-specific patterns, a pattern density metric for these
patterns, and instruments for assessing these densities in a given
framework.

Another issue is pattern granularity. What about those program-
ming idioms that developers routinely apply? We argue that they
are on a different level of abstraction and should be assessed in-
dependently from a design level metric like design pattern den-
sity.

A final restriction of this paper is that the metric definition fo-
cuses on frameworks rather than the more general notion of class
model. This choice was deliberate as the design pattern density
metric provides most of its value when applied to reusable code
components like frameworks.

6.2 Application of Instrument
The main instrument used in assessing the metric in a given
framework is an enhanced method for using collaboration-based
design as presented in this paper.

This instrument has the following two shortcomings with respect
to assessing the design pattern metric:

1. Few developers actually use collaboration-based design, so
any such documentation is after the fact;

2. The recognition of design patterns in a collaboration-based
documentation may be subjective.

Shortcoming 1 about the limited use of collaboration-based design
is a problem as it may be difficult to document a framework using
collaborations after the fact. However, we contend that as a
framework matures, the different purposes why objects collabo-
rate become clearer, and the deconstruction of the framework into
its constituting object collaborations will become easier.

An indicator of such a progress is the recognition of design pat-
terns itself: Since a pattern has one well-defined purpose, recog-
nizing patterns goes lock-step with a collaboration-based decom-
position (and reconstruction) of a framework.

A more severe problem is the recognition of a pattern itself. One
might argue that if this is left to subjective opinion, anything
goes, and an assessed metric’s value is not worth much. (In par-
ticular if commercial interests develop around this metric.)

Most design pattern descriptions are done in prose and remain
ambiguous. While experts can generally determine which pattern
has been applied by looking at the context of the pattern and
matching pattern intent with code, a machine may remain con-
fused about whether it is looking at a Bridge, Strategy, or (Object)

10

Adapter, if all it has is the Structure Diagram from the Design
Patterns book.

This problem can only be alleviated through more formal and
precise definitions of what constitutes a (design) pattern. Gil and
Maman’s work on automated recognition of micro-patterns is a
step into the right direction [18]. However, their patterns are not
on a design level and extending it to that level seems difficult.
Zdun and Avgeriou’s work on primitives for modeling design
patterns has the advantage of being able to capture the many vari-
ants in which patterns can come, but their work has not yet been
applied to automated recognition of design patterns [19].

To the extent that we make progress towards formalizing design
patterns (without taking away their inherent variability) we will
be able to make progress towards automated calculation of the
metric design pattern density.

6.3 Case Studies and Hypotheses
The case studies discussed in this paper represent a non-trivial
amount of work. However, since they only provide four data
points (design pattern densities), more are needed to validate the
hypotheses presented in Section 5.

One type of studies that needs to be done are longitudinal studies
that track the design pattern density of a framework over its many
versions. Using such studies, it should be possible to determine
whether framework-specific fixed points of the design pattern
density metric exist, and how the metric approaches these fixed
points.

Another study that should be done is one that determines the
probability distribution of the fixed points of framework design
pattern densities. The underlying assumption is obviously that
such fixed points exist. Further work should then investigate how
the distribution relates to the fixed points of evolving frameworks.

Also, the design pattern density needs to be correlated with other
properties of frameworks under investigation, most notably ma-
turity, quality, and ease of learning.

All of these studies represent non-trivial efforts. Still, they are
necessary to validate the hypotheses presented in this work. Un-
dertaking these studies seems worthwhile given the conjectured
power of design pattern density in predicting such important
qualities as framework maturity and ease of learning.

Thanks to the open source movement, today we have sufficiently
large quantities of materials at hand (frameworks in their many
versions) which we can analyze so that these studies have become
feasible.

7 RELATED WORK
Related work falls mainly into three categories: design metrics,
design patterns, and modeling techniques.

Henderson-Seller’s early work on object-oriented metrics pro-
vides a set of fundamental metrics useful in a wide variety of
circumstances [20]. None of those, however, are about design
patterns and object-oriented frameworks. A 2003 survey by Purao
and Vaishnavi provides a collection of 375 different object-

oriented metrics [21]. Among those metrics is not a single one
that is about design patterns or object-oriented frameworks.

One explanation for the lack of design pattern metrics is given by
Stein et al. who argue that design-level metrics cannot be derived
from the code and are therefore more difficult to handle [22].
Based on Etzkorn and Delugach’s work on so-called “semantic
metrics” (design-level metrics) [23] they show how to derive such
metrics from design documentation. This work is related to the
work presented in this paper as we also work off design documen-
tation. However, we derived this design documentation by analyz-
ing the source code, so we do not agree with the assumption that
design and implementation are completely separate.

Much of the work on object-oriented metrics is geared towards
aiding refactoring of object-oriented designs [24]. Metrics are
used as quality measures to indicate how to improve a legacy
system [25]. Design pattern metrics, however, still have to enter
this space.

More work has been spent on formalizing and automatically rec-
ognizing design patterns in existing code. Kramer and Prechelt
provide one of the first implementations to automatically recog-
nize design patterns in code [26]. However, with just the Structure
Diagram information from the Design Patterns book, pattern defi-
nitions remain ambiguous and experimental results suffer. Gil and
Maman therefore focus on “micro-patterns,” which are structural
patterns that can be defined precisely and that can be found in
code [18]. However, micro-patterns are still a level of abstraction
below design patterns.

Zdun and Avgeriou took a different approach by not focusing on
comprehensive pattern specifications but rather on the primitives
that can be employed to specify patterns [19]. This approach has
the advantage that it can better cope with the breadth of variants
that expert developers typically see in design pattern. Ideally, a
combination of Gil/Maman’s and Zdun/Avgeriou’s work could
lead to automated recognition of design patterns in code. Such
work would benefit the metric assessment presented in this paper
as it would reduce some of the subjectivity in the process.

Yet more work on detecting design patterns is available [36] [37]
[38] [39]. The quality of the detection results depends as much on
the quality of the chosen pattern formalization as it depends on
the actual detection algorithm. We see two potentially useful use-
cases of such tools for assessing design pattern densities: The first
approach creates high-quality documentation by keeping the hu-
man in the loop. Human experts decide on which pattern instance
is at hand, supported by the tool’s provision of an automatically
generated candidate pool. The design pattern metric of a frame-
work assessed this way is likely to have high statistical signifi-
cance. The second approach creates low-quality documentation
automatically, but plenty of it. This second use case may be use-
ful for establishing the overall design pattern density distribution
of object-oriented frameworks.

A core aspect of the work presented in this paper is collaboration-
based design, the employed modeling technique to capture
framework functionality and design pattern instances. Our en-
hanced version is based on Reenskaug et al.’s original work and
related to CRC cards [4] [3].

11

Role modeling and collaboration-based design are not the only
approaches to breaking up frameworks into smaller composable
pieces. Other more recent approaches are traits and fragments. A
trait is a set of methods and their implementation that can be
composed with other traits to form a class [27]. Most of the work
on traits, much like with the work on subject-oriented program-
ming [28] focuses on the difficulties encountered when compos-
ing code. Traits are like roles but do not come with a notion of
collaboration, which is essential in dealing with design patterns.

Closer to collaborations is the work on fragments, which are de-
scriptions of code fragments together with the code and how they
can be composed to form or add to a framework [29]. Like col-
laborations, fragments can therefore be used to represent design
pattern instances in framework design. As with traits and subject-
oriented programming, fragments are more concerned with data
and code in a bottom-up fashion, while collaborations focus on
meeting domain modeling problems and worry less about imple-
mentation, coming top-down.

In Section 6.1 we argue that the design pattern density metric
presented in this paper is really only the most prominent member
in a family of pattern density metrics. The family members are
defined by what aspect of the framework they address, be it flexi-
bility, concurrency, etc. The most promising attempt at modeling
and implementing such aspects is aspect-oriented programming
(AOP) [30]. As Hannemann and Kiczales have shown, AOP can
be used to implement design pattern instances in code [31]. Den-
ier and Cointe's case study on JHotDraw shows that AOP can help
capture design patterns; unfortunately, they do not provide an
explicit definition of design pattern density [35].

Given the comprehensiveness of aspect-oriented programming in
comparison with other approaches, we view it as the most promis-
ing implementation technology for traditional object-oriented
frameworks. As the CaesarJ programming language shows, ex-
tending AOP with new constructs lets us make collaborations
explicit in a natural way [40]. Making design patterns explicit is
the next obvious step after this.

8 CONCLUSIONS
This paper presents a new metric called design pattern density.
We investigate this metric because of common expert belief that
this metric can serve as a reliable proxy for the maturity of object-
oriented frameworks and can aid decision making about whether
to use a framework or not.

The paper presents a novel extension of collaboration-based de-
sign as the instrument to calculate the metric’s value in a given
framework. The paper makes the metric not only precise but also
measurable for the first time. To do so, we show how collabora-
tion-based design cannot only be used to capture inter-object col-
laborations, but also how it can be extended to capture class in-
heritance interfaces.

The metric and its instrument are applied to four case studies,
followed by a discussion of their quantitative assessment. Based
on the case studies and their discussion, seven hypotheses are
presented about design pattern density, framework maturity, and
ease of learning of frameworks. It is left to future work, however,
to actually validate these hypotheses.

Key hypotheses are that a framework’s design pattern density has
a fixed point and that the fixed pointfs of all conceivable frame-
works form a random variable that follows a probability distribu-
tion. Thanks to the metric and its underlying instrument, these
hypotheses have lost their vagueness and have become tractable
in future studies.

ACKNOWLEDGEMENTS
I would like to thank Erich Gamma, Mario Lopes, James Noble,
and Wolf Siberski for providing helpful comments and feedback
for this paper.

REFERENCES
[1] Kent Beck and Erich Gamma. JUnit: A Cook’s Tour.
Available from http://junit.sourceforge.net/doc/cookstour/cooks-
tour.htm

[2] Rebecca Wirfs-Brock and Brian Wilkerson. “Object-
Oriented Design: A Responsibility-Driven Approach.” In Pro-
ceedings of the 1989 Conference on Object-Oriented Program-
ming, Systems, Languages and Applications (OOPSLA ’89).
ACM Press, 1989: Pages 71-75.

[3] Rebecca Wirks-Brock, Brian Wilkerson, and Lauren Wie-
ner. Designing Object-Oriented Software. Prentice Hall, 1990.

[4] Trygve Reenskaug, Per Wold, and O.A. Lehne. Working
with Objects: The OOram Software Engineering Method. Prentice
Hall, 1996.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[6] David Garlan and Mary Shaw. An Introduction to Soft-
ware Architecture. Prentice Hall, 1994.

[7] James O. Coplien. Advanced C++ Programming Styles
and Idioms. Addison Wesley, 1991.

[8] Ralph Johnson, John Vlissides. Personal Email Communi-
cation, 2002.

[9] Dirk Riehle. A Role-Based Design Pattern Catalog of
Atomic and Composite Patterns Structured by Pattern Purpose.
Ubilab Technical Report 97.1.1. Zurich: UBS AG, 1997.

[10] Dirk Riehle, Roger Brudermann, Thomas Gross, and Kai-
Uwe Mätzel. “Pattern Density and Role Modeling of an Object
Transport Service.” ACM Computing Surveys 32, 1es (March
2000): Article No. 10.

[11] Dirk Riehle. “Composite Design Patterns.” In Proceedings
of the 1997 Conference on Object-Oriented Programming Sys-
tems, Languages and Applications (OOPSLA '97). ACM Press,
1997: Pages 218-228.

[12] The Object Management Group (OMG). UML 2.x Speci-
fication. OMG, 2007. See http://www.uml.org.

[13] Dirk Riehle. Framework Design: A Role Modeling Ap-
proach. Ph.D. Thesis, No. 13509. ETH Zürich, 2000.

12

[14] Dirk Riehle. JUnit 3.8 Documented Using Collaborations.
In Software Engineering Notes Volume 33, Issue 2 (March 2008),
Article No. 5. ACM Press, 2008.

[15] Bertrand Meyer. Object-Oriented Software Construction.
Prentice Hall, 1988.

[16] Erich Gamma. Advanced Design with Java and Patterns.
Tutorial held at the 1998 JAOO Conference. Available from
http://www.riehle.org/blogs/research/2007/2007-01-03.html

[17] Kent Beck and Erich Gamma. JHotDraw---Patterns Ap-
plied. Tutorial held at the 1997 Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA
’97). ACM Press, 1997.

[18] Joseph (Yossi) Gil and Itay Maman. “Micro Patterns in
Java Code.” In Proceedings of the 2005 Conference on Object-
Oriented Programming, Systems, Languages and Applications
(OOPSLA ’05). ACM Press, 2005: Pages 97-116.

[19] Uwe Zdun and Paris Avgeriou. “Modeling Architectural
Patterns Using Architectural Primitives.” In Proceedings of the
2005 Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA ’05). ACM Press, 2005:
Pages 133-146.

[20] Brian Henderson-Sellers. Object-Oriented Metrics: Meas-
ures of Complexity. Prentice-Hall, 1995.

[21] Sandeep Puraoand Vijay Vaishnavi. “Product Metrics for
Object-Oriented Systems.” ACM Computing Surveys Vol. 35, No
2 (June 2003). ACM Press: Pages 191-221.

[22] Cara Stein, Letha Etzkorn, and Dawn Utley. “Computing
Software Metrics from Design Documents.” In Proceedings of the
2004 ACM South East Conference (ACMSE ’04). ACM Press,
2004: Pages 146-151.

[23] Letha Etzkorn and H Delugach. “Towards a Semantic
Metrics Suite for Object-Oriented Design.” In Proceedings of the
34th International Conference on Technology of Object-Oriented
Languages and Systems (TOOLS 2000). Pages: 71-80.

[24] Joshua Kerievsky. Refactoring to Patterns. Addison-
Wesley, 2005.

[25] Serge Demeyer. Stéphane Ducasse, and Oscar Nierstrasz.
“Finding Refactorings via Change Metrics.” In Proceedings of the
15th Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2000). ACM Press, 2000:
Pages: 166-177.

[26] Christian Krämer and Lutz Prechelt. “Design Recovery by
Automated Search for Structural Design Patterns in Object-
Oriented Software.” In Proceedings of the Working Conference
on Reverse Engineering. IEEE Press, 1996: Pages 208-215.

[27] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz
and Andrew Black. “Traits: Composable Units of Behavior.” In
Proceedings of the European Conference on Object-Oriented
Programming (ECOOP ’03). Springer Verlag, 2003: Pages 248-
274.

[28] Harold Ossher, Matthew Kaplan, William Harrison, Alex-
ander Katz and Vincent Kruskal. “Subject-Oriented Composition
Rules.” In Proceedings of the 1995 Conference on Object-
Oriented Programming, Systems Languages and Applications.
ACM Press, 1995: Pages: 235-250.

[29] George Fairbanks, David Garlan, and William Scherlis.
“Design Fragments Make Using Frameworks Easier.” In Proceed-
ings of the 2006 Conference on Object-Oriented Programming,
Systems Languages and Applications. ACM Press, 2006: Pages
75-88.

[30] Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Ir-
win. “Aspect-Oriented Programming.” In Proceedings of the 1997
European Conference on Object-Oriented Programming (ECOOP
1997). Springer Verlag: Pages 220-242.

[31] Jan Hannemann and Gregor Kiczales. “Design Pattern
Implementation in Java and AspectJ.” In Proceedings of the 2002
Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA 2002). ACM Press, 2002:
Pages 161-173.

[32] Egil Andersen. Conceptual Modeling of Objects: A Role
Modeling Approach. Ph.D. Thesis, University of Oslo, 1997.

[33] Kent Beck and Erich Gamma. Source code available from
http://www.junit.org.

[34] Dirk Riehle et al. “Design Pattern Density Validated.” In
preparation.

[35] Simon Denier and Pierre Cointe. “Understanding Design
Pattern Density with Aspects: A Case Study in JHotDraw using
AspectJ.” In Proceedings of the 5th International Symposium on
Software Composition (SC 2006). Springer Verlag, 2006.

[36] Dirk Heuzeroth, Thomas Holl, Gustav Högström, and
Welf Löwe. "Automatic design pattern detection." In Proceedings
of the 11th IEEE International Workshop on In Program Compre-
hension, 2003. IEEE Press, 2003. Page 94-103.

[37] Rudolf Keller, Reinhard Schauer, Sebastian Robitaille,
and Peter Page. "Pattern-Based Reverse-Engineering of Design
Components.” In Proceedings of the 21st International Confer-
ence on Software Engineering (ICSE 1999). IEEE Press. Page
226-235.

[38] Nikolaos Tsantalis, Alexander Chatzigeorgiou, George
Stephanides, and Spyros T. Halkidis, "Design Pattern Detection
Using Similarity Scoring," IEEE Transactions on Software Engi-
neering, vol. 32, no. 11 (November 2006). Page 896-909.

[39] Zsolt Balanyi and Rudolf Ferenc, “Mining Design Patterns
from C++ Source Code.” In Proceedings of the 2003 International
Conference on Software Maintenance (ICSM '03). IEEE Press,
2003. Page 305-314.

[40] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus
Ostermann. “Overview of CaesarJ.” Transactions on Aspect-
Oriented Software Development I (LNCS vol. 3880). Springer
Verlag, 2006. Page 135-173.

