
1

The Comment Density of Open Source Software Code

Oliver Arafati Dirk Riehle
Siemens AG, Corporate Technology SAP Research, SAP Labs LLC

Otto-Hahn-Ring 6, 81739 Munich, Germany 3412 Hillview Ave, Palo Alto, CA 94304, USA
oarafat@gmail.com dirk@riehle.org

Abstract
The development processes of open source soft-

ware are different from traditional closed source de-
velopment processes. Still, open source software is
frequently of high quality. Thus, we are investigating
how open source software creates high quality and
whether it can maintain this quality for ever larger
project sizes. In this paper, we look at one particular
quality indicator, the density of comments in open
source software code. In a large-scale study of more
than 5,000 projects, we find that active open source
projects document their source code, and we find that
the comment density is independent of team and pro-
ject size, but not of project age. In future work, we
intend to correlate comment density with project suc-
cess or failure.

1. Introduction
Open source software has become an important

part of commercial software development and use [1].
Most interestingly, open source projects have reached
a size and complexity that rivals the size of some of
the largest commercial projects [2], yet they are being
developed in a manner quite different from traditional
software engineering processes.

Our research goal is to improve our understanding
of open source software development processes and to
transfer appropriate practices into corporate software
development. This has become particularly important,
because the traditional life-cycle model or the more
recent agile methods either don’t scale to large project
sizes or have problems in coping with changing re-
quirements.

In this study we focus on one particular code met-
ric, the comment density, and assess it across 5,229
active open source projects, representing about 30%
of all active open source projects. Comment density is
the percentage of comment lines in a given source
code base, that is, comment lines divided by total lines

of code. Comment density is assumed to be a good
predictor of maintainability and hence survival of a
software project [3] [12] [13].

The contributions of this study are the following:
For the first time, we assess the comment density of
open source on a large scale, demonstrate that com-
menting is an integral practice of open source software
development, and show that the comment density of
active open source projects is independent of team and
project size but not of project age.

The paper is organized as follows. Section 2 dis-
cusses related work, Section 3 discusses our approach,
Section 4 presents our results, and Section 5 discusses
future work and some conclusions.

2. Related Work
Prechelt reports about a controlled experiment

performed from 1997-1999 [11]. Prechelt found that
scripting language solutions were significantly better
documented than non-scripting language solutions.
Values for the comment densities were in the 20-30%
range. Prechelt’s subjects were students, and the pro-
grams were throw-away exercises.

Sundbakken assess the comment density of main-
tenance phase code contributions to components of
four open source projects [4]. Sundbakken observes
that consistent commenting correlates highly with
maintainability of components. The measured com-
ment density ranges from 0.09% for poorly maintain-
able components to 1.22% for highly maintainable
components.

In contrast to Sundbakken, in a study on the com-
ment density of a closed-source compiler project in its
maintenance phase, Siy and Votta find a consistent
comment density of around 50% [5].

In another study of 100 Java open source classes,
Elish and Offutt find an average comment density of
15.2% with a standard deviation of 12.2% [7].

2

Fluri et al. present an approach for assessing the
comment density of software projects and demonstrate
the approach using three selected open source projects
[13]. Comment densities for the exemplary projects
vary widely. They also observe that new code is
barely commented, implying that the comment density
decreases over time.

Among other things, our work improves over the
state of the art by being the first large-scale study that
goes beyond a few selected case studies.

3. Approach
We use the database of the open source analytics

firm Ohloh, Inc. [8]. We work with a database snap-
shot of March 2008, but have cut off all analysis data
after December 31st, 2007. The database contains de-
tailed data from about 10,000 open source projects.

We are only interested in active well-working
open source projects, not dead projects. We define and
apply an active project filter to let a project pass only
if by the end of 2007 it was at least two years old and

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

Project Size in Lines of Code (LoC = CL + SLoC)

C
om

m
en

t D
en

si
ty

mean = 0.1867
median = 0.1674
stdev = 0.1088
correl = -0.00787

Figure 1: Comment density as a function of lines of code for a given project.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90 100

Source Lines of Code in Commit [SLoC]

C
om

m
en

t D
en

si
ty

Comment Density by SLoC Size
Total Average Comment Density

sloc size = 1-100
mean = 0.2513
median = 0.2340
stdev = 0.0626

sloc size = 50-100
mean = 0.2234
median = 0.2190
stdev = 0.0169

sloc size = 80-100
mean = 0.2224
median = 0.2171
stdev = 0.0209

Figure 2: Comment density as a function of source code lines in a given commit.

3

if the code activity of the last year had been at least
60% of the activity of the previous year. This filter
reduces the original 10,000 projects to 5,229 projects.
Using a comparable approach, Daffara estimates that
there were about 18,000 active open source projects in
the world by August 2007 [6], so our sample repre-
sents about 30% of the total population.

The code contribution history of a project is a
time series of commits (code contributions) to the
code repository. A commit represents a set of changes

to the source code performed as one chunk of work.
We apply filters to improve data quality. For example,
we filter out file rename and move operations.

• A source line of code, or SLoC, is a physical line

in a source file that contains source code.
• A comment line, or CL, is a physical line in a

source file that represents a comment.
• A line of code, or LoC, is either a source line of

code or a comment line.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0 10 20 30 40 50 60 70 80 90 100

Team Size [Number of Committers]

C
om

m
en

t D
en

si
ty

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%
Comment Density by Team Size

Total Average Comment Density

Percent Projects with Team Size

team size = 1-20
mean = 0.1914
median = 0.1878
stdev = 0.0255

team size = 1-50
mean = 0.1922
median = 0.1906
stdev = 0.0425

team size = 1-100
mean = 0.1856
median = 0.1857
stdev = 0.0641
correl = -0.0550

Figure 3: Comment density as a function of team size of open source projects.

17.50%

17.75%

18.00%

18.25%

18.50%

18.75%

19.00%

19.25%

19.50%

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

Project Age [months]

A
ve

ra
ge

 C
om

m
en

t D
en

si
ty

correl = -0.9054

Figure 4: Comment density as a function of the age of open source projects.

4

The commit size of a commit is the number of
lines of code affected by a commit, whether added,
removed, or changed [10].

The comment density of a file or a group of files
or the whole source code base of a project is defined
as the number of comment lines divided by the num-
ber of lines of code of the same code body [3].

We use a tool chain that consists of the original
database in a PostgreSQL RDBMS instance, interme-
diate processing using SQL queries and Java code,
and final processing using the R project and Excel.

4. Results and Limitations
We extracted the data visualized in Figures 1 to 4.

Figure 1 shows the comment density in our sample
population. The average value is 19% so about 1 line
of code in 5 lines is a comment line. In our population
the comment density varies significantly. Figure 2
shows that on average, small commits have a better
than average comment density, suggesting that com-
menting is an integral part of programming.

Figure 1 also shows a correlation of -0.0079 be-
tween project size and comment density; thus project
size and comment density are independent of each
other. Figure 3 finds a correlation of 0.0255 between
team size and comment density for the majority of
projects (team size < 20 committer). Thus, team size
and comment density are also independent of each
other. Figure 4 shows a correlation of -0.9054 be-
tween project age and comment density, however, the
actual decrease in overall comment density after four
years (48 months) is rather small.

An important limitation of this study is that we
consider all comment lines as equal, whether they pro-
vide rich content or are auto-generated stubs. (The diff
tool/parser distinguishes programming languages and
recognizes multi-line comments though [9].) We don’t
discuss the impact of programming languages on
comment density due to the lack of space.

We analyze only active projects and have yet to
determine to what extent a high comment density can
be used as a predictor of project success or failure.

5. Conclusions
We have found that commenting source code is a

consistent practice of active open source projects. It
has led to an average comment density of about 19%.
This density is maintained by dedicated commenting
activities (about 2.5% of all code contributions) as
well as in regular on-going programming activities.

Also, we have found that the average comment
density is independent of team size and project size,

suggesting that as teams and projects get larger, suc-
cessful open source projects maintain their comment-
ing discipline. However, the average comment density
is not independent of a project’s age but rather de-
clines with an aging project. That decline is statisti-
cally significant; however, it is rather small and thus
has limited practical implications.

6. References
[1] Amit Deshpande, Dirk Riehle. “The Total Growth of
Open Source.” In Proceedings of Fourth Conference on
Open Source Systems. Springer, 2008. Page 197-209.

[2] Diomidis Spinellis. “A Tale of Four Kernels.” In
Proceedings of the 2008 International Conference on
Software Engineering (ICSE ’08). IEEE Press, 2008. Page
381-390.

[3] N. E. Fenton. Software Metrics: A Rigorous and
Practical Approach. Thomson Computer Press, 1996.

[4] Marius Sundbakken. Assessing the Maintainability of
C++ Source Code. M.S. Thesis, Washington State
University, 2001.

[5] Harvey Siy, Lawrence Votta. “Does the Modern Code
Inspection have Value?” In Proceedings of the 17th IEEE
International Conference on Software Maintenance (ICSM
’01). IEEE Press, 2001. Page 281-290.

[6] Carlo Daffara. “How Many Stable and Active Libre
Software Projects?” See http://flossmetrics.org/news/11.

[7] Mahmoud Elish, Jeff Offutt. “The Adherence of Open
Source Java Programmers to Standard Coding Practices.” In
Proceedings of the 6th IASTED International Conference
Software Engineering and Applications. Page 193-198.

[8] Ohloh, Inc. See http://www.ohloh.net.

[9] Ohloh, Inc. ohcount. See http://labs.ohloh.net/ohcount.

[10] Philipp Hofmann, Dirk Riehle. “Estimating Commit
Sizes Efficiently.” In Proceedings of OSS ’09, forthcoming.

[11] Lutz Prechelt. “An empirical comparison of C, C++,
Java, Perl, Python, Rexx, and Tcl for a search/string-
processing program.” Technical Report 2000-5, Universität
Karlsruhe, Fakultät für Informatik, Germany, March 2000.

[12] David Parnas. “Software Aging.” In Proceedings of the
16th International Conference on Software Engineering
(ICSE 1994). Page 279-287.

[13] Beat Fluri, Michael Wursch, and Harall Gall. “Do Code
and Comments Co-Evolve? On the Relation Between Source
Code and Comment Changes.” In Proceedings of the 14th
Working Conference on Reverse Engineering (WCRE
2007). Page 70-79.

i Work performed while working at SAP Research, SAP Labs LLC.

