
JUnit 3.8 Documented Using Collaborations
Dirk Riehle

SAP Research, SAP Labs LLC
3475 Deer Creek Rd, Palo Alto, CA, 94304, U.S.A.

dirk@riehle.org

Abstract
This paper describes the design of the unit testing framework JUnit
v3.8. The documentation technique employed is an enhanced ver-
sion of collaboration-based design, also known as role modeling.
In collaboration-based design, objects are viewed as playing mul-
tiple roles in different contexts, and different contexts are viewed
as task specific collaborations. The documentation accounts for
every method in the JUnit 3.8 framework by assigning it to a role.
It thereby investigates whether roles and collaborations can serve
as basic units of functionality provided by a design like a frame-
work. Such a measure of functionality can serve multiple pur-
poses, for example estimating implementation efforts or measuring
complexity.

1 Introduction
This paper describes the design of the unit testing framework JUnit
in its version 3.8. The documentation technique employed is an
enhanced version of collaboration-based design, also known as
role modeling. In collaboration-based design, objects are viewed
as playing multiple roles in different contexts, called collabora-
tions. A collaboration, in turn, organizes several usually distinct
objects for a specific purpose, for example to provide a basic ser-
vice or to maintain a state dependency between two objects.

The documentation presented here accounts for every method in
the original JUnit 3.8 framework and assigns it to at least one role.
This way, collaboration-based documentation finds a middle
ground between the more coarse-grained class-based view and the
more detailed method-by-method view of objects. The paper uses
UML packages and interfaces to capture collaborations and roles
rather than the evolving UML collaboration specification notation.
For the purposes of this document this is sufficient.

The general purpose of this documentation is to ease framework
comprehension; an additional purpose that motivated this docu-
ment is to investigate whether collaborations can serve as basic
units of functionality provided by a design like a framework. Such
a measure of functionality can serve multiple purposes, for exam-
ple estimating implementation efforts or measuring complexity.

JUnit was chosen because it is a mature object-oriented framework
that is available in source code form and that is widely used and
understood. This paper is based on JUnit version 3.8 rather than
4.0 or later, because 3.8 represents the most mature design of the
original JUnit framework. The next version 4.0 represents a radical
departure from the original version in that it heavily leans on new
Java language features that obscure the core framework design in
favor of being more native to the employed programming lan-

guage. By sticking to version 3.8 I hope that the documentation
presented in this paper is more easily comparable across pro-
gramming languages and that it brings out the design more clearly.

2 Collaboration-Based Design
Role modeling (in the context of object-oriented software design)
was invented over 20 years ago [10]. It is related to the CRC
(Class Responsibility Collaboration) cards approach to software
design [15]. In recent years, role modeling has made its way into
UML where it is called collaborations. My dissertation about role
modeling for framework design [11] showed that role modeling
makes designing, documenting, and using frameworks easier than
possible with the traditional class-based approach alone.

2.1 Approaches to Collaboration-Based Design

Most of the work on collaborations focuses less on conceptual
modeling and more on code composition and implementation. An
early exception is Johnson’s work on documenting frameworks
using design patterns. He shows how a framework can be viewed
as a sequence of pattern applications [6].

On a level closer to implementation, Fairbanks et al. show how
frameworks can be decomposed into and then recomposed from
design fragments that are closely linked to code fragments [3].
Like Johnson’s patterns, Fairbank et al.’s fragments are only
loosely related to the notion of collaboration as used in this paper.

Closer to my notion of collaboration is VanHilst and Notkin’s
work of collaborations. Using C++ templates they show how to
break up a program into collaboration components and how to
create new programs from these templates [14]. This paper does
not prescribe a specific implementation mechanism.

Another attempt at code composition, foreshadowing aspect-
oriented programming, was Ossher et al.’s work on subject-
oriented programming. Subjects are functional slices through a
program that can be used to explain and specify a program [9].
Ossher et al. followed up with detailed implementation support.

Aspect-oriented programming (AOP) is related to collaboration-
based design: A collaboration can be viewed as an aspect and
hence subsumed under AOP. This was demonstrated by Hanne-
mann and Kiczales’ work on implementing design patterns using
AOP [5].

More directly addressing the notion of collaborations as used in
this paper, the work of Lieberherr et al. on aspectual collaborations
uses AOP techniques and shows how programs can be composed
from these aspectual collaborations [7] [8].

ACM SIGSOFT Software Engineering Notes Page 1 March 2008 Volume 33 Number 2

10.1145/1350802.1350812

The notion of collaboration used in this paper is based on my dis-
sertation [11]. This paper uses a lightweight definition of collabo-
ration leaning on UML 2.0. However, this paper’s contribution is
not a new modeling or code composition technique but rather the
presentation of a case study of using collaborations and design
patterns in framework design.

2.2 Collaboration-Based Design in this Paper

UML 2.0 provides support for developers to document objects as
playing roles and engaging in collaborations [13]. However, it is
still an evolving specification and is limited when it comes to full-
blown role modeling. For this reason, this document uses a light-
weight UML-based approach to describe the JUnit 3.8 design.

Definition 1: A collaboration is the specifica-
tion of how objects, playing roles, work together
to achieve a single focused purpose.

Figure 1 shows an example collaboration with three roles (the
TestResultObserver collaboration of JUnit 3.8). The UML concept
of interface is used to specify a role, and the UML concept of
package is used to scope a collaboration.

What’s important here is that collaborations consist of roles, and
that a collaboration has one purpose, not many. This prepares the
road for orthogonal composition of class-based designs from col-
laborations.

With this definition, a collaboration is defined as a model. Its en-
actment at runtime is called a collaboration instance in this docu-
ment. While a collaboration instance has identity, for most practi-
cal matter this is irrelevant (unless you are tracking transactions
etc.)

Definition 2: A role is the specification of the
behavior of an object within a given collabora-
tion.

Technically, that specification may simply be a set of methods that
define how an object plays the role. Please note that a role does not
stand alone, it is always part of a collaboration. It has no right of
existence outside the scope of a collaboration and for that purpose
is bound to the collaboration.

Figure 2 shows the details of the TestResultObserver::TestResult
role.

Please note that while this document uses the UML concept of
interface to specify a role’s behavior, this does not imply the need
for a technical (Java) interface. A UML interface may simply map
into a set of methods in some larger Java interface or class.

We are adding to the diagrammatic notation simple pseudocode to
list a role’s methods. For example, the pseudocode for TestResult-
Observer::TestResult looks like this:
role TestResult {
 public synchronized void addListener(
 TestListener listener);
 public synchronized void removeListener(
 TestListener listener);
 private synchronized Vector cloneListeners();
}

Sometimes, a role is qualified as “free” as in “free role TestLis-
tener […]”. This is to show that the user is free to assign this role
to some classes. Non-free roles like TestResult above are typically
assigned to classes in a fixed form, most notably by simply being
part of the class interface. (Remember: The TestResult role speci-
fication above was taken out of the TestResult class, which pro-
vides several roles.) Free roles in Java are typically interfaces---
otherwise a free assignment through the implements relationship
would not be possible. We discuss the importance of free roles for
framework and component coupling elsewhere [11] [12].

The definition of role given above also implies that a collaboration
specification can never have just one role; there must at least be
two roles. If you can’t find that second role: It may well be an im-
plicit client role with no callbacks and hence no methods. It is in
fact quite common to have client roles (of some basic service) that
specify no methods at all. This doesn’t mean there is no behavior

«interface»
TestResultObserver::Configurator

+addError(in test : Test, in t : Throwable)
+addFailure(in test : Test, in t : AssertionFailedError)
+endTest(in test : Test)
+startTest(in test : Test)

«interface»
TestResultObserver::TestListener

+addListener(in listener : TestListener)
+removeListener(in listener : TestListener)
+cloneListener() : Vector

«interface»
TestResultObserver::TestResult

0..* 1

Figure 1: The TestResultObserver collaboration

Figure 2: The TestResultObserver::TestResult role

ACM SIGSOFT Software Engineering Notes Page 2 March 2008 Volume 33 Number 2

attached to the client role. For example, in the TestResultObserver
collaboration, the Configurator shouldn’t call removeListener if it
hasn’t previously called addListener. Traditionally, such con-
straints were specified on the service side, that is, the TestResult
role. Here they are considered to be constraints on the client side
and are therefore better specified on the client side as well.

Figure 3 shows the most common collaboration, the provision of a
service to a client. This diagram really is a schematic illustration,
not a specific collaboration, because each collaboration needs to
list the domain-specific methods of the service role.

Another common type of collaboration adds a configuration role to
the basic client/service collaboration. Here, the Configurator role
configures the client with the service to use. In the basic cli-
ent/service collaboration, the Client usually knows where to get
the Service from. In a configurable client/service collaboration,
this knowledge is moved to a separate Configurator object. Figure
4 makes the additional role explicit.

Beyond these domain-specific collaborations, most collaborations
I have found were instances of design patterns. In fact, one can
already argue that the configurable client/service collaboration is a
pattern, as benign as it may appear. It is a hypothesis of this work
(to be validated) that except for the basic domain-specific service
provision through client/service collaborations, all collaborations
and hence all other functionality are instances of design patterns.

In the following documentation we omit some of the complexity of
a full-blown specification. What the documentation does, however,
is to account for every single method in JUnit 3.8 and how it is
part of a role in a collaboration that contributes one aspect of
JUnit’s overall functionality.

3 The Class View of JUnit 3.8
JUnit is a framework for writing unit tests (a.k.a. component tests)
in Java. It is being developed by Kent Beck and Erich Gamma
since 1997 and is based on SUnit, a Smalltalk testing framework.
It has seen rapid and wide-spread adoption since its inception. It

currently is in its version 4.0. This document focuses on the most
widely used release, which is version 3.8. JUnit 3.8 is also the last
major (and stable) release that provides the “old” design before the
switch to Java annotations that happened with release 4.0.

Figure 5 shows the class diagram of the core JUnit framework, the
Java package junit.framework. Other packages like junit.exten-
sions and junit.runner are not considered further. Please note that
the top four classes in Figure 3 are defined in java.lang and pre-
sented here only for reasons of completeness. For another docu-
mentation of JUnit please see the original “cook’s tour” [2].

In a nutshell, JUnit works the following way.

A complete test run has two phases: The first phase is configura-
tion, second phase is test case execution. This may be followed by
analysis and visual display of the results to a user.

During configuration, an object hierarchy of test cases is built,
where one object represents a test case. Any such object is an in-
stance of a subclass of TestCase. Programmers implement such
subclasses, and every method in a subclass that starts with “test”
(or is configured otherwise as a test case) leads to an object in the
hierarchy. These “test” methods contain the actual (domain and
application-specific) test code. Such TestCase subclass instances
are always leaf objects of the hierarchy. The intermediate nodes
and the root node are instances of TestSuite, which mostly pro-
vides the grouping functionality necessary for the tree structure.
Both TestCase and TestSuite implement the Test interface to allow
homogenous treatment of each node in the tree.

The actual test execution is started by calling run on the root object
of the test hierarchy. The tree is traversed depth first, and the order
of nodes is determined by the order in which they were added to
the tree. On each and every leaf node, that is on each and every
test case object, run will eventually be called. Thus, as many test
cases will be run as there are instances of subclasses of TestCase.
The results of each test case execution are recorded in a collecting
parameter object that is passed on from test to test as the execution
is working its way through the test object hierarchy. The collecting
parameter is the TestResult object.

«interface»
BasicClientService::Client

+method1()
+method2()

«interface»
BasicClientService::Service

Figure 3: Illustration of most common client/service collaboration.

Figure 4: Illustration of a configurable client/service collaboration.

ACM SIGSOFT Software Engineering Notes Page 3 March 2008 Volume 33 Number 2

JUnit distinguishes between failures and errors. Failures are in-
stances of AssertionFailureError and are created by test case code
as some assertion about the test code doesn’t hold, that is, the test
fails. An error occurs when something else goes wrong. Both are
handled as exceptions in Java and are collected by the TestResult
object being passed around. When storing a test failure or an error,
the TestResult object wraps the failure in a TestFailure object.

When a test case object is first asked to execute the actual test
code, it doesn’t do so directly, but rather delegates this job to the
TestResult object it receives as an argument. The TestResult object
will prepare a few things and then call back on the test case for the
actual test code execution. This callback is mediated by an inner
subclass of Protectable that defines the test failure protocol. The
TestResult’s preparation consists of notifying registered TestLis-
teners about the beginning and end of a test. This is used, for ex-
ample, by a UI to display progress to a user.

In a test case, the actual test code is wrapped by calls to the meth-
ods setUp and tearDown that initialize the test case object respec-
tively de-initialize it for test case execution. The framework
method run finds the actual test method to execute by name match-

ing using reflection and then executes it. If the test succeeds, the
execution will run right through the code and return from the
method call without problems. Programmers implement test code
by making assertions about the state of the program under testing
using calls to static “assert” methods inherited from class Assert. If
an assertion fails an exception will be thrown to indicate a test
failure. As mentioned above, this exception will be caught by the
TestResult object and stored as a test failure before progressing to
the next test case.

After the tree traversal finished and hence the test execution com-
pleted (or was interrupted), the client who started the test run can
inspect the results as collected by the TestResult object and display
them to a user or use them programmatically in a different way.

As a final comment, if you are wondering where the design pat-
terns are [2]: Rather than saying Composite or Observer or Col-
lecting Parameter, these patterns are recognizable by the stream-
lined prose they come with as well as their language specific adap-
tation. For example, you recognize Composite by the words tree,
node, and leaf or Observer by callback, notifying, and listeners.

Figure 5: The class diagram of the JUnit 3.8 junit.framework classes.

ACM SIGSOFT Software Engineering Notes Page 4 March 2008 Volume 33 Number 2

4 Collaboration Specifications
At the root of JUnit 3.8 are two collaborations that are important but have been inherited from the java.lang Object framework. Thus,
they are not part of the core JUnit framework but still need to be documented.

• Printable (Subsection 4.1)

• Throwable (Subsection 4.2)

JUnit 3.8 itself then defines the following set of collaboration specifications that make up the junit.framework classes:

• TestCase (Subsection 4.3)

• TestSuite (Subsection 4.4)

• TestSuiteTestCreation (Subsection 4.5)

• TestRun (Command pattern) (Subsection 4.6)

• TestCaseTestRun (Subsection 4.7)

• TestSuiteTestRun (Subsection 4.8)

• TestHierarchy (Composite pattern) (Subsection 4.9)

• TestResult (Collecting Parameter pattern) (Subsection 4.10)

• TestResultController (Subsection 4.11)

• TestResultObserver (Observer pattern) (Subsection 4.12)

• CollectingTestRun (Command pattern) (Subsection 4.13)

• ProtectedTestRun (Adapter pattern) (Subsection 4.14)

• TestRunMethod (Template method) (Subsection 4.15)

• Assertions (Subsection 4.16)

• TestFailure (Subsection 4.17)

• AssertionFailedError (Subsection 4.18)

• ComparisonFailure (Subsection 4.19)

• ComparisonCompactor (Strategy pattern) (Subsection 4.20)

• CompactMethod (Composed Method pattern) (Subsection 4.21)

These collaboarations are discussed in the following subsections in the order denoted above.

ACM SIGSOFT Software Engineering Notes Page 5 March 2008 Volume 33 Number 2

4.1 Printable

A Printable object provides the well-known toString method for providing a string representation of itself. The Client role is a free role
because any object can assume the Client role in the Printable collaboration to call the method.

public collaboration Printable {

 free role Client {
 // no methods
 }

 role Printable {
 public String toString();
 }

}

// role to class assignments
public class Object provides Printable;

ACM SIGSOFT Software Engineering Notes Page 6 March 2008 Volume 33 Number 2

4.2 Throwable

The Throwable collaboration allows a Thrower to throw a Throwable and a Catcher to catch it. This collaboration captures the basic
exception handling collaboration in Java; it is supported by the language through keywords throw and catch. Please note that creating
and configuring an instance of a subclass of Throwable is viewed and handled as a separate collaboration.

public collaboration Throwable {

 free role Thrower {
 // no methods
 }

 free role Catcher {
 // no methods
 }

 role Throwable {
 public String getMessage();
 }

}

// role to class assignments
public class Throwable provides role Throwable;

ACM SIGSOFT Software Engineering Notes Page 7 March 2008 Volume 33 Number 2

4.3 TestCase

This client/service collaboration lets a Client create a TestCase object and provide and retrieve basic information about it, namely its
name. Theoretically, the constructor calls could be factored out into another collaboration (separate from the get/setName methods),
however, as happens frequently on the code level, they are mixed together and for simplicity’s sake are joined here in one collaboration.

public collaboration TestCase {

 free role Client {
 // no methods
 }

 role TestCase {
 public TestCase();
 public TestCase(String name);
 public String getName();
 public void setName(String name);
 }

}

// role to public class assignment
public class TestCase provides role TestCase;

ACM SIGSOFT Software Engineering Notes Page 8 March 2008 Volume 33 Number 2

4.4 TestSuite

Mirroring the basic TestCase collaboration, this client/service collaboration lets a Client create a TestSuite object and get and set its
name.

public collaboration TestSuite {

 free role Client {
 // no methods
 }

 role TestSuite {
 public TestSuite();
 public TestSuite(String name);
 public String getName();
 public void setName(String name);
 }

}

// role to class assignments
public class TestSuite provides role TestSuite;

Further constructors can be found in the TestHierarchy collaboration.

ACM SIGSOFT Software Engineering Notes Page 9 March 2008 Volume 33 Number 2

4.5 TestSuiteTestCreation

The TestSuiteTestCreation collaboration lets a Client use convenience methods for creating TestCase objects. These convenience meth-
ods are provided through the TestCreator role of the TestSuite class.

public collaboration TestSuiteTestCreation {

 free role Client {
 // no methods
 }

 role TestCreator {
 public static Test createTest(Class theClass, String name);
 public static Constructor getTestConstructor(Class theClass) throws NoSuchMethodException;
 public static Test warning(final String message);
 private static String exceptionToString(Throwable t);
 }

}

// role to public class assignment
public class TestSuite provides role TestCreator;

ACM SIGSOFT Software Engineering Notes Page 10 March 2008 Volume 33 Number 2

4.6 TestRun (Command Pattern)

Following the Command pattern [4] and according to [2], a Client calls run on a test to run that test. It provides a collecting parameter, a
TestResult object, to track what’s happening as the test run progresses.

public collaboration TestRun {

 free role Client {
 // no methods
 }

 role Command {
 public void run(TestResult result);
 }

}

// role to class assignments
public interface Test provides role Command;

ACM SIGSOFT Software Engineering Notes Page 11 March 2008 Volume 33 Number 2

4.7 TestCaseTestRun

The TestCaseTestRun collaboration makes it easy for a Client to run a TestCase through convenience methods provided by a TestCase’s
TestCase role.

«interface»
TestCaseTestRun::Client

+run() : TestResult
+createResult() : TestResult

«interface»
TestCaseTestRun::TestCase

public collaboration TestCaseTestRun {

 free role Client {
 // no methods
 }

 role TestCase {
 public TestResult run();
 protected TestResult createResult();
 }

}

// role to class assignments
public class TestCase provides role TestCase;

ACM SIGSOFT Software Engineering Notes Page 12 March 2008 Volume 33 Number 2

4.8 TestSuiteTestRun

The TestSuiteTestRun collaboration lets a Client run a provided test with a given TestResult. This is a single method provided by the
TestSuite role. The whole collaboration seems superfluous as there is exactly one use within the framework and none within the pro-
vided clients.

«interface»
TestSuiteTestRun::Client

+runTest(in test : Test, in result : TestResult)

«interface»
TestSuiteTestRun::TestSuite

public collaboration TestSuiteTestRun {

 free role Client {
 // no methods
 }

 role TestSuite {
 public void runTest(Test test, TestResult result);
 }

}

// role to class assignments
public class TestSuite provides role TestSuite;

ACM SIGSOFT Software Engineering Notes Page 13 March 2008 Volume 33 Number 2

4.9 TestHierarchy (Composite Pattern)

An application of the Composite pattern [4], the TestHierarchy collaboration lets a Configurator object create a tree of Test objects.
Every object in the tree is a Component and provides the countTestCases method; non-leaf objects are Composites and they provide
methods for managing their children. In particular, they provide convenience methods for building child objects from TestCase classes,
following the convention that any method in such a class that starts with “test” is a test case.

public collaboration TestHierarchy {

 free role Configurator {
 // no methods
 }

 role Component {
 public int countTestCases();
 }

 role Composite {
 public TestSuite(final Class theClass);
 public TestSuite(Class theClass, String name);
 public TestSuite (Public class[] public classes);
 public TestSuite(Public class[] public classes, String name);
 public void addTest(Test test);
 public void addTestSuite(Public class testPublic class);
 public Test testAt(int index);
 public int testCount();
 public Enumeration tests();
 private void addTestMethod(Method m, Vector names, Class theClass);
 private boolean isPublicTestMethod(Method m);
 private boolean isTestMethod(Method m);
 }

}

// role to class assignments
public interface Test provides role Component;
public class TestCase implements interface Test;
public class TestSuite implements interface Test provides role Composite;

ACM SIGSOFT Software Engineering Notes Page 14 March 2008 Volume 33 Number 2

4.10 TestResult (Collecting Parameter Pattern)

The TestResult collaboration lets a Client provide to and retrieve information from a TestResult object. Errors and Failures are col-
lected, and statistics about them are provided. The TestResult collaboration is an instance of the Collecting Parameter Pattern [1]. The
TestResult object is passed through the test case hierarchy while running the tests. It is important to note that the Creator and the Client
are typically different objects, as the Creator role is played by an object outside the test case hierarchy. In a canonical implementation of
the pattern, the Client role would be played by an object different from the one playing the TestResult role, but in JUnit the TestResult
object itself is one of the objects that takes on the Client role, starting a test case and collecting its result. (Other objects that take on the
Client role are objects from outside junit.framework as Client is a free role.)

public collaboration TestResult {

 free role Creator {
 // no methods
 }

 free role Client {
 // no methods
 }

 role TestResult {
 public TestResult()
 public synchronized void addError(Test test, Throwable t);
 public synchronized void addFailure(Test test, AssertionFailedError t);
 public synchronized int errorCount();
 public synchronized Enumeration errors();
 public synchronized int failureCount();
 public synchronized Enumeration failures();
 public synchronized int runCount();
 public synchronized boolean wasSuccessful();
 }

}

// role to class assignments
public class TestResult provides role TestResult;

ACM SIGSOFT Software Engineering Notes Page 15 March 2008 Volume 33 Number 2

4.11 TestResultController

The TestResultController collaboration lets a Client object stop the execution of a current test run by calling stop on it. The Client role is
a free role played by test runners and other clients from outside junit.framework. This necessitates the use of threading or other means of
concurrency to separate clients from the actual test runs.

«interface»
TestResultController::Client

+shouldStop() : boolean
+stop()

«interface»
TestResultController::TestResult

public collaboration TestResultController {

 free role Client {
 // no methods
 }

 role TestResult {
 public synchronized boolean shouldStop();
 public synchronized void stop();
 }

}

// role to class assignments
public class TestResult provides role TestResult;

ACM SIGSOFT Software Engineering Notes Page 16 March 2008 Volume 33 Number 2

4.12 TestResultObserver (Observer Pattern)

An instance of the Observer pattern [4], the TestResultObserver collaboration lets a Configurator register TestListeners at a TestResult
object such that the TestResult can call back on the listeners to inform them about how the test run is progressing. The TestResult tells
its listeners when a test case starts and when it ends as well as if an error or a failure occurred.

«interface»
TestResultObserver::Configurator

+addError(in test : Test, in t : Throwable)
+addFailure(in test : Test, in t : AssertionFailedError)
+endTest(in test : Test)
+startTest(in test : Test)

«interface»
TestResultObserver::TestListener

+addListener(in listener : TestListener)
+removeListener(in listener : TestListener)
+cloneListener() : Vector

«interface»
TestResultObserver::TestResult

0..* 1

public collaboration TestResultObserver {

 free role Configurator {
 // no methods
 }

 free role TestListener {
 public void addError(Test test, Throwable t);
 public void addFailure(Test test, AssertionFailedError t);
 public void endTest(Test test);
 public void startTest(Test test);
 }

 role TestResult {
 public synchronized void addListener(TestListener listener);
 public synchronized void removeListener(TestListener listener);
 private synchronized Vector cloneListeners();
 }

}

// role to class assignments
public interface TestListener provides role TestListener;
public class TestResult provides role TestResult;

ACM SIGSOFT Software Engineering Notes Page 17 March 2008 Volume 33 Number 2

4.13 CollectingTestRun (Command Pattern)

In a second instantiation of the Command pattern [4], the Client, played by a TestCase object, delegates the test run handling to a Com-
mand, played by the TestResult object. Thus, the TestResult object shoulders yet another responsibility, here wrapping the actual test
run with calls to the startTest and endTest methods, which track the test runs and notify test listeners.

public collaboration CollectingTestRun {

 free role Client {
 // no methods
 }

 role Command {
 public void run(final TestCase test);
 public void startTest(Test test);
 public void runProtected(final Test test, Protectable p);
 public void endTest(Test test);
 }

}

// role to class assignments
public class TestCase provides role Client;
public class TestResult provides role Command;

ACM SIGSOFT Software Engineering Notes Page 18 March 2008 Volume 33 Number 2

4.14 ProtectedTestRun (Adapter pattern)

An instance of the (Object) Adapter pattern, the ProtectedTestRun collaboration continues the test run delegation chain of calls by in-
jecting a Protectable object, an instance of an inner class, into the test run call sequence. Here, the Client, played by the TestResult ob-
ject, creates the Protectable and configures it with a Target, the actual TestCase. The Protectable’s run method is called by the Client
and in turn forwards it to the Target object, while “protecting” the call with some exception handling. The adaptation being performed is
the enhancement of the signature of the run method with the declaration of a possible Throwable (exception) being thrown.

Thus, reviewing the call sequence, first run is called on a TestCase, which then calls run on the TestResult argument, which in turn calls
protect on an anonymous Protectable, which then calls runBare on the original TestCase object.

+runBare()

«interface»
ProtectedTestRun::Target

+protect()

«interface»
ProtectedTestRun::Protectable

«interface»
ProtectedTestRun::Client

public collaboration ProtectedTestRun {

 free role Client {
 // no methods
 }

 role Protectable {
 public void protect() throws Throwable;
 }

 role Target {
 public void runBare() throws Throwable;
 }

}

// role to class assignments
public class TestResult provides role Client;
interface Protectable provides role Protectable;
public class TestCase provides role Target;

ACM SIGSOFT Software Engineering Notes Page 19 March 2008 Volume 33 Number 2

4.15 TestRunMethod (Template Method)

An instance of the Template Method pattern [4], the TestRunMethod collaboration structures the actual test case execution into before
and after method calls, to setUp and tearDown respectively, and a call to the final test case code provided by the runTest method. Sub-
classes use setUp and tearDown to provide test case specific initialization and de-initialization.

public collaboration TestRunMethod {

 free role Client {
 // no methods
 }

 role TemplateMethod {
 public void runBare() throws Throwable;
 }

 role PrimitiveMethods {
 protected void runTest() throws Throwable;
 protected void setUp() throws Exception;
 protected void tearDown() throws Exception;
 }

}

// role to class assignments
public class TestCase provides role TestCase;

The method runBare is shared with ProtectedTestRun::Target because in the call sequence they are joined at the hip.

ACM SIGSOFT Software Engineering Notes Page 20 March 2008 Volume 33 Number 2

4.16 Assertions

Test code typically performs some action and then tests whether the action led to the desired results. This checking for expected results
is codified by calls to assertion methods, which cast the checking as a (possibly arbitrarily complex) expression that evaluates to either
true or false. If the expression evaluates to false, the assertion fails, and hence the test fails. If the test fails, an AssertionFailedError will
be thrown.

public collaboration Assertions {

 free role Client {
 // no methods
 }

 role Assertions {
 protected Assert();
 public static void assertTrue(String message, boolean condition);
 public static void assertTrue(boolean condition);
 public static void assertFalse(String message, boolean condition);
 public static void assertFalse(boolean condition);
 public static void fail(String message);
 public static void fail();
 public static void assertEquals(String message, Object expected, Object actual);
 public static void assertEquals(Object expected, Object actual);
 public static void assertEquals(String message, String expected, , String actual);
 public static void assertEquals(String expected, String actual);
 public static void assertEquals(String msg, double ex, double actual, double delta);

ACM SIGSOFT Software Engineering Notes Page 21 March 2008 Volume 33 Number 2

 public static void assertEquals(double expected, double actual, double delta);
 public static void assertEquals(String message, float ex, float actual, float delta);
 public static void assertEquals(float expected, float actual, float delta);
 public static void assertEquals(String message, long expected, long actual);
 public static void assertEquals(long expected, long actual);
 public static void assertEquals(String message, boolean expected, boolean actual);
 public static void assertEquals(boolean expected, boolean actual);
 public static void assertEquals(String message, byte expected, byte actual);
 public static void assertEquals(byte expected, byte actual);
 public static void assertEquals(String message, char expected, char actual);
 public static void assertEquals(char expected, char actual);
 public static void assertEquals(String message, short expected, short actual);
 public static void assertEquals(short expected, short actual);
 public static void assertEquals(String message, int expected, int actual);
 public static void assertEquals(int expected, int actual);
 public static void assertNotNull(Object object);
 public static void assertNotNull(String message, Object object);
 public static void assertNull(Object object);
 public static void assertNull(String message, Object object);
 public static void assertSame(String message, Object expected, Object actual);
 public static void assertSame(Object expected, Object actual);
 public static void assertNotSame(String message, Object expected, Object actual);
 public static void assertNotSame(Object expected, Object actual);
 public static void failSame(String message);
 public static void failNotSame(String message, Object expected, Object actual);
 public static void failNotEquals(String message, Object expected, Object actual);
 static String format(String message, Object expected, Object actual);
 }

}

// role to class assignments
public class Assert provides role Assertions;

ACM SIGSOFT Software Engineering Notes Page 22 March 2008 Volume 33 Number 2

4.17 TestFailure

The TestFailure collaboration lets a Client create and update a TestFailure object. For each failed test, a TestFailure object is created
that provides information about the failed test. The TestFailure object is created when the test fails and its data is read and analyzed by
the client that started the test run.

public collaboration TestFailure {

 free role Client {
 // no methods
 }

 role TestFailure {
 public TestFailure(Test failedTest, Throwable thrownException);
 public Test failedTest();
 public Throwable thrownException();
 public String trace();
 public String exceptionMessage();
 public boolean isFailure();
 }

}

// role to public class assignment
public class TestFailure provides TestFailure;

ACM SIGSOFT Software Engineering Notes Page 23 March 2008 Volume 33 Number 2

4.18 AssertionFailedError

The AssertionFailedError collaboration is a simple client/service collaboration that lets a Client create and configure an Assertion-
FailedError exception. AssertionFailedErrors are exceptions that are created and thrown by the various assertion methods of Asser-
tions::Assertions as listed above. To a Client they only provide a simple String message (as defined in the Throwable collaboration).

«interface»
AssertionFailedError::Client

+AssertionFailedError()
+AssertionFailedError(in message : String)

«interface»
AssertionFailedError::AssertionFailedError

public collaboration AssertionFailedError {

 free role Client {
 // no methods
 }

 role AssertionFailedError {
 public AssertionFailedError();
 public AssertionFailedError(String message);
 }

}

// role to class assignments
public class AssertionFailedError provides role AssertionFailedError;

ACM SIGSOFT Software Engineering Notes Page 24 March 2008 Volume 33 Number 2

4.19 ComparisonFailure

The ComparisonFailure collaboration is another simple client/service collaboration that lets a Client create and configure a Compari-
sonFailure exception. Over the simple Throwable protocol it adds methods to get an actual and an expected string value that represent
the actual and expected values from some failed assertion.

public collaboration ComparisonFailure {

 free role Client {
 // no methods
 }

 role ComparisonFailure {
 public ComparisonFailure(String message, String expected, String actual);
 public String getActual();
 public String getExpected();
 }

}

// role to class assignments
public class ComparisonFailure provides role ComparisonFailure;

ACM SIGSOFT Software Engineering Notes Page 25 March 2008 Volume 33 Number 2

4.20 ComparisonCompactor (Strategy Pattern)

An application of the Strategy pattern, the ComparisonCompactor collaboration lets a client use a Compactor object to cut out repeating
contents from an actual and an expected string value. This is used to shorten the textual display of a failed test so that a user can more
quickly grasp the actual and expected values whose difference made the test fail.

«interface»
ComparisonCompactor::Client

+ComparisonCompactor(in contextLength : int, in expected : String, in actual : String)
+compact(in message : String) : String

«interface»
ComparisonCompactor::Compactor

public collaboration ComparisonCompactor {

 free role Client {
 // no methods
 }

 role Compactor {
 public ComparisonCompactor(int contextLength, String expected, String actual);
 public String compact(String message);
 }

}

// role to class assignments
public class ComparisonCompactor provides role Compactor;

ACM SIGSOFT Software Engineering Notes Page 26 March 2008 Volume 33 Number 2

4.21 CompactMethod (Composed Method Pattern)

Following the Composed Method pattern [1], the CompactMethod collaboration lets a Client, the compact method of ComparisonCom-
pactor, realize its implementation by composinge a set of further methods, as provided by the Compactor role. It is basically a code fac-
toring that eases comprehension and implementation.

public collaboration CompactMethod {

 role client {
 // no methods
 }

 role Compactor {
 private String compactString(String source);
 private void findCommonPrefix();
 private void findCommonSuffix();
 private String computeCommonPrefix();
 private String computeCommonSuffix();
 private boolean areStringsEqual();
 }
}

// role to class assignments
public class ComparisonCompactor provides role Client, Compactor;

ACM SIGSOFT Software Engineering Notes Page 27 March 2008 Volume 33 Number 2

5 Conclusions
We can now review the documented framework in its entirety with
respect to the employed collaborations. Printable and Throwable
are ignored, because they have been inherited from the general
object framework provided by Java.

A straightforward analysis provides the following data:

• Overall number of methods: 114

• Overall number of roles: 43

• Overall number of collaborations: 19

• Overall number of interfaces and classes: 11

• Average number of roles per collaboration: 2.3

• Overall number of design pattern instances: 9

• Percentage of collaborations that are patterns: 47%

There is surprisingly little overlap between different roles. The
TestSuite::TestSuite and TestHierarchy::Composite roles share
methods, and the ProtectedTestRun::Target and TestRun-
Method::TestCase roles share methods, but not more than this.
Forthcoming publications will provide appropriate interpretations.

References
[1] Kent Beck. Smalltalk Best Practice Patterns. Addison-

Wesley, 1996.

[2] Kent Beck and Erich Gamma. “JUnit: A Cook’s Tour”.
Available from www.junit.org.

[3] George Fairbanks, David Garlan, William L. Scherlis.
“Design Fragments Make Using Frameworks Easier.” In
Proceedings of OOPSLA 2006. ACM Press, 2006. Pages
75-88.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns. Addison-Wesley, 1995.

[5] Jan Hannemann and Gregor Kiczales. “Design Pattern
Implementation in Java and AspectJ.” In ACM SIGPLAN
Notices, Volume 37, Issue 11 (November 2002). ACM
Press, 2002.

[6] Ralph E. Johnson. “Documenting Frameworks Using
Patterns.” In Proceedings of OOPSLA 1992. ACM Press,
1992. Pages 63–76.

[7] Karl J. Lieberherr, David H. Lorenz, and Mira Mezini:
“Building Modular Object-oriented Systems with Reus-
able Collaborations. Tutorial session at ICSE 2000.

[8] Karl Lieberherr, David H. Lorenz, and Johan Ovlinger.
“Aspectual Collaborations: Combining Modules and As-
pects.” The Computer Journal, 46 (5). Pages 542-565.

[9] Harold Ossher, M. Kaplan, A. Katz, W. Harrison, V.
Kruskal. “Specifying Subject-Oriented Composition.”
Theory and Practice of Object Systems, Volume 2, Num-
ber 3. Wiley & Sons, 1996.

[10] Trygve Reenskaug et al. Working With Objects: The
OORAM Software Engineering Method. Prentice Hall,
1995.

[11] Dirk Riehle. Framework Design: A Role Modeling Ap-
proach. Dissertation No. 13509, ETH Zurich, 2000.
Available from www.riehle.org/computer-science/re-
search/dissertation.

[12] Dirk Riehle and Thomas Gross. “Framework Design”. In
Proceedings of OOPSLA 1998. ACM Press, 1998. Avail-
able from www.riehle.org/computer-science/research.

[13] UML 2.0. Unified Modeling Language. OMG, 2007.
Available from www.uml.org.

[14] Michael VanHilst and David Notkin. “Using Role Com-
ponents to Implement Collaboration-based Designs.” In
Proceedings of OOPSLA 1996. ACM Press, 1996. Pages
359-369.

[15] Rebecca Wirfs-Brock, Brian Wilkerson and Lauren Wie-
ner. Designing Object-Oriented Software. Prentice-Hall,
1990.

ACM SIGSOFT Software Engineering Notes Page 28 March 2008 Volume 33 Number 2

